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This paper presents the development of a three-dimensional high-order solver with un-
structured spectral difference method. The solver employs the formulations of Sun et al.22

It is implemented on unstructured hexahedral grid elements. It is firstly validated using
test problems of 2D and 3D subsonic inviscid flows past a circular cylinder. The spectral
difference method constructs element-wise continuous fields. Five different types of Rie-
mann solvers are employed to deal with the discontinuity across elements. We demonstrate
the spatial accuracy up to fourth-order using the viscous compressible Couette flow with
analytic solution. The 3D SD method is finally applied to a compressible turbulent channel
flow at Reτ = 400. The predicted mean and r.m.s velocity profiles are in good agreement
with DNS results of Moser et al.15

I. Introduction

The increase in computational power is enabling three-dimensional simulations of various research prob-
lems previously deemed intractable such as unsteady Large Eddy Simulation (LES) and Aero-acoustics.
In LES, the smallest resolved scales are often used to model the contribution from the unresolved scales.
Therefore, it is of great importance that these small scales are resolved to high accuracy. High accuracy
LES results can be achieved by high-order numerical methods.3 The need for highly accurate methods in
applications such as large eddy simulation, direct numerical simulation, computational aero-acoustics etc. on
complex geometries, has been the driving force for the development of higher order schemes for unstructured
meshes such as the Discontinuous Galerkin (DG) Method,1 Spectral Volume (SV) method12,25 and Spectral
Difference (SD) Method.11,24 The SD method is a newly developed efficient high-order approach based on
differential form of the governing equation. It was originally proposed by Liu et al11 and developed for wave
equations in their paper on triangular grids. Wang et al24 extended it to 2D Euler equations on triangular
grids and Sun et al22 further developed it for three-dimensional Navier-Stokes equations on hexahedral un-
structured meshes. The SD method combines elements from finite-volume and finite-difference techniques.
The method is particularly attractive because it is conservative, and has a simple formulation and easy to
implement.

Sheared turbulent channel flow contains many inhomogeneous and anisotropic large scales. Direct nu-
merical simulations of compressible turbulent channel flow have been studied using structured-grid meth-
ods.2,6, 13,14 In this paper, we study the compressible turbulent channel flow using an unstructured grid
method with high-order accuracy. In the following sections, we will firstly describe the numerical formu-
lation of the high-order spectral difference method. Prior to its application to turbulent channel flow, we
will validate the spectral difference method code using 2D and 3D inviscid flows past a cylinder as well as a
viscous Couette flow.
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II. Numerical Formulation

The formulations of the equations employed in this paper are largely similar to the formulations of Sun
et al22 for unstructured hexahedral grids. Consider the unsteady compressible 3D Navier Stokes equations
in conservative form

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0 (1)

where Q is the vector of conserved variables; F , G and H are the total fluxes including both inviscid and
viscous flux vectors. To achieve an efficient implementation, all elements in the physical domain (x, y, z) are
transformed into a standard square element (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 and 0 ≤ β ≤ 1).
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Figure 1. The nodal points and standard 3D cell orientation

The transformation can be written as:



x

y

z


 =

K∑

i=1

Mi (ξ, η, β)




xi

yi

zi


 (2)

where K is the number of points used to define the physical element, (xi, yi, zi) are the cartesian coordinates
at those points, and Mi (ξ, η, β) are the shape functions. For present implementation, we define K as 8 nodal
points illustrated in figure 1. Nodal point 1 location is (ξ = 0, η = 0, β = 0). The metrics and the Jacobian
of the transformation can be computed for each element. The Jacobian is can be expressed as:

J =




xξ xη xβ

yξ yη yβ

zξ zη zβ


 (3)

The governing equations in the physical domain are then transferred into the computational domain, and
the transformed equations take the following form:

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
+

∂H̃

∂β
= 0 (4)

where Q̃ = |J | ·Q and 


F̃

G̃

H̃


 = |J |J−1




F

G

H


 (5)
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In the standard element, two sets of points are defined, namely the solution points and the flux points,
illustrated in figure 2.

Solution points

ξ

η

Flux points

Figure 2. Distribution of flux and solution points for the third order SD scheme

In order to construct a degree (N − 1) polynomial in each coordinate direction, solution at N points are
required. The solution points in 1D are chosen to be the Gauss points defined by:

Xs =
1
2

[
1− cos

(
2s− 1
2N

· π
)]

, s = 1, 2, · · · , N. (6)

The flux points are selected by Sun et al22 as the Gauss-Lobatto points given by

Xs+1/2 =
1
2

[
1− cos

( s

N
· π

)]
, s = 0, 1, · · · , N. (7)

For the computations in this paper, however, the flux points were selected to be Legendre-Gauss quadra-
ture points plus the two end points 0 and 1, as suggested by Huynh.7 Choosing P−1(ξ) = 0 and P0(ξ) = 1,
we can determine the higher-degree Legendre polynomials as

Pn(ξ) =
2n− 1

n
(2ξ − 1)Pn−1(ξ)− n− 1

n
Pn−2(ξ) (8)

The locations of these Legendre-Gauss quadrature points are the roots of equation Pn(ξ) = 0. They are
generally found to be more stable than the Gauss-Lobatto flux points.

Using the solutions at N solution points, a degree (N − 1) polynomial can be built using the following
Lagrange basis defined as:

hi (X) =
N∏

s=0,s 6=i

(
X −Xs

Xi −Xs

)
(9)

Similarly, using the fluxes at (N + 1) flux points, a degree N polynomial can be built for the flux using
a similar Lagrange basis defined as:

li+1/2 (X) =
N∏

s=0,s 6=i

(
X −Xs+1/2

Xi+1/2 −Xs+1/2

)
(10)

The reconstructed solution for the conserved variables in the standard element is just the tensor products of
the three one-dimensional polynomials,

Q (ξ, η, β) =
N∑

k=1

N∑

j=1

N∑

i=1

Q̃i,j,k

|Ji,j,k|hi (ξ) · hj (η) · hk (β) (11)
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Similarly, the reconstructed flux polynomials take the following form:

F̃ (ξ, η, β) =
N∑

k=1

N∑

j=1

N∑

i=0

F̃i+1/2,j,kli+1/2 (ξ) · hj (η) · hk (β),

G̃ (ξ, η, β) =
N∑

k=1

N∑

j=0

N∑

i=1

G̃i,j+1/2,khi (ξ) · lj+1/2 (η) · hk (β),

H̃ (ξ, η, β) =
N∑

k=0

N∑

j=1

N∑

i=1

H̃i,j,k+1/2hi (ξ) · hj (η) · lk+1/2 (β) (12)

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the
inviscid flux, a Riemann solver is employed to compute a common flux at interfaces to ensure conservation
and stability. In our case, we have used the Riemann solvers such as Rusanov,17 Roe16 with entropy fix,4

CUSP,8 Flux vector splitting20 and AUSM10 schemes to compute the interface fluxes.
In summary, the algorithm to compute the inviscid flux derivatives consists of the following steps:

1. Given the conservative variables at the solution points, the conservative variables are computed at the
flux points. The inviscid fluxes at the interior flux points can also be determined from the polynomials
based on the solution points.

2. The inviscid fluxes at the element interfaces are computed using the Riemann solver. Given the normal
direction of the interface n, and the averaged normal velocity component Vn and the sound speed c,
the inviscid flux on the interface can be determined.

3. The derivatives of the inviscid fluxes are computed at the solution points using the derivatives of
Lagrange operators l

(
∂F̃

∂ξ

)

i,j

=
N∑

r=0

F̃r+1/2,j · l
′
r+1/2 (ξi),

(
∂G̃

∂η

)

i,j

=
N∑

r=0

G̃i,r+1/2 · l
′
r+1/2 (ηj),

(
∂H̃

∂β

)

i,j,k

=
N∑

r=0

H̃i,j,r+1/2 · l
′
r+1/2 (βk) (13)

4. The convective term ∇Fe(Q) can be readily determined after transforming these derivatives back the
physical domain.

The conservative variables Q and Cartesian components fe(Q), ge(Q) and he(Q) of the inviscid flux
vector Fe(Q) are given by

Q =





ρ

ρu

ρv

ρw

E





, fe(Q) =





ρu

ρu2 + p

ρuv

ρuw

u(E + p)





(14)

ge(Q) =





ρv

ρuv

ρv2 + p

ρvw

v(E + p)





, he(Q) =





ρw

ρuw

ρvw

ρw2 + p

w(E + p)





(15)
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Here ρ is the density, u, v and w are the velocity components in x, y and z directions, p stands for pressure
and E is the total energy. The pressure is related to the total energy by

E =
p

γ − 1
+

1
2
ρ(u2 + v2 + w2) (16)

with a constant ratio of specific heat γ. For all test cases in the present study, γ is going to be 1.4 for air.
Three-dimensional Navier-Stokes equations have an additional viscous term dependent on not only con-

servative variables but also their gradients. To illustrate the treatment of viscous flow terms, one can write
the Navier-Stokes equations in conservation terms as

∂Q

∂t
+∇Fe(Q)−∇Fv(Q,∇Q) = 0 (17)

The Cartesian components fv(Q,∇Q) , gv(Q,∇Q) and hv(Q,∇Q) of viscous flux vector Fv(Q,∇Q) are
given by

fv(Q,∇Q) =





0
τxx

τyx

τzx

uτxx + vτyx + wτzx + µCp

Pr
Tx





,

gv(Q,∇Q) =





0
τxy

τyy

τzy

uτxy + vτyy + wτzy + µCp

Pr
Ty





,

hv(Q,∇Q) =





0
τxz

τyz

τzz

uτxz + vτyz + wτzz + µCp

Pr
Tz





(18)

where µ is the dynamic viscosity, Cp is the specific heat and Pr stands for Prandtl number. T is temperature
which can be derived from the perfect gas assumption. λ is set to −2/3 according to the Stokes hypothesis.

τxy ≡ τyx = µ(vx + uy), τxz ≡ τzx = µ(wx + uz),

τyz ≡ τzy = µ(wy + vz), τxx = 2µ
{

ux − ux+vy+wz

3

}
,

τyy = 2µ

{
vy − ux + vy + wz

3

}
, τzz = 2µ

{
wz − ux+vy+wz

3

}

The procedures to get viscous fluxes can be described as the following steps:

1. reconstruct Qf at the flux points from the conservative variables at the solution points using equation
(11).

2. average the field of Qf on the element interfaces as Qf = 1
2 (QL

f + QR
f ). For interior flux points,

Qf = Qf . Meanwhile, appropriate boundary conditions shall be applied for specific edge flux points.

3. evaluate ∇Q at solution points from Qf using equation (13) where ∇Q =





Qx

Qy

Qz





and Qx = ∂Q
∂ξ ξx +

∂Q
∂η ηx + ∂Q

∂β βx, etc.
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4. reconstruct ∇Q from solution points to flux points and using equation (11), average them on the
element interfaces as ∇Qf = 1

2 (∇QL
f +∇QR

f )

5. use Qf and ∇Qf in order to compute the viscous flux vectors described in equation (18) at the element
interfaces.

Flows with either steady or unsteady solutions are considered in this paper. All computations utilize a
fourth-order accurate, strong-stability-preserving five-stage Runge-Kutta scheme.19

III. Validation studies

In the following, we are going to study 2D and 3D inviscid flows past a cylinder and a 3D viscous Couette
flow.

III.A. Inviscid flow past a circle

Firstly, we compute 2D and 3D subsonic inviscid flows past a circular cylinder (Mach = 0.2). The three
dimensional grid is generated after extruding a two-dimensional grid with 32×20 cells shown in figure 3 with
three-cell thickness in the spanwise direction. Two-dimensional flow past a circle has been considered as a test
problem for validating the DG1 and SV25 methods. Higher order curved wall representation was proved to be
important for both DG and SV methods. In our simulations, a quadratic curved wall boundary condition is

implemented for the inner circle. The inviscid fluxes on the wall are imposed as fe(Q) =





0
p · nx

p · ny

p · nz

0





. Fixed-

value Dirichlet boundary condition is used for the outer boundary of the grid. In the spanwise direction, a
periodic boundary condition is employed. The Mach number contour obtained by the 4th order SD scheme
for this potential flow problem is shown in figure 4. The CUSP scheme developed by Jameson8 is used in
this simulation. Nearly ideal symmetric patterns are successfully obtained.

In order to demonstrate the effect of Riemann solvers on the numerical solutions, five different flux
formulations are implemented. Numerical tests are performed using the 4th-order SD method and a quadratic
curved wall representation. The drag coefficients obtained by are very small for every Riemann solver as
shown in table 1. The Rusanov solver produces an accurate drag coefficient with the smallest magnitude.

Table 1. Drag coefficients predicted by the SD method with different Riemann solvers

Riemann ordercell no. Wall Mach∆tu∞/D Cd

CUSP8 4th 640 quadratic 0.2 2e-4 -1.86e-5
AUSM10 4th 640 quadratic 0.2 2e-4 -4.39e-5
Roe16 4th 640 quadratic 0.2 2e-4 -1.03e-5

Vector split20 4th 640 quadratic 0.2 2e-4 -1.18e-5
Rusanov17 4th 640 quadratic 0.2 2e-4 -8.8e-6

In particular, choosing the Gauss-Lobatto points, the SD methods produce instable solutions for 2D and
3D simulations of the inviscid flow past a cylinder. In contrast, the choice of Legendre-Gauss quadrature
points plus the two end points produces stable and accurate 2D and 3D results as presented in this paper.

III.B. 3D viscous planar Couette flow

The numerical order of accuracy is validated using a compressible Couette flow with analytical solution. A
grid with 6× 3× 3 cells is shown in figure 5 (a). A periodic boundary condition is used in the stream-wise
direction. A moving wall no-slip boundary with constant temperature and a specified external pressure is
used for the top surface (y = H). A stationary no-slip wall with constant temperature is used for the bottom
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Figure 3. Grid 32× 20× 3 for inviscid flow past a circular cylinder

Figure 4. Mach number contour obtained for inviscid flow past a circular cylinder using 4th-order SD method and
quadratic curved wall boundary
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surface y = 0. In the spanwise direction, periodic boundary condition is again implemented. The exact
solutions of the this problem are

u =
U

H
y, v = 0, w = 0;

e = eb +
y

H
(et − eb) +

PrU2

2γ

y

H
(1− y

H
); p = const

Where Pr is the Prandtl number and e = CvT is the internal energy. The density ρ is related to pressure p
through ρ = p

(γ−1)e The subscripts t and b refer to top and bottom surfaces respectively.
We obtained desired numerical order up to 4th order accuracy using L2 error as shown in table 2.

It demonstrates that the basic implementations of the three-dimensional Spectral Difference method are
successful. A typical solution of density ρ is shown in figure 5 (b), and it is a quadratic function of y.

No. of elements No. of DOFs L2-error Order
2nd order SD

2 16 1.25E-02 -
16 128 2.65E-03 2.24
54 432 9.62E-04 2.49

3rd order SD
2 54 1.46E-03 -

16 432 1.18E-04 3.60
54 864 2.48E-05 3.85

4th order SD
2 128 1.73E-04 -

16 1024 9.79E-06 4.14
54 3456 1.93E-06 4.01

Table 2. L2 errors and orders of accuracy of viscous Couette flow

(a) Grid 6× 3× 3 (b) density contour
Figure 5. Compressible Couette flow grid and its solution for density field.

IV. Application to turbulent channel flow

For compressible turbulent channel flow, a uniform fictitious body force −τwρδ1
ρbH term is added into the x-

momentum equation of the Navier-Stokes equation similar to the previous DNS studies of the compressible
turbulent channel flow.6,13 Although the body force has the same function as the one in the DNS of
incompressible turbulent channel flow, it is not interpreted as the mean pressure gradient. The pressure
term in our case is given the state equation (16). The computational box lengths are 6.4δ × 2δ × 3.2δ and δ
is the half channel width. As shown in figure 6, the computational grid has 24× 40× 12 cells in x, y and z
directions respectively. Periodic boundary conditions are employed for streamwise and spanwise directions.
Iso-thermal wall conditions are imposed on the boundaries in the wall-normal directions.
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Figure 6. Computational grid for channel flow 24× 40× 12

IV.A. Solving Orr-Sommerfeld equation using a 4th order finite difference method

Small disturbances imposed to the corresponding 2D Navier-Stokes equation of a plane Poiseuille flow lead
to an eigenvalue problem for the Orr-Sommerfeld equation with given boundary conditions. The Orr-
Sommerfeld instability equation is

d4φ

dy4
− 2α2 d2φ

dy2
+ α4φ− iαRec

{
(u− C)

(
d2φ

dy2
− α2φ

)
− d2u

dy2
φ

}
= 0 (19)

where C is the complex phase velocity of the disturbance, α is the streamwise wavenumber, and Reynolds
number Rec = Ucδ

ν is based on the centerline velocity Uc and channel half length δ. This Reynolds number is
approximately equal to 20887.5 to match conditions for the presently considered Reynolds number Reτ = 400.
The laminar streamwise velocity solution is given as

u = Uc

(
1− η2

)
(20)

where, η = y/δ.
Non-slip wall boundary conditions are used at the top and bottom planes |η| = 1 as φ = 0 and dφ

dy = 0,

the symmetrical boundary conditions are applied at the centerline η = 0 as dφ
dy = 0 and d3φ

dy3 = 0.
In particular, we take the following formulation used by Thomas23 in order to obtain a more accurate

difference equation

f = φ− 1
6
∆y2 d2φ

dy2
+

1
90

∆y4 d4φ

dy4
. (21)

The Orr-Sommerfeld equation is then transformed to a linear system as

AF = R (22)

where A is an N ×N matrix, F is a N element vector f and R is a vector of N elements set as zero, except
the first element set as 1.

Fully pivoting Gauss-Jordan scheme is used to get upper triangular matrix and obtain the solution of
the linear system. The Newton method is used to search new complex number C in order to make the A
matrix singular.

Given different value of the streamwise wavenumber α, we solve the Orr-Sommerfeld equation and obtain
the most instable eigenvalue accordingly. The streamwise wavenumber 1.0 is chosen in order to fit the
streamwise length of the channel. After adjusting φ|η=0 = 1 for normalization, the final eigen-solutions of
the Orr-Sommerfeld equation are obtained in figures ( 7) and ( 8) for real and imaginary parts against η
from 0 to 1.
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Figure 7. The eigen-solution of the Orr-Sommerfeld equation (real part)

Figure 8. The eigen-solution of the Orr-Sommerfeld equation (imaginary part)
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Figure 9. The imposed streamwise perturbation velocity field contour

Figure 10. The imposed wall-normal perturbation velocity field contour
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The streamfunction of perturbation field is given as

ψ = φ(η)ei(kx−ωt) (23)

where ω = CαUc/δ. Thus we can evaluate the velocity disturbance using the following relationships

u′ =
∂ψ

∂y
=

dφ(η)
dy

ei(kx−ωt) (24)

v′ = −∂ψ

∂x
= −ikφ(η)ei(kx−ωt) (25)

The disturbance is imposed on the laminar solution of the plane Poiseuille flow as

u = u + εu′;
v = εv′ (26)

where ε is a small number normally less than 1 to ensure that the small disturbance imposed on the laminar
flow solution is relatively very small (ε is 0.01 for this case). The determined perturbation fields are shown
in figure ( 9) for u′ and figure ( 10) for v′.

IV.B. Turbulent channel flow statistics

Turbulence in channel flow is generated primarily from the wall shear stresses. Reynolds-averaged Navier-
Stokes (RANS) methods have generally been unsuccessful in predicting the turbulence. Large eddy simulation
with second-order spatial accuracy using the Smagorinsky model18 requires von Driest damping function to
artificially reduce the eddy viscosity near the wall. Gullbrand and Chow3 reported that a fourth-order
accurate finite-difference scheme obtained much more accurate results than a second-order finite-difference
scheme and could produce moderately accurate results on a Cartesian grid without any turbulence modeling.

Using the computational grid of 24 × 40 × 12 elements mentioned above, the computation was firstly
performed using the third-order SD scheme. The initial conditions are obtained from the parabolic profiles
of the plane Poiseuille flow with further super-imposition of the determined perturbation fields u′ and v′.
The computation was performed on a serial computer for about 10 days. The solutions obtained using
the third SD method are employed as the initial conditions for the fourth-order SD method. The final
statistics is obtained by the the 4th-order SD method on the same grid with a total number of degrees-of-
freedom of 737,280 for each independent variable. The computation employs a non-dimensional time step
size ∆t×uτ/δ = 5.94e−5. The averaged Mach number is around 0.4 and the flow is subsonic. The statistics
is collected over a period of t× uτ/δ = 1.07 after the turbulent flow becomes fully-developed.

The simulations produce instantaneous turbulent structures resembling streaks on the layer at a height
0.03δ above the wall where δ is the half channel width, as shown in figure 11 . In addition, coherent structures
in the spanwise vorticity are also captured on a middle x-y plane as shown in figure 12. The SD results
compare very well with the direct numerical simulation of Moser et al15 using 9,486,336 nodes. The velocity
profiles are presented in figure 13 against the DNS results. The peak of the mean streamwise velocity profile
is slightly over-predicted by the SD method against the DNS results. The streamwise and wall-normal r.m.s
velocities u+

rms and v+
rms predicted by the SD method agree very well with the DNS results. The peak of the

rms spanwise velocity is again slightly over-predicted by the SD method in figure 13(d).

V. Concluding Remark

A three-dimensional SD unstructured solver suitable for Large Eddy Simulation has been developed for
viscous compressible flows. 2D and 3D solvers are successfully applied to compute subsonic inviscid 2D
and 3D flow past a circular cylinder. The predicted flow pattern is symmetric and the drag coefficients
are of very small amplitudes regardless of the choice of Riemann solvers. We also verified that the solver
on hexahedral grids could achieve the desired numerical order for a 3D compressible viscous Couette flow.
Finally, the SD method is used to simulate a turbulent compressible channel flow at Reτ = 400. Small
perturbations generated from the Orr-Sommerfeld equation are imposed on the laminar parabolic velocity
profiles to successfully accelerate the transition to fully three-dimensional turbulent state. The profiles
predicted by the 4th-order SD method are in very good agreement for both mean and r.m.s velocity profiles
with the DNS results obtained by Moser et al15 at a similar Reynolds number.
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Figure 11. Streamwise velocity streams at 0.03δ above channel wall predicted by 4th-order SD method

Figure 12. Spanwise vorticity contour on a middle plane in the spanwise direction predicted by the 4th-order SD
method
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(a) plane averaged mean velocity u (b) plane averaged r.m.s velocity u+
rms

(c) plane averaged r.m.s velocity v+
rms (d) plane averaged r.m.s velocity w+

rms

Figure 13. Prediction by 4th order SD method against DNS data by Moser et al.
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