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This work concerns the development of a highly accurate and efficient meshless flow

solver for inviscid flow in two dimensions. Novel aspects of this work include the application

of mesh-based reconstruction, diffusion, and convergence acceleration schemes within an

edge-based meshless framework. Most notably, “multicloud,” a meshless counterpart to

multigrid, has been implemented. Multicloud dramatically enhances convergence to steady

state, resulting in a convergence rate which is nearly an order of magnitude faster than

single cloud results. Results are presented which indicate good agreement with conventional

finite volume results for several test cases, despite the absence of any formal proof of

conservation. Correct shock jumps and locations are obtained for airfoils in transonic flow.

Lift and drag coefficients also compare well to the finite volume results.

I. Introduction

R
ecent progress in the area of meshless methods for CFD computations has shown great promise in terms
of accuracy and efficiency.1–4 Luo et.al.1 have used a meshless method to compute boundary values

within a cartesian mesh framework. Praveen2 has applied a meshless method to inviscid flow problems using
a kinetic/Boltzman discretization. Sridar and Balakrishnan3 have developed an upwind meshless solver
which they demonstrated on subsonic and transonic test cases. An important aspect of their work was an
experimental demonstration of mass conservation with the meshless method despite the absence of a formal
mathematical proof of conservative properties. Progress in the area of point generation and connectivity for
meshless methods has also been made. Löhner and Oñate4 have proposed a point generation technique to
fill a domain an order of magnitude faster than comparable unstructured meshing algorithms. Sridar and
Balakrishnan3 have proposed a connectivity approach which improves the condition number of least squares
inversions for meshless schemes.

Despite the progress which has been made, meshless methods have seen little application to practical
flow computations. The goal of this paper is to validate a new meshless method against a well-known finite
volume code in terms of accuracy and efficiency. The accuracy and efficiency of the present method is obtained
primarily via two new aspects to meshless methods, including (1) the application of certain artificial diffusion
schemes to meshless methods within an edge-based framework, and (2) the successful implementation of
powerful steady state convergence acceleration schemes for meshless methods. Convergence acceleration
is mainly attributed to a new “multicloud” algorithm, which parallels multigrid for grid-based CFD. The
framework for transfering solutions, residuals, and corrections between point distributions of varying density
to efficiently damp high frequency modes is borrowed from conventional multigrid. New definitions for
the transfer operators which are suitable for meshless clouds are derived and presented in this work. The
combination of accurate diffusion schemes combined with efficient algorithms make the meshless scheme
presented here highly competitive compared to mesh-based solvers.

The paper begins by deriving a least squares method for obtaining derivatives on an arbitrary distribution
of points. Next, the derivative method is applied to the Euler equations. Discussions regarding steady
state integration and multicloud, boundary conditions, and code data structure follow. Finally, results and
conclusions of the meshless method are presented.
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Figure 1. Domain discretization for least squares derivatives

II. Least squares problem for obtaining derivatives

Consider an arbitrary function φ(x, y) represented by a set of discrete nodal values in a two dimensional
domain, as shown in Fig.(1(a)). Furthermore, consider node i surrounded by n nearby nodes as shown in
Fig.(1(b)), forming a cloud nearest neighbors around i. The function φ may be expanded in a truncated
Taylor series about i to any of its cloud points as follows:3

∆φij =

l
∑

q=1

q
∑

m=0

(

q

m

)

∆x
q−m
ij ∆ym

ij

q!

∂qφ

∂xq−m∂ym
, (1)

where ∆(·)ij = (·)j − (·)i. If n >
l(l+3)

2 , then an over-determined system of equations of the form Ad = b

results, where for a given q,

aq =
[

∆xq

ij

q!

∆xq−1

ij

q! ∆yij · · · ∆yq

ij

q!

]

(2)

dq =
[

∂qφ
∂xq q ∂qφ

∂xq−1∂y
q(q−1)

2
∂qφ

∂xq−2∂y2 · · · ∂qφ
∂yq

]T

(3)

b =
[

∆φ1 ∆φ2 · · · ∆φn

]T

(4)

The derivatives in d may be obtained with a least squares procedure invoking the normal equations
AT Ad = AT

b. According to Sridar and Balakrishnan,3 such a procedure results in an approximation of the
mth derivative of φ to order hl−(m−1), where m ≤ l.

The derivatives in Eq.(1) may always be expressed as weighted sums over the points j in the cloud of i:

∂qφ

∂xq−m∂ym
≈

n
∑

j=1

cij∆φij , (5)

where the cij ∼ 1
∆x contain only geometric information and may be obtained from solving the above least

squares problem in a preprocess step.
In addition to the above framework, inverse distance weighting may be applied to the least squares

problem to better condition the least squares matrix.5 It has been found that the use of inverse distance
weighting results in a system of equations of low enough condition number to solve directly with the normal
equations on isotropic meshes. Derivation of a weighted linear least squares formula for first derivatives
in two dimensions is given in Appendix B. The least squares procedure of Appendix B follows closely the
ideas of least squares gradient reconstruction often used for unstructured meshes. It should be noted that
extending the least squares method for derivatives to three dimensions would be easily accomodated by
including z terms in the Taylor expansion.

Implicit in the above method for derivatives is a suitable point distribution with cloud definitions of
neigboring points for each point in the domain. In the present work, clouds are defined as simply the
connectivity of an existing unstructured mesh. By definition, a meshless method should have no need to
use any mesh as a means to a solution, but using an unstructured grid for a distrubution of points and
connectivity has been a convenient method to focus on the algorithm itself. Future work will address the
issue of obtaining point distrubutions and connectivity for meshless methods.
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Figure 2. A typical edge in a least squares cloud.

III. Meshless method for the Euler equations

In the last section, a procedure was developed to obtain derivatives of a function from a set of randomly
distributed points using a least squares framework. In this section, a least squares discretization for the
Euler equations in presented.

Consider the Euler equations in strong conservation law form:

∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (6)

where
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ρvH











,

and

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2), H = E +

P

ρ
.

In the above notation, ρ, u, v, P , E, and H are the density, velocity components, pressure, total energy, and
total enthalpy.

Like finite difference methods, the meshless algorithm is applied directly to the differential form of the
governing equations. Substituting the least squares framework directly into the spatial terms in Eq.(6) at a
point i results in

∂wi

∂t
+

n
∑

j=1

aij∆fij +

n
∑

j=1

bij∆gij = 0. (7)

It is convenient to define a flux F = af + bg in the direction of the least squares coefficient vector for an
edge (a, b), similar to a directional flux through a face area on an unstructured mesh. The approximation of
Eq.(7) with the directed flux becomes

∂wi

∂t
+

n
∑

j=1

∆Fij = 0. (8)

Eq.(8) represents a non-dissipative, unstable discretization. Stabilization my be conveniently introduced via
a properly defined flux function defined at the middle of an edge ij connecting two meshless points, as shown
in Fig(2). Using the midpoint flux at j + 1

2 instead of the flux at j leads to the following discretization of
the spatial derivatives,

∂f

∂x
+

∂g

∂y
= 2

n
∑

j=1

∆Fij+ 1

2

,

where the factor of two is needed since the expansion is only taken to the midpoint of the edge.
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A stable algorithm will result if Fj+ 1

2

is defined in a manner consistent with the LED criterion of Jameson,6

such that local maxima cannot increase and local minima cannot decrease. A general framework for stable
schemes is obtained by averaging the endpoint fluxes, augmented with diffusive terms:

Fj+ 1

2

=
1

2
(Fi + Fj) −

1

2
dj+ 1

2

(9)

Characteristic based diffusion may be computed using the standard Roe matrix7 with reconstructed left and
right states at the edge midpoint, as shown in 2:

dj+ 1

2

=
|A(wL, wR)|

2
(wR − wL), (10)

A discussion of the Roe matrix is given in Appendix A. While the matrix diffusion of Eq.(10) allows for
a shock with a single interior point, it is quite expensive to construct compared to scalar schemes. A
scheme which is relatively inexpensive with the ability to capture a shock with a single interior point is the
CUSP scheme of Jameson.8 In addition, the CUSP scheme may be formulated to admit constant stagnation
enthalpy solutions. The CUSP scheme, which is used in this work, may be expressed as

dj+ 1

2

= α∗c(wR − wL) + β(FR − FL). (11)

Details of computing the coefficients α∗ and β may be found in the work on artificial diffusion schemes by
Jameson.8

If no reconstruction is performed such that wL = wi and wR = wj , the scheme remains first order accurate.
Higher order accuracy may be obtained by reconstructing the solution to the midpoint of each edge in the
set of meshless clouds forming the discrete domain. The advantages of an edge-based data structure become
apparent in the reconstruction procedure, which parallels closely reconstruction on unstructured meshes.
Diffusion may be constructed on an edge-wise basis and distributed to the endpoints of each edge. In this
work, higher order accuracy is obtained by using SLIP6 reconstruction based on least squares gradients as
follows:

wL = wi +
1

2
∆w, wR = wj −

1

2
∆w,

∆w =
1

2
S(∆wi, ∆wj)(∆wi + ∆wj),

∆wi = l̄ · ∇wi, ∆wj = l̄ · ∇wj ,

where ∇wi and ∇wj are computed with the same least squares derivative procedure described in Section 2,
and S is a limiter defined as

S(u, v) = 1 −
∣

∣

∣

∣

u − v

|u| + |v|

∣

∣

∣

∣

q

.

Thus, if ∆wi and ∆wj are of opposite sign, as in the vicinity of a shock, the limiter S become zero, and the
reconstruction reduces to the endpoint states. In the definition of S, the integer q is typically chosen to be
2 or 3. Increasing values of q result in less diffusive schemes.

Finally, the semi-discretized form of the Euler equations may be expressed as a system of ODE’s of the
form

∂wi

∂t
+ Ri = 0, (12)

where

Ri = Qi − Di, Qi =

n
∑

j=1

∆Fij , Di =

n
∑

j=1

dj+ 1

2

.

Here, the convective (Q) and diffusive (D) portions of the residual(R) are collected separately for reasons
explained in the next section.
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Figure 3. Summary of multigrid transfer operators

IV. Integration to steady state

Equation (12) is a system of ODEs in time, which may be integrated to acheive a steady state. In this
work, Jameson’s modified Runge Kutta schemes for steady state integration are used.6 The schemes treat
the convective and diffusive portions of the residual separately to acheive a larger region of stability. An
m-stage scheme may be expressed as

w(n+1,0) = wn

...

w(n+1,k) = wn − αk∆t
(

Q(k−1) + D(k−1)
)

...

w(n+1) = w(n+1,m),

where

Q(0) = Q(wn), D(0) = D(wn)

...

Q(k) = Q(w(n+1,k)), D(k) = βkD(w(n+1,k)) + (1 − βk)D(k−1)

Local time stepping may be used by employing a local CFL estimate at each node:

∆ti =
CFL

∑n
j=1

(

|aiju + bijv| +
√

a2
ij + b2

ijc
) , (13)

where u,v, and c are the local velocities and speed of sound. In practice, CFL = 5 was obtained with the
above CFL estimate using a five stage scheme.

Along with local time stepping, implicit residual smoothing9 and enthalpy damping10 were used to
accelerate convergence. Implicit residual smoothing was implemented in a manner similar to that of edge-
based unstructured grid algorithms:

R̄i = Ri + ε∇2R̄i (14)

The solution of Eq.(14) is costly to obtain in general, but two Jacobi iterations were sufficient to increase
the CFL by a factor of two.
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V. Multicloud

To further accelerate convergence, a “multicloud” framework was developed for the meshless method.
Multicloud is the meshless counterpart of multigrid for grid-based CFD. While the details of the solution,
residual, and correction transfer operators of the meshless scheme differ from grid based operators, the
underlying principle of multigrid holds for multicloud: transfer the problem to a series of successively coarser
meshes to damp out unresolvable high frequency modes and communicate the coarse grid corrections back
to the fine grid. The multicloud procedure derived here was the most effective tool implemented to enhance
the convergence rate of the overall scheme, making the meshless method computationally competitive with
grid-based methods.

The alogrithm proceeds by first transfering the flow solution from a fine cloud level, k − 1, to a coarse
cloud level, k, with a solution coarsening operator Tk,k−1:

w
(0)
k = Tk,k−1wk−1. (15)

Likewise, the residuals are transfered to a coarse cloud level with a residual restriction operator Qk,k−1. A
forcing function, Pk, is computed such that

Pk = Qk,k−1Rk−1(wk−1) −Rk(w
(0)
k ). (16)

The forcing function, Pk, represents the difference between the aggregated fine cloud residuals, and the
residuals computed with the coarse cloud solution. Subsequently, Rk(wk) is replaced by Rk(wk) + Pk in
the time stepping scheme. In this manner, the coarse level iterations are driven by the fine level residuals.
At convergence of the fine clouds, the coarse levels do nothing to alter the converged solution. Coarse level
iterations proceed by using scalar dissipation to save computational effort, while freezing solid wall and
far-field boundary conditions. An iteration on a coarse level results in a corrected solution, w+

k . Coarse level
corrections, based on the difference between the corrected solution and the original solution transfered from
the fine grid, are then transfered back to the fine grid with an interpolation-like operator, Ik−1,k ,

w
+
k−1 = wk−1 + Ik−1,k(w+

k −w
(0)
k ). (17)

.
In summary, the multicloud scheme above involves the construction of three operators:

1. a solution coarsening operator, T ,

2. a residual restriction operator, Q, and

3. a correction transfer operator, I .

These three operators, shown in Fig.(3) will now be described in detail, completing the description of the
multicloud scheme.

All three operators rely on the identification of a nearest neighbor to a point. For the solution coarsening
operator, the fine cloud point nearest each coarse cloud point is needed. For the residual restriction and
correction transfer operators, the coarse cloud point closest to each fine cloud point is needed. Search
operations for nearest neighbors may be performed via a quadtree (octree in three dimensions) approach
to avoid an O(n2) search operation. Once the nearest neighbor has been identified it is a trivial matter to
identify its meshless cloud points, which are already determined by other means. The set of points consisting
of the nearest neighbor to a point and the meshless cloud of the nearest neighbor will be refered to as the
operator cloud.

The solution coarsening operator consists of a weighted sum over the operator cloud for each coarse level
point, as shown in Fig.(3(a)). The solution for a coarse level point, i, may be determined by a weighted sum
of the operator cloud points j by

wi =

∑

j cijwj
∑

j cij
, cij =

1

(∆x2
ij + ∆y2

ij)
q

2

. (18)

Thus, T uses normalized inverse distance weights to initialize the solution of each coarse grid point. It
is possible to use a taylor expansion from the nearest neighbor to the coarse grid point using least squares
gradients of the solution, but the weighted sum of Eq.(18) produces similar results at cheaper cost.
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Figure 4. Boundary Conditions.

Unlike the solution coarsening operator, the residual restriction operator is more a scattering than a
gathering. The residual at each fine level is scattered to the operator cloud points with particular weights,
as shown in Fig.(3(b)). The amount of residual at fine cloud point i scattered to each coarse cloud point j

in the operator cloud is

cijRi
∑

j cij

(

dsi

dsj

)d

, (19)

where cij is defined as in Eq.(18), ds is the average edge length for a meshless point, and d is the spatial
dimension of the problem. The residuals are scattered with the ds weights similar to node-based residual
scattering on a cartesian mesh in which each fine grid node contributes a fraction 1

2d of its residual to the
coarse grid problem.

The correction transfer operator is nearly identical to the solution tranfer operator, with the exception
that the direction of transfer is coarse to fine instead of fine to coarse, as shown in Fig.(3(c)). A corrected
fine cloud solution at node i is computed with a weighted sum over the operator cloud points j by

w+
i = wi +

∑

j cij(w
+
j − w

(0)
j )

∑

j cij
. (20)

where cij is defined as in Eq.(18). Thus all operators are based on simple normalized inverse distance weights,
which may be computed in a preprocess step and stored in a linked list for use in transfer subroutines. A
convenient aspect of the three operators discussed is that the operator stencils only require the knowledge
of a single nearest neighbor. Subsequently, the entire operator cloud is determined by the existing meshless
cloud of the nearest neighbor identified.

VI. Boundary conditions

Stable boundary conditions at walls and the far field complete the discretization of Eq.(6). At a solid
boundary in inviscid flow, the following four conditions replace the integrated solution, similar to boundary
condition enforcement in a finite difference scheme:

∂P

∂n
= −ρu2

t

R
,

∂H

∂n
= 0,

∂ut

∂n
= 0, un = 0, (21)

where P is the pressure at the surface, ut is the tangential velocity, un is the normal velocity, and R is the
radius of curvature. The first boundary condition on the normal derivative of the pressure is a direct result
of applying the Euler equations in streamline coordinates for steady flow. The second boundary condition on
the derivative of the enthalpy holds for the Euler equations in steady flow and a uniform freestream. While
the third boundary condition on the tangential velocity is not strictly correct, it completes the description
of the state at the boundary to good accuracy. The fourth boundary condition is the no-slip condition.

The first three boundary conditions, which are conditions on derivatives, may be solved via the meshless
framework by noting that
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φi =

∑n
j=1 αijφj − ∂φ

∂n
∑n

j=1 αij
, (22)

where φi is the desired property at the boundary, ∂φ
∂n is the derivative given by the boundary condition, and

the summation is taken over the cloud for point i. Additionally, αij = nxaij + nybij are the least squares
coefficients in the normal direction at i used to compute a normal derivative, as illustrated in Fig.(4(a)).

At the far field, one-dimensional Riemann invariants are used, while enforcing constant stagnation en-
thalpy and a compressible vortex correction.11 The vortex correction involves the use of corrected velocities,
uf and vf , instead of free stream values, uo and vo:

uf = uo +
Γ sin θ

R (1 − M2
o (sin θ cosα − cos θ sin α)2)

vf = vo −
Γ cos θ

R (1 − M2
o (sin θ cosα − cos θ sin α)2)

Here, Γ is the computed circulation, R and θ are the polar coordinates of the boundary point measured
from the quarter-chord, Mo is the freestream Mach number, and α is the angle of attack. Extrapolation
from the interior of the domain is accomplished by identifying the cloud point most closely aligned with the
normal direction of the boundary point, as illustrated in Fig.(4(b)). Identification of the extrapolation point
is performed in a preprocess step for use throughout the computation.

The enforcement of constant stagnation enthalpy at the far field and solid walls produces boundary
solutions which admit constant stagnation enthalpy. This is consistent with the H-CUSP8 scheme used in
this work, which also admits constant enthalpy solutions. The result is a scheme which globally preserves
constant stagnation enthalpy.

VII. Data structure

The method for obtaining derivatives on arbitrary clouds of points for the meshless scheme is inherently
node-based. In other words, each node is considered separately in defining a point cloud, least squares coef-
ficients, and derivatives. While this is a convenient framework for deriving the method, there are significant
advantages for implementing the scheme in an edge-based manner, or in other words, reducing point clouds
to a series of edges with each endpoint belonging to the cloud of the opposing endpoint. Point clouds are
thus defined implicitly by the edges.

Two reasons for using an edge-based data structure are (1) conservation and (2) ease of coding. First,
while formal conservation is not attained by the meshless scheme, edge-basing of the data allows for the similar
reciprocity obtained with edge-based finite volume codes. This reciprocity allows for a close approximation
of conservation as point clouds approach well-formed configurations like Cartesian or regular triangular
meshes. The second reason for using edges–coding efficiency–is largely a practical implementation issue.
Quantities may be conveniently computed in loops over edges and accumulated to the end points of each
edge. Data structures are simplified and unified since edges always have two endpoints in any number of
spatial dimensions, while clouds can have an arbitrary number of points, which differ from cloud to cloud in
general. Below is an example of a FORTRAN 90 derived data type for edges:

MODULE VARS

IMPLICIT NONE

INTEGER,PARAMETER :: DOUBLE=SELECTED_REAL_KIND(13,200)

TYPE EDGE_TYPE

INTEGER :: I,J

REAL(KIND=DOUBLE) :: AIJ,BIJ,AJI,BJI

ENDTYPE EDGE_TYPE

TYPE(EDGE_TYPE),ALLOCATABLE,DIMENSION(:) :: EDGE

END MODULE

Note that the data stored for an edge consists of the global indicies of the endpoints and four least squares
coefficients–two for each endpoint. The fact that aij 6= aji and bij 6= bji is a consequence of the fact that
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the least squares procedure is fundamentally node-based, with each least squares problem uncoupled from
the least squares problem of all other nodes in the domain. This results in a lack of formal conservation.
The compact data structure above has proven to be an extemely useful and efficient framework in which to
implement the meshless method.

VIII. Results and conclusions

In this section a series of experimental test case results are given for airfoils in two-dimensional inviscid
flow. For each test case, lift and drag coefficients are compared with FLO 76 unstructured finite volume
results on similar point distributions. In order to assess the numerical stability of the least squares procedure,
condition numbers for each cloud were computed and found to be O(1) in all cases. Distance weighting was
used with a value of p = 1 in Eq.(25). In order to eliminate non-physical discontinuous expansions at a sonic
line, rounding of eigenvalues approaching zero was performed according to6

λ̄ =
1

2

(

ε +
λ2

ε

)

, if λ < ε,

where ε = c
8 , and c is the local speed of sound.

To study the convergence rate and the accuracy of drag prediction, a series of mesh refinments was made
for two subsonic test cases shown in Tables 1 and 2. The convergence of drag for these test cases shows
roughly second order accuracy and reaches zero with reasonable mesh refinement.

The effect of multicloud on convergence is displayed in Fig.(5). An order of magnitude speed up in the
number of iterations to convergence is observed by using four cloud levels. While the convergence of residuals
is greatly enhanced by the use of multicloud, convergence acceleration of the global quantities is even more
dramatic.

The six test cases presented here show clean shock capturing ability with no overshoots. Accuracy in the
lift and drag coefficients was obtained to within 3% of FLO 76 results in all cases. In the case of the Korn
airfoil, the upper surface is virtually shock free, indicating a high level of accuracy. In the transonic cases,
the shock location and magnitude coincide well with the finite volume results.

In conclusion, the meshless method here produces results comparable to the most accurate and efficient
unstructured grid solvers for inviscid flow in two-dimensions. The accuracy is obtained with high order
reconstruction of diffusion terms in an edge-based framework. The efficiency of the scheme is obtained with
convergence acceleration schemes borrowed from mesh-based schemes, such as local time stepping, implicit
residual smoothing, enthalpy damping, and multigrid. The results presented here encourage increased use of
the meshless scheme for practical flow computation. While it is not clear that meshless methods would be
preferred over grid-based methods in all cases, certain scenarios may be well-suited for such methods. These
may include portions of a domain representing complex geometry in which a well-defined mesh is difficult to
achieve. Future work will focus on applications in which meshless methods appear to be advantageous.

Finally, this work was performed under the support of a National Defense Science and Engineering
Graduate (NDSEG) Fellowship. I have benefited greatly from the long term and continuing support of the
High Performance Computing Modernization Office of the Department of Defense, the sponsoring agency of
my NDSEG fellowship.
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Table 1. Convergence of drag for subsonic flow over NACA 0012, M = 0.50, α = 0.0o

Number of surface points cd

20 0.0219

40 0.0022

80 0.0000

160 0.0000

Table 2. Convergence of drag for subsonic flow over NACA 0012, M = 0.50, α = 3.0o

Number of surface points cd

20 0.0110

40 0.0029

80 0.0015

160 0.0004
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Figure 5. Affect of multigrid on convergence for NACA 0012, M = 0.80, α = 1.25o

Table 3. Convergence acceleration summary

Meshes Multigrid Cycles Wall Clock Time (s)

4 87 3.92

3 110 4.58

2 226 7.98

1 717 17.89
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Figure 6. Flow over NACA 0012, M = 0.50, α = 0.0o

Table 4. Lift and drag coefficients

cl cd

FLO 76 0.0000 0.0002

Meshless 0.0001 0.0000
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Figure 7. Flow over NACA 0012, M = 0.50, α = 3.0o

Table 5. Lift and drag coefficients

cl cd

FLO 76 0.4310 0.0002

Meshless 0.4269 0.0004
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Figure 8. Flow over NACA 0012, M = 0.80, α = 1.25o

Table 6. Lift and drag coefficients

cl cd

FLO 76 0.3688 0.0238

Meshless 0.3580 0.0231
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Figure 9. Flow over NACA 0012, M = 0.85, α = 1.0o

Table 7. Lift and drag coefficients

cl cd

FLO 76 0.3853 0.0584

Meshless 0.3824 0.0570
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Figure 10. Flow over RAE 2822, M = 0.75, α = 3.0o

Table 8. Lift and drag coefficients

cl cd

FLO 76 1.1293 0.0470

Meshless 1.1204 0.0468
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Figure 11. Flow over Korn airfoil, M = 0.75, α = 0.0o

Table 9. Lift and drag coefficients

cl cd

FLO 76 0.6355 0.0000

Meshless 0.6255 0.0005
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A. Eigenvector decomposition

In constructing the Roe flux of Eq(10), it is necessary to define |A| = T |Λ|T−1, where |Λ| is a diagonal
matrix containing the absolute values of the eigenvalues of A, and the columns of T contain the eigenvectors
of A. The mean value Jacobian, A(wL, wR), is simply the standard Jacobian evaluated using Roe-averaged
variables:

u =

√
ρRuR +

√
ρLuL√

ρL +
√

ρR
, v =

√
ρRvR +

√
ρLvL√

ρL +
√

ρR
, H =

√
ρRHR +

√
ρLHL√

ρL +
√

ρR

The two dimensional Jacobian matrix of F = nxf + nyg is

A =













0 nx ny 0

nx(γ − 1) q2

2 − uun un − (γ − 2)nxu nyu − (γ − 1)nxv nx(γ − 1)

ny(γ − 1) q2

2 − vun nxv − (γ − 1)nyu un − (γ − 2)nyv ny(γ − 1)

un

(

(γ − 1) q2

2 − H
)

nxH − (γ − 1)uun nyH − (γ − 1)vun γun













.

It follows that A may be diagonalized by Λ = T−1AT , with

Λ =











un 0 0 0

0 un 0 0

0 0 un + c 0

0 0 0 un − c











,

T =











1 0 1 1

u cny u + cnx u − cnx

v −cnx v + cny v − cny
q2

2 c(nyu − nxv) H + cun H − cun











,

T−1 =













1 − γ−1
c2

q2

2
γ−1
c2 u γ−1

c2 v −γ−1
c2

−uny−vnx

c
ny

c −nx

c 0
1

2c2

(

(γ − 1) q2

2 − cun

)

1
2c2 (−(γ − 1)u + cnx) 1

2c2 (−(γ − 1)v + cny) γ−1
2c2

1
2c2

(

(γ − 1) q2

2 + cun

)

1
2c2 (−(γ − 1)u− cnx) 1

2c2 (−(γ − 1)v − cny) γ−1
2c2













,

where un = unx + vny, q2 = u2 + v2, and H = c2

γ−1 + q2

2 .
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B. Linear least squares coefficients in two dimensions

The form of Eq(1) for a linear (l = 1) fit becomes

∆φij = ∆xij
∂φ

∂x
+ ∆yij

∂φ

∂y
. (23)

The weighted least squares problem may be expressed as2

min

n
∑

j=1

wij

[

∆φij − ∆xij
∂φ

∂x
+ ∆yij

∂φ

∂y

]2

wrt
∂φ

∂x
,
∂φ

∂y
(24)

A simple inverse distance weighting function of the following form may be used:

wij =
1

(∆x2
ij + ∆y2

ij)
p/2

, p ≥ 0. (25)

In this work, a value of p = 1 was used. Setting up the normal equations in the form of Eqs.(2-4) yields

AT Ad = AT
b (26)

[

∑

w∆x2
∑

w∆x∆y
∑

w∆x∆y
∑

w∆y2

] [

∂φ
∂x
∂φ
∂y

]

=

[

wi1∆x1 wi2∆x2 · · · win∆xn

wi1∆y1 wi2∆y2 · · · win∆yn

]













∆φ1

∆φ2

...

∆φn













(27)

Computing (AT A)−1AT leads to the following linear approximation to the derivatives:

∂φ

∂x
≈

n
∑

j=1

aij∆φij , aij =
wij∆xij

∑

w∆y2 − wij∆yij

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)2
(28)

∂φ

∂y
≈

n
∑

j=1

bij∆φij , bij =
wij∆yij

∑

w∆x2 − wij∆xij

∑

w∆x∆y
∑

w∆x2
∑

w∆y2 − (
∑

w∆x∆y)2
(29)
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