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This paper presents an adjoint method for the optimum shape design of unsteady three-dimensional viscous flows.
The goal is to develop a set of discrete unsteady adjoint equations and the corresponding boundary condition for the
nonlinear frequency-domain method. First, this paper presents the complete formulation of the time-dependent
optimal design problem. Second, we present the nonlinear frequency-domain adjoint equations for three-
dimensional viscous transonic flows. Third, we present results that demonstrate the application of the theory to a

three-dimensional wing.
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I.

HE majority of work in aerodynamic shape optimization has

been focused on the design of aerospace vehicles in a steady-
flow environment. Investigators have applied these advanced design
algorithms, particularly the adjoint method, to numerous problems,
ranging from the design of two-dimensional airfoils to full aircraft
configurations to decrease drag, increase range, and reduce sonic
boom [1-5]. These problems were tackled using many different
numerical schemes on both structured and unstructured grids.

Unlike fixed-wing aircraft, helicopter rotors and turbomachinery
blades operate in unsteady flow and are constantly subjected to
unsteady loads. Therefore, optimal control techniques for unsteady
flows are needed to improve the performance of helicopter rotors
and turbomachinery and to alleviate the unsteady effects that
contribute to flutter, buffeting, poor gust and acoustic response,
and dynamic stall. As yet, there have been few efforts in this
direction.

The demanding computational cost associated with the calculation
of unsteady three-dimensional flows is one of the major reasons for
the absence of optimization techniques to improve performance. It
was estimated that the computational cost of a typical multistage
compressor and turbine calculation using parallel processing of 750
processors working 8 h a day would take over 1300 days (estimates
are based on the flow through a 23-blade row compressor). Even
though most of the computational time in periodic problems is spent
in resolving the decay of the initial transients, engineers are typically
only concerned with the data once the solution has reached a periodic
steady state. As a result, there has been much effort focused on the
development of efficient and practical alternatives to the study of
unsteady periodic problems. Although this example is an extreme
case, it illustrates the prohibitive cost of many unsteady calculations
using time-accurate solvers to find a periodic steady state.

Nevertheless, Nadarajah and Jameson [6,7] pursued the
development of optimum shape design for two- and three-
dimensional unsteady flows using the time-accurate adjoint-based
design approach. This work is largely based on algorithms developed
for aerodynamic shape optimization for the steady-flow environ-
ment. Nadarajah derived and applied the time-accurate adjoint
equations (both the continuous and discrete) to the redesign of an
oscillating airfoil in an inviscid transonic flow. The redesigned shape
achieved areduction in the time-averaged drag while maintaining the
time-averaged lift. The approach used a dual time-stepping [8]
technique that implements a fully implicit, second-order, backward-
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difference formula to discretize the time derivative. Typical runs
required 15 periods with 24 discrete time steps per period and 15
multigrid cycles at each time step. Encouraging results were obtained
at a substantial computational expense.

The prohibitive cost of computing three-dimensional unsteady
flows using the time-accurate approach has motivated a new interest
in using periodic methods. Linearized frequency-domain and
deterministic stress methods [9] are examples of periodic methods
that are widely used in industry. Unfortunately, the inability of these
methods to accurately model the solution becomes evident for
systems that contain strong nonlinearities. The harmonic balance
technique, a pseudospectral approach initially proposed by Hall et al.
[10] and later modified by McMullen et al. [11,12], was validated
against both the Euler and Navier—Stokes equations for a number of
unsteady periodic problems. The cost associated with spectral
methods like the McMullen et al. nonlinear frequency-domain
method (NLFD) is proportional to the cost of the steady-state
solution multiplied by the number of desired temporal modes. The
ability of the NLFD method to account for strong nonlinearities and
converge to the exact solution exponentially is the reason why it is
used in this work to solve for the transonic flutter boundary of a
NACA64A010 airfoil. For inviscid flow, it was shown by McMullen
[13] that to accurately model an oscillating airfoil pitching about its
quarter-chord, a temporal resolution of only one mode above the
fundamental frequency (or, equivalently, three time samples per
period) is needed using the NLFD method versus the 45 time samples
needed with a backward-difference formulation of the time
derivative [8].

These results demonstrate the potential of the method to provide
significant reduction in computational cost for the analysis and
design of more realistic problems such as helicopter rotors,
turbomachinery, and other unsteady devices operating in the
transonic regime. Nadarajah et al. [14] extended their two-
dimensional optimum shape design for unsteady flows from a time-
accurate scheme to the NLFD approach, in the process, developing
the NLFD adjoint equations. The method was further extended for
three-dimensional inviscid flows and presented in [15]. The
modeling of unsteady aerodynamic design sensitivities using either
the harmonic balance technique or the nonlinear frequency-domain
approach was also investigated by Duta et al. [16] and Thomas et al.
[17]. Duta et al. [16] presented a harmonic adjoint approach for
unsteady turbomachinery design. The aim of the work was to reduce
blade vibrations due to flow unsteadiness. The research produced
adjoint methods that were based on a linearized analysis of periodic
unsteady flows. Thomas et al. [17] presented a viscous discrete
adjoint approach for computing unsteady aerodynamic design
sensitivities. The adjoint code was generated from the harmonic
balance flow solver with the use of an automatic differentiation
software compiler.

The work presented in this paper is a viscous extension of an
inviscid [15] capability. We will explore the required number of time
steps per period to accurately resolve the unsteady flowfield and
examine the effect of temporal resolution on the accuracy of the
gradient. The motivation of the research was fueled both by the
success of our current capability for automatic shape optimization for
unsteady flows and the future potential of the NLFD method. The
result of this effort is a NLFD adjoint design code that is fully
nonlinear and a computational cost of the adjoint module that is
proportional to the cost of the flow solver.

II. Governing Equations

The Cartesian coordinates and velocity components are denoted
by x|, x,, and x3 and u,, u,, and u5. Einstein notation simplifies the
presentation of the equations, in which summation overi = 1to 3 is
implied by a repeated index i. The three-dimensional Navier—Stokes
equations then take the form

Jw afizafvi

9 Ox;  Ox;

inD (1)

where the state vector w, inviscid flux vector f, and viscous flux
vector f, are, respectively, described by

P
PUy
w=1 pu,
pus
pE
p(u; — b;) 0
puy(u; — b;) + pé;y 0,81
fi=1 puy(u; — b)) + pdy, ¢, and f,; = 0,812
puz(u; — b;) + pds 0,83

u;0;; + kgTT
(2)

In these definitions, b; are the Cartesian velocity components of
the boundary, and §;; is the Kronecker delta function. The pressure is
determined by the equation of state

PE(u; — b;) + pu;

1
p=- 1)P{E 3 (“i“i)}
and the stagnation enthalpy is given by

H=E+?2
o

where y is the ratio of the specific heats. The viscous stresses may be
written as

du; 8
%=ucﬂ+10+m.w 3)

ox;  Ox T ox,

where p is the sum of the laminar coefficient of viscosity and the
eddy viscosity and A is the second coefficient of viscosity. A
Baldwin-Lomax turbulence model is employed to compute the eddy
viscosity. The coefficient of thermal conductivity and the
temperature are computed as

_Gl P

k= , =—
Pr Rp

“

where Pr is the Prandtl number, ¢, is the specific heat at constant
pressure, and R is the gas constant.

For discussion of real applications using a discretization on a
body-conforming structured mesh, it is also useful to consider a
transformation to the computational coordinates &, &,, and &;,
defined by the metrics

_ ax,« _ 1 8%‘,
oe[B] e, wp=[E]

The simulations contained in this research are restricted to rigid-
mesh translation. As a result, we can write Eq. (1) as the product of
the cell volume and temporal derivative of the state vector w at the
cell center. In terms of cell volumes and the local residual R(w)
(comprising both convective and dissipative fluxes), Eq. (1) can be
written in semidiscrete form as

ow

Vaz

+R(w)=0 in D 5)

where the residual R(w) can then be written in computational space

as

— a(F i F ui)
08

where the inviscid and viscous flux contributions are now defined

with respect to the computational cell faces by F; =S;;f; and
F,i = S;;fj, and the quantity §;; = JK,;' represents the projection

R(w) (6)
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Fig. 1 Simplified data flow diagram of the time-advancement scheme illustrating the pseudospectral approach used in calculating the nonlinear spatial

operator R.

of the &, cell face along the x; axis. In obtaining Eq. (6) we have made
use of the property that

— =0 7

3, (M
which represents the fact that the sum of the face areas over a closed
volume is zero, as can be readily verified by a direct examination of
the metric terms.

When Eq. (6) is formulated for each computational cell, a system
of first-order ordinary differential equations is obtained. To eliminate
odd—even decoupling of the solution and overshoots before and after
shock waves, the conservative and viscous fluxes are added to a
diffusion flux. The artificial dissipation scheme used in this research
is a blended first- and third-order flux, first introduced by Jameson
et al. [18]. The blended first- and third-order artificial dissipation
term is discretized as

_ .,
digy ke = Vi ik jcB ik

“4)

Vil

Ayl Bije — 280050 + Ais il
where
Ai+%,j,k = Wiprjk — Wijik

the coefficients v® and v™® are the products of the adjustable
constants and the normalized second difference of the pressure, and
Ay i is the rescaled numerical spectral radius of the flux Jacobian
matrix and directionally scales the dissipative terms.

III. General Formulation of the Time-Dependent
Optimal Design Problem
The aerodynamic properties that define the cost function are
functions of the flowfield variables, w, and the physical location of
the boundary, which may be represented by the function S. We then
introduce the cost function

I % A Y Lw. S)dt + Mlw(1,)] ®)

The cost function is a sum of a time-averaged function, £(w, S), and
a function M that is a function of the solution w(z) at the final time.
Then a change in S results in a change

1 [ (oL” L’ IM"
=7 [ (W&”%&S) di+ 8wt O

in the cost function. Using control theory, the governing equations of
the flowfield are now introduced as a constraint in such a way that the
final expression for the gradient does not require reevaluation of the
flowfield. To achieve this, §w must be eliminated from Eq. (9). From
Eq. (5), a variation of the semidiscrete form of the governing
equations can be written as

ad dR oR
Vgéw + [%]Sw + [@](SS =0

Next, introduce a Lagrange multiplier ¥ to the time-dependent flow
equation and integrate it over time, to yield

U (v 2 s+ [R5 4 [2R]ss) =
?A v (Vatéw—i- [aw}5w+ [88]88) =0  (10)

Subtract Eq. (10) from the variation of the cost function to arrive at
the following equation:

1 [t [(oLT acT amT
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Next, collect the w and S terms and integrate
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Fig. 2 LANN wing grid structure; MPI domain topology, N, =4,
N,, =1,and N, = 3; grid size n, x n; x n;, = 257 x 65 x 97.
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Fig. 3 LANN wing mesh; grid size n, x n; x n; = 257 x 65 x 97.
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Fig. 4 Viscous NLFD flow solver convergence.
3
=
3
()
8
5‘0 1 0‘0 15‘0 20‘0 25‘0 30‘0 BéO ‘400
Multigrid Cycles
Fig. 5 Viscous NLFD adjoint solver convergence.
by parts, to yield
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Choose ¥ to satisfy the adjoint equation
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Fig. 6 Comparison of lift hysteresis for various modes; LANN wing,
run 73.
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Fig. 7 Comparison of variation of drag coefficient vs angle of attack for
various modes; LANN wing, run 73.

Va_l/f_[aR]Tw: L

i Low Cw

with the terminal boundary condition ¥ /(¢;) = M /dw. Then the
variation of the cost function reduces to

81 =g"sS
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Fig. 8 Comparison of variation of pitching moment coefficient vs angle

of attack for various modes; LANN wing, run 73.

where

| [y (0LT _OR
T _ o= g T
g _TL (as v as)d’

Optimal control of time-dependent trajectories is generally
complicated by the need to solve the adjoint equation in reverse time
from a final boundary condition using data from the trajectory
solution, which in turn depends on the control derived from the
adjoint solution. The sensitivities are determined by the solution of
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Fig. 9 Comparison of lift vs drag coefficient for various modes; LANN
wing, run 73.

the adjoint equation in reverse time from the terminal boundary
condition and the time-dependent solution of the flow equation.
These sensitivities are then used to get a direction of improvement
and steps are taken until convergence is achieved.

IV. Development of the Nonlinear Frequency-Domain
Adjoint Equations

The derivation of the NLFD method starts with the semidiscrete

form of the governing equations and assumes that the solution w and
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Fig. 10 Comparison of pressure distribution between inviscid, viscous, and experimental data for the LANN wing, run 73.
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spatial operator R can be represented by separate Fourier series: Here, however, each coefficient R, of the transform of the residual

depends on all the coefficients W, because R[w(?)] is a nonlinear
function of w(z). Thus, Eq. (13) represents a nonlinear set of

R= Z R et (12) equations that must be iteratively solved. The solver attempts to find

----NLFD3
-=-NLFD 5
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a) N = 33%, phase=0 deg
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Fig. 11 Comparison of pressure distribution for various time steps for the LANN wing, run 73
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R*, = ikVi, + R, (13)

The nonlinearity of the unsteady residual stems from the spatial
operator. There are two approaches to calculating the spatial operator
expressed in the frequency domain. The first uses a complex series of
convolution sums to calculate R, directly from w;. This approach is
discarded due to its massive complexity (considering artificial
dissipation schemes and turbulence modeling) and cost that scales
quadratically with the number of modes N. Instead, we implement a
pseudospectral approach in time. This approach requires several
transformations between the physical and frequency domains that are
performed by a fast Fourier transform (FFT). The computational cost
of this transform scales like N log(N), where N is a large number. A
diagram detailing the transformations used by the pseudospectral
approach is provided in Fig. 1.

The pseudospectral approach begins by assuming that w, is
known for all wave numbers. Using an inverse FFT, w, can be
transformed back to the physical space, resulting in a state vector
w(r) sampled at evenly distributed intervals over the time period. At
each of these time instances, the steady-state operator R[w()] can be
computed. A FFT is then used to transform the spatial operator to the
frequency domain in which Iék is known for all wave numbers. The

-0.005F

—sa—NLFD 3
—e—NLFD 5
—+—NLFD7
NLFD 9
—&— NLFD 11

0 o1 02 03 04 05 06 07 08 09
x/c

0 ol 02 03 04 05 06 07 08 09 1
x/c

¢) = 65%, real(c,)

-0.01F

01 02 03 04 05 06 07 08 09 1
x/c

e)N=95%, real(c,)

unsteady residual R* « can then be calculated by adding 1%,( to the

spectral representation of the temporal derivative ikViy.
Consistent with the time-accurate approach, a pseudotime

derivative can be added, and a time-stepping scheme can be

employed to numerically integrate the resulting equations:

AT S (14)

Var

In the NLFD case, an unsteady residual exists for each wave number
used in the solution, and the pseudotime derivative acts as a gradient
to drive the absolute value of all of these components to zero
simultaneously.

The NLFD discrete adjoint equation can be developed using two
separate approaches. In the first approach, we first take a variation of
the unsteady residual R* 1 represented in Eq. (13) with respect to the
state vector W, and shape function f, to produce

The next step would be to expand 81%,( as a function of w;. As

mentioned earlier, this approach would require a series of
convolution sums to express SR, as a function of §. This method

01 02 03 04 05 06 07 08 09
x/c

b) = 20%, imag(c,)

0 of 02 03 04 05 06 07 08 09 1
x/c

d) n= 65%, imag(c,)
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\mag(cp)

02F
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x/c

f) n=20%, imag(c,)

Fig. 12 Comparison of the real and imaginary components of the first harmonic pressure coefficient for various modes and span stations.
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was not implemented due to its computational cost and added
complexity. Instead, the adjoint equations were solved using a
pseudospectral approach similar to the one applied to the flow
equations.

In the latter approach, the NLFD adjoint equations are developed
form the semidiscrete from of the adjoint equation, which can be as
expressed as

s B
Vet RE) =0

where R() is the sum of all of the spatial operators, both convective
and dissipative, used in the discretized adjoint equations. Refer to
Nadarajah [7] for a detailed derivation of these spatial operators and
boundary conditions. Next, we assume that the adjoint variable and
spatial operator can be expressed as a Fourier series:

=

N
N

R = > RW)e™

=N

=" e, (15)

k72

The derivation of the NLFD adjoint then follows that of the NLFD
flow equations. The NLFD adjoint equations are expressed as

81@,( STk _
V¥+R(W)k =0

where

NLR LANN Wing

Mach: 0.822 Alpha: 0.344 IT: 1

CL: 0.332 CD:0.01512 CM:-0.3034

TIMEAVE CL: 0.348 TIMEAVE CD: 0.01085

Design: 50 Residual: 0.1135E+01 Grid: 257X 65X 49

. + +

Root Section: 6.2% Semispan
Cl: 0.288 Cd: 0.04358 Cm:-0.1108

Fig. 13 Initial and final pressure distribution for various span locations at a phase of 0-deg phase.
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R(Y) | = ikVi + R(Y),

The pseudospectral approach illustrated in Fig. 1 is employed in the
NLFD adjoint code to form the unsteady residual. This term in
conjunction with a pseudotime derivative provides an iterative
solution process consistent with that documented for the flow

equations.

V. Optimization Procedure

In this paper, the inverse design boundary condition is applied to
the near field, and sensitivity derivatives or the gradient are
calculated on the airfoil surface. The gradient for the discrete adjoint
is obtained by perturbing each point on the lower wall. Once the
gradient G has been determined, it can be used to drive a variety of
gradient-based search procedures. The search procedure used in this
work is a descent method in which small steps are taken in the
negative gradient direction. Let F represent the design variable and G
the gradient. Then an improvement can be made with a shape change:

§F = —AG

However, it is better to replace the gradient G by a smoothed value
G in the descent process. This acts as a preconditioner that allows the
use of much larger steps and ensures that each new shape in the
optimization sequence remains smooth. To apply smoothing in the £,
direction, the smoothed gradient G may be calculated from a discrete

approximation to

- Cp=-2.0 + +

Tip Section: 92.3% Semispan
Cl: 0.285 Cd:-0.01131 Cm:-0.1608

- Cp=-20 . N

Midsection: 49.2% Semispan
Cl: 0.367 Cd:0.00143 Cm:-0.1368
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9G .
__9_ ,
G, %55, = 9

at the end points, where 6 is the smoothing parameter. If the
modification is applied on the surface, &, is constant, and then the
first-order change in the cost function is

/ GSF dE, = -2 //(g—a—glea—&g)gdsl
e

again guaranteeing an improvement unless G = G = 0 and assuring
an improvement if A is sufficiently small and positive.

In some problems, it turns out that the Hessian can be represented
as a second-order differential operator, so that with a proper choice of
the smoothing parameter, the method becomes the Newton method.
Search methods were intensively evaluated in a recent study by
Jameson and Vassberg [19], and it was verified that these sample
problems (which may have a high linear content) could be solved
with a number of search steps, independently of the number of design
variables.

NLR LANN Wing

Mach: 0.822 Alpha: 0.581 IT: 2

CL: 0.367 CD:0.01663 CM:-0.3328

TIMEAVE CL: 0.348 TIMEAVE CD: 0.01085

Design: 50 Residual: 0.1135E+01 Grid: 257X 65X 49

- +

+

Root Section: 6.2% Semispan
Cl: 0.319 Cd: 0.04627 Cm:-0.1225
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VL

The design process used in this work will change the shape of the
wing to minimize its time-averaged coefficient of drag. Given the
derivation provided in previous sections, the adjoint boundary
condition can easily be modified to admit other figures of merit. The
shape of the wing is constrained such that the maximum thickness-to-
chord ratio remains constant between the initial and final designs. In
addition, the mean angle of attack is allowed to vary to ensure the
time-averaged coefficient of lift remains constant between designs.

The UFSYN107 developed by Nadarajah and Jameson [6],
employs a nonlinear frequency-domain method in the solution of the
unsteady Navier—Stokes equations. The NLFD adjoint-based design
procedures require the following steps:

Design Process

A. Periodic Flow Calculation at Constant Time-Averaged Lift

A set of multigrid cycles is used to drive the unsteady residual to a
negligible value for all of the modes used in the representation of the
solution. In the case of a design process that constrains the time-
averaged lift, the mean angle of attack is perturbed every 10 multigrid
cycles to maintain a constant time-averaged coefficient of lift. This
allows the unsteady residual to reduce by an order of two in
magnitude before the angle is modified again.

B. Adjoint Calculation

The adjoint equation is solved by integrating in reverse time. With
minor modifications, the NLFD numerical scheme employed to

- Cp=-20 + .

Tip Section: 92.3% Semispan
Cl: 0317 Cd:-0.01182 Cm:-0.1663

- Cp=-20 + .

Midsection: 49.2% Semispan
Cl: 0.405 Cd:0.00308 Cm:-0.1457

Fig. 14 Initial and final pressure distribution for various span locations at a 72-deg phase.
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solve the flow equations is used to solve the adjoint equations in
reverse time.

C. Gradient Evaluation

An integral over the last period of the adjoint solution is used to
form the gradient. This gradient is then smoothed using an implicit
smoothing technique. This ensures that each new shape in the
optimization sequence remains smooth and acts as a preconditioner
that allows the use of much larger steps. The smoothing leads to a
large reduction in the number of design iterations needed for
convergence. Refer to Nadarajah and Jameson [6] for a more
comprehensive overview of the gradient smoothing technique. An
assessment of alternative search methods for a model problem is
given by Jameson and Vassberg [19].

D. Wing Shape Modification

The wing shape is then modified in the direction of improvement
using a steepest-descent method. Let F represent the design variable
and G the gradient. An improvement can then be made with a shape
change:

5F =—1G

NLR LANN Wing

Mach: 0.822 Alpha: 0.197 IT: 4

CL: 0319 CD:0.01406 CM:-0.2912

TIMEAVE CL: 0.348 TIMEAVE CD: 0.01085

Design: 50 Residual: 0.1135E+01  Grid: 257X 65X 49

- +

Root Section: 6.2% Semispan
Cl: 0.279 Cd: 0.04242 Cm:-0.1062

E. Grid Modification

The internal grid is modified based on perturbations on the surface
of the wing. The method modifies the grid points along each grid
index line projecting from the surface. The arc length between the
surface point and the far-field point along the grid line is first
computed, then the grid point at each location along the grid line is
attenuated proportional to the ratio of its arc-length distance from the
surface point and the total arc length between the surface and the far
field.

F. Repeat the Design Process

The entire design process is repeated until the objective function
converges. The problems in this work typically required between 9
and 25 design cycles to reach the optimum.

VII. Results

The following subsections present results from simulations of a
three-dimensional wing undergoing a change in angle of attack as a
function of time:

a(t) = a, + «a,, sin(wr)

For the cases presented in this section, the mean angle of attack «,, is
0.59 deg for the validation case and O deg for the design test cases.
For both cases, the deflection angle «,, is set to £0.25 deg. The
reduced frequency, wc/2V ., is set to 0.102, with a far-field Mach

Cp=-20 + +

Tip Section: 92.3% Semispan
Cl: 0.271 Cd:-0.01125 Cm:-0.1581

Cp=-20 + +

Midsection: 49.2% Semispan
Cl: 0.353 Cd: 0.00008 Cm:-0.1316

Fig. 15 Initial and final pressure distribution for various span locations at a 216-deg phase.
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number M, of 0.822. The wing is pitched about the 61.2% of the root
chord. The flight conditions are based on run 73 of the central
transonic test case CT5, conducted by Zwaan [20] at the National
Aerospace Laboratory/NLR.

The first part of the Results section contains a code-validation
study. The study compares the convergence of the flow and adjoint
solvers for various time steps per period and compares the lift
hysteresis and drag and moment variation. This is necessary to
quantify the required number of time steps per period to establish a
periodic steady-state flow. The pressure distribution is compared
with experimental data and prior inviscid results [15]. In the second
subsection, a redesign of the LANN wing is demonstrated. Finally, a
gradient comparison between various numbers of temporal modes
and the convergence of the objective function is presented.

A. Validation

The computational grid employed for the validation study is a
structured grid, as illustrated in Fig. 2. The message-passing interface
(MPI) [21] domain topology is based on N, =4, N, = 1, and

N, =3, where N, is the number of processors in each direction.

Each processor contains a grid of size n, X n; X n; = 65 x 65 x 33;

the total grid is 257 x 65 x 97. Cross-sectional views of the grid at
the 20 and 65% span stations are shown in Fig. 3.

Figure 4 illustrates the convergence of the viscous NLFD flow
solver. The convergence was obtained for the LANN wing test case

NLR LANN Wing

Mach: 0.822  Alpha: 0.106 IT: 5

CL: 0.302 CD:0.01383 CM:-0.2774

TIMEAVE CL: 0.348 TIMEAVE CD: 0.01085

Design: 50 Residual: 0.1135E+01 Grid: 257X 65X 49

— Cp=-20 + N

- +

+

Root Section: 6.2% Semispan
Cl: 0.263 Cd:0.04143 Cm:-0.1009
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for three, five, and seven time steps per period. The zeroth mode for
all cases converge at the same rate; the same is true for the first,
second, and third modes. The flow solver residual attains a reduction
of four orders of magnitude over 2400 multigrid cycles. For the
design cases, only 200 cycles were employed per design cycle.
Figure 5 (use the Fig. 4 legend) illustrates the convergence of the
viscous NLFD adjoint solver. Only 400 multigrid cycles were
needed to converge the adjoint solver to the same level of accuracy as
the flow solver. The rate of convergence is higher for the adjoint
solver; all modes converge at similar rates.

The lift hysteresis is demonstrated in Fig. 6 for various numbers of
time steps per period. Here, as indicated in the legend, NLFD 3 is
synonymous to three time steps per period. As the wing oscillates ata
small angle of attack, the shock wave moves back and forth about a
mean location and is closely sinusoidal and lags the wing motion.
This lag is evident in the lift hysteresis loop, in which the maximum
lift does not occur at the maximum angle of attack. The nonlinear
behavior of unsteady viscous transonic flows is primarily due to the
movement of the shock, and this is evident in Fig. 6, which shows
that one harmonic is sufficient to produce an accurate lift hysteresis.
However, Fig. 7 demonstrates that at least two harmonics are needed
to capture the variation of the drag coefficient versus angle of attack
accurately. Figure 8 illustrates the variation in pitching moment and
Fig. 9 demonstrates the variation of lift versus drag coefficient,
further providing evidence that at least two harmonics are required to
accurately capture the flowfield for the LANN wing, run 73.

Tip Section: 92.3% Semispan
Cl: 0.255 Cd:-0.01088 Cm:-0.1554

— Cp=-20 + N

Midsection: 49.2% Semispan
Cl: 0.335 Cd: 0.00005 Cm:-0.1285

Fig. 16 Initial and final pressure distribution for various span locations at a 288-deg phase.
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In Fig. 10, a validation of the surface pressure coefficient is
presented. The figure illustrates the pressure distribution for two
different angles of attacks at two separate span stations. In Fig. 10a,
results based on both the inviscid and viscous NLFD methods are
compared with experimental data at the span location n = 20% and
angle of attack o = 0.59 deg. The inviscid NLFD results compare
closely to the viscous solutions, however, the location of the shock
for the inviscid NLFD solution differs by 5% of the chord. This is an
expected result, because the location of the shock is generally
dependent on viscous effects, especially for unsteady flows. Apart
from the shock location, the viscous NLFD solution resolves the
peak pressure accurately. Nevertheless, both solutions differ from
the experimental work, and further research is necessary to
investigate the discrepancy. One possible reason for the difference
could be due to the effect of the turbulence model on the unsteady
viscous flows. This work has employed the Baldwin-Lomax model,
which is an algebraic turbulence model. As part of future work, the
authors are replacing the model with one based on the transport
equations. The k- with and without the shear-stress transport (SST)
correction and the Spalart—Allmaras models are being considered.
Figures 10b—10d illustrate the comparison at the maximum angle of
attack and at a different span location; similar trends are observed for
these conditions. The difference in the shock location and strength at
the n = 65% span station is larger.

A second important outcome of Fig. 10 is the required number
of time steps per period or modes to accurately resolve the pressure
distribution. At the 20% span station, the NLFD 3 viscous case is
able to accurately produce the unsteady-flow solution. However, at

a) Initial surface-pressure contour

b) Final surface-pressure contour

Fig. 17 Initial and final surface-pressure contours at a 0-deg phase for
the LANN wing.

the 65% span location, a slight discrepancy is observed at the
shock location. Figures 10c and 10d contain insets that demonstrate
the difference in the pressure distribution at the discontinuity
among the three solutions. The * solution corresponds to the three-
time-step-per-period case; subsequently, the [ corresponds to five
and 4 to seven time steps. The five- and seven-time-step cases
compare very well. A greater departure of the pressure at the
discontinuity produced by the three-time-step case is observed in
Fig. 10d. This is a further indication that the viscous NLFD
solutions require at least five time steps per period to resolve the
flowfield, compared with the inviscid solution that only required
three [15].

To further validate the NLFD approach for three-dimensional
unsteady viscous flows, Fig. 11 demonstrates the pressure
distribution for various NLFD solutions and experimental data at
span stations 33, 47, 82.3, and 95%. At each span station, the figure
shows the comparisons at the 0, 90, and 270-deg phases. The figure
demonstrates that with just three time steps per period, the three-
dimensional unsteady viscous flow over the entire wing is well
represented. However, as seen from Fig. 10, five time steps will
provide for a better pressure solution at the shock.

An investigation of the real and imaginary components of the first
mode of the pressure coefficient is explored in Fig. 12. The figure
describes the real and imaginary components at the 20, 65, and 95%
span stations for various time steps per period. Two easily visible
observations are as follows:

1) There is no distinctive difference in the imaginary component
among the various cases for all three span stations.

a) Initial surface-pressure contour

b) Final surface-pressure contour

Fig. 18 Initial and final surface-pressure contours at a 288-deg phase
for the LANN wing.
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2) The real component of the three-time-step case is vastly
dissimilar from the higher temporal-resolution cases.

A closer observation of Figs. 12¢ and 12e reveals a third finding:
there is a very minor difference over just three grid points between
the five-time-step case and the 7-, 9-, and 11-time-step cases. The 9-
and 11-time-step cases were computed in addition to the basic three
cases shown thus far to provide a benchmark for the seven-time-step
case. The figures illustrate that the seven-time-steps-per-period
solution produced similar results to those for the 9 and 11 cases,
however, the improvement is minimal and the five-time-step solution
is adequate.

B. LANN Wing Redesign

This section documents the results of the redesign of the LANN
wing to reduce the time-averaged drag coefficient for a fixed time-
averaged lift coefficient. The wing thickness ratio is constrained at
each span station. The simulation was performed at a Mach number
M., = 0.82, reduced frequency w, =0.102, and deflection of
+0.25 deg about the 0-deg angle of attack. As established in the
previous section, five time steps per period were needed to accurately
represent the variation of the drag coefficient versus angle of attack
and pressure distributions at various span stations and phases.
Because the objective function is the time-averaged drag coefficient,
five time steps will be used for the redesign of the LANN wing. This
decision will be further supported with a gradient accuracy study at
the end of this section.

During the initial stage to compute the flow solution, the time-
averaged lift and drag are computed and used as the target lift and
objective function. During the subsequent design cycles, the mean
angle of attack is modified at every ten multigrid cycles to maintain
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the time-averaged lift coefficient. Ten multigrid cycles were chosen
to allow the flowfield to develop and to reduce the initial peak
transient solutions admitted into the solution due to the change in
angle of attack. Ateach design cycle, 200 multigrid cycles were used.

Figures 13—16 illustrate the wing-surface-pressure contour and the
initial and final pressure distributions at three span locations at the 0,
72, 216, and 288-deg phases after 50 design cycles. In Fig. 13, the
pressure contour illustrates the severe weakening of the A-shock
system, and this is further validated in the three pressure-coefficient
plots at span stations 6.2, 49.2, and 92.3%. The initial pressure
distribution is illustrated as a dotted line, and the solid line is at the
final design. The plots show a reduction of the shock-wave strength
at the midsection, with a decrease in the sectional drag coefficient
from 0.0027 to 0.0014. The mean angle of attack was perturbed from
the initial 0 to 0.344 deg to maintain the time-averaged lift coefficient
at 0.348. The time-averaged drag coefficient reduced by 5.65% from
0.0115 to 0.01085 within 50 design cycles. The design is halted once
the change in the objective function or time-averaged drag
coefficient reaches a level of 1.E-6. The figure also demonstrates the
initial and final, illustrated by a dotted line and a solid line, cross-
sectional airfoil profiles. A distinctive feature of the new airfoil is the
reduction of the upper-surface curvature. The reduced curvature
contributes to the weakening of the shock wave in the midsection
region of the LANN wing. At the 72, 216, and 288-deg phases, as
illustrated in Figs. 14-16, a severe weakening of the shock wave in
the mid and tip sections of the LANN wing are observed. At the 288-
deg phase, a complete elimination of the shock wave is
demonstrated.

Figures 17 and 18 demonstrate the initial and final three-
dimensional surface-pressure contours at the 0 and 288-deg phases.
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Fig. 19 Comparison of gradients for various modes for the LANN wing.
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The weakening of the A shock is demonstrated in Fig. 17b. A
complete elimination of the shock is observed at the 288-deg phase.

The Validation subsection illustrated the ability of the NLFD
method to accurately model the flow with only five time steps per
period. However, for the case of optimum shape design, the accuracy
of the gradient of the objective function is of paramount importance.
Figure 19 illustrates the gradients of the objective function at four
different span locations for various temporal resolutions. The
gradients are plotted in a clockwise direction, starting from the lower
trailing edge to the leading edge and ending at the upper trailing-edge
point. The figures illustrate that with just three time steps per period,
the gradients can be accurately captured at the 6 and 20% span
stations; however, an additional mode or five time steps per period
are required at the 65 and 91% stations. The gradients over a vast
majority of the points at these stations agree very well; however, a
large difference is observed between the 120 and 140 grid points. The
points are adjacent to the shock location and, as seen in the pressure-
distribution comparisons in Figs. 10c and 10d, an additional mode is
required to resolve the gradient. The insets further illustrate the
difference between the gradient values. Here, the * solution
corresponds to the three-time-step-per-period case; subsequently, [
corresponds to five and 4 to seven time steps.

Finally, Fig. 20 presents the convergence of the time-averaged
drag coefficient from 115 drag counts to 108.5. The similarity
between the initial and final span loading, as shown in Fig. 21,
indicates that the lift-induced drag coefficient has remained constant.
Therefore, the decrease in the time-averaged drag is mainly due to the
reduction in the wave drag. Figure 22 shows the convergence of A/,
where [ is the objective function (time-averaged drag coefficient) and
Al reaches a level of 1.E-6 within 50 design cycles. During the first
35 design cycles, AI converges linearly, as expected. Linear
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Fig. 20 Convergence of the time-averaged drag coefficient.
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Fig. 21 Initial and final span loading.
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Fig. 22 Convergence of the change in the objective function A1.

convergence is characteristic of a steepest-descent type of method.
As the final wing profile is realized, the convergence increases
rapidly. The code is automatically stopped as soon as a change of 1E-
6 is detected. This level of change corresponds to a change to the
sixth decimal place of the drag coefficient, and this is sufficient for
engineering accuracy.

VIII. Conclusions

The NLFD method requires just five time steps per period to
resolve the unsteady viscous transonic flowfield. A redesign of the
LANN wing was demonstrated, with a reduction of the time-
averaged drag coefficient by 5.65% while maintaining the time-
averaged lift coefficient constant. The NLFD method with five time
steps per period also provides accurate gradients. These results
further demonstrate the potential of the method to provide significant
improvements to more realistic problems such as helicopter rotors,
turbomachinery, and other unsteady devices operating in the
transonic regime.

References

[1] Jameson, A., “Computational Aerodynamics for Aircraft Design,”
Science, Vol. 245, 1989, pp. 361-371.

Jameson, A., “Optimum Aerodynamic Design Using CFD and Control
Theory,” AIAA 12th Computational Fluid Dynamics Conference, San
Diego, CA, AIAA Paper 95-1729, June 1995.

Nadarajah, S., Jameson, A., and Alonso, J. J., “Sonic Boom Reduction
Using an Adjoint Method for Wing-Body Configurations in Supersonic
Flow,” 9th ATAA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization Conference, Atlanta, GA, AIAA Paper 2002-5547,
Sept. 2002.

Reuther, J., Alonso, J. J., Rimlinger, M. J., and Jameson, A.,
“Aerodynamic Shape Optimization of Supersonic Aircraft Configura-
tions via an Adjoint Formulation on Parallel Computers,” 6th AIAA/
NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Bellevue, WA, AIAA Paper 96-4045, Sept. 1996.
Reuther, J., Jameson, A., Farmer, J., Martinelli, L., and Saunders, D.,
“Aerodynamic Shape Optimization of Complex Aircraft Configura-
tions via an Adjoint Formulation,” 34th Aerospace Sciences Meeting
and Exhibit, Reno, NV, AIAA Paper 96-0094, Jan. 1996.

Nadarajah, S., and Jameson, A., “Optimal Control of Unsteady Flows
Using a Time Accurate Method,” 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization Conference, Atlanta, GA,
ATAA Paper 2002-5436, Sept. 2002.

Nadarajah, S., “The Discrete Adjoint Approach to Aerodynamic Shape
Optimization,” Ph.D. Dissertation, Department of Aeronautics and
Astronautics, Stanford Univ., Stanford, CA, Jan. 2003.

Jameson, A., “Time Dependent Calculations Using Multigrid, with
Applications to Unsteady Flows Past Airfoils and Wings,” AIAA 10th
Computational Fluid Dynamics Conference, Honolulu, HI, AIAA
Paper 91-1596, June 1991.

Adamczyk, J. J., “Model Equation for Simulating Flows in Multistage
Turbomachinery,” NASA TM-86869, Nov. 1984.

[2

—

[3

[t}

[4

=

[5

—

[6

—

[7

—

[8

[t

[9

—



NADARAJAH AND JAMESON 1527

[10] Hall, K. C., Thomas, J. P., and Clark, W. S., “Computation of Unsteady
Nonlinear Flows in Cascades Using a Harmonic Balance Technique,”
AIAA Journal, Vol. 40, No. 5, May 2002, pp. 879-886; also AIAA
Paper 0001-1452.

[11] McMullen, M., Jameson, A., and Alonso, J., “Acceleration of
Convergence to a Periodic Steady State in Turbomachinery Flows,”
39th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA
Paper 2001-0152, Jan. 2001.

[12] McMullen, M., Jameson, A., and Alonso, J., “Application of a Non-
Linear Frequency Domain Solver to the Euler and Navier—Stokes
Equations,” 40th Aerospace Sciences Meeting and Exhibit, Reno, NV,
ATAA Paper 2002-0120, Jan. 2002.

[13] McMullen, M., “The Application of Non-Linear Frequency Domain
Methods to the Euler and Navier—Stokes Equations,” Ph.D.
Dissertation, Department of Aeronautics and Astronautics, Stanford
Univ., Stanford, CA, Mar. 2003.

[14] Nadarajah, S., McMullen, M., and Jameson, A., “Optimum Shape
Design for Unsteady Flows Using Time Accurate and Non-Linear
Frequency Domain Methods,” 16th Computational Fluid Dynamics
Conference, Orlando, FL, AIAA Paper 2003-3875, June 2003.

[15] Nadarajah, S., McMullen, M., and Jameson, A., “Non-Linear

Frequency Domain Method Based Optimum Shape Design for
Unsteady Three-Dimensional Flows,” AIAA 44th Aerospace Sciences
Meeting and Exhibit, Reno, NV, AIAA Paper 2006-1052, Jan. 2006.

[16] Duta, M. C., Giles, M. B., and Campobasso, M. S., “The Harmonic
Adjoint Approach to Unsteady Turbomachinery Design,” International
Journal for Numerical Methods in Fluids, Vol. , Oct. 200240, pp. 323—
332.

[17] Thomas, J. P., Hall, K. C., and Dowell, E. H., “A Discrete Adjoint
Approach for Modelling Unsteady Aerodynamic Design Sensitivities,”
41th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA
Paper 2003-0041, Jan. 2003.

[18] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the
Euler Equations by Finite Volume Methods with Runge-Kutta Time
Stepping Schemes,” AIAA Paper 81-1259, Jan. 1981.

[19] Jameson, A., and Vassberg, J. C., “Studies of Alternative Numerical
Optimization Methods Applied to the Brachistochrone Problem,”
Computational Fluid Dynamics, Vol. 9, No. 3, 2000, pp. 281-296.

[20] Zwaan, R.J., “Data Set 9, LANN Wing. Pitching Oscillation, AGARD,
Rept. R-702, Addendum No. 1, 1985.

[21] Message Passing Interface Forum [online database], http://www.mpi-
forum.org/ [retrieved Feb. 2003].



