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This work focuses on the extension of the recently introduced Spectral Difference
Method to viscous flow. The spectral difference method is a conservative pseudo-spectral
scheme based on a local collocation on unstructured elements. Recently results for scalar
transport equations and the Euler equations have been presented. For the extension to
viscous flow several techniques are investigated, such as a central discretization and a split
upwind/downwind discretization, akin to the procedure used in the LDG method.

I. Introduction

Computations of compressible fluid flow on unstructured meshes has been dominated by schemes which
are restricted to second order accuracy. While such low-order schemes have been very successful due to their
robustness and relative efficiency, many fields of research require highly accurate numerical methods, and
would certainly benefit from the applicability of high-order schemes to complex computational domains. This
motivates the formulation of such schemes for unstructured meshes. Recently the Spectral Difference method,
which has been proposed by Liu at al.1 , has been extended to the Euler equations by Wang et al.2 and the
present authors3 , and has proved to be a viable alternative to such schemes as the Discontinuous Galerkin
Method4,5 or the Spectral Volume Method6 . The Spectral Difference method combines elements from
finite-volume and finite-difference techniques, and is particularly attractive because of its simple formulation
and implementation. It is conservative, and generically of arbitrary order of accuracy, using a local pseudo-
spectral reconstruction on unstructured mesh elements.

The extension to viscous flow is an important problem. For the Discontinuous Galerkin method several
discretization techniques for elliptic operators and schemes for the full Navier-Stokes equations have been
proposed7,8 , along with some analysis, see9 and references therein. The Spectral Difference method uses
exact differentiation of reconstructed polynomials to compute the divergence or curl of flux functions, which
can be readily extended to the differentiation of primitive variables needed for the rate-of-strain tensor and
heat flux vector. However, much like the DG methods, a stable discretization is strongly coupled to the
treatment of element boundaries, where the reconstructed solution is discontinuous. Ideally the viscous
discretization on the element boundary should involve only the two points which represent the logical left
and right state. It is known that simple averaging may lead to instability, and more elaborate viscous
discretization techniques should be considered. We present a technique that uses a split upwind/downwind
discretization for gradients and viscous fluxes, akin to the procedure used in the Local Discontinuous Galerkin
(LDG) method8 .

The paper is organized as follows: Basic concepts related to the Spectral Difference Method are recalled
in section II. A brief overview of important characteristics related to conservation and stability is given in
section III. Details of the practical implementation of the scheme, and the proposed extension to viscous
flow are discussed in sections IV and V.
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II. The Spectral Difference Method

The spectral difference method has quite recently been proposed by Liu et al.1 and further developed by
Wang et al.2 and by the present authors3 . In this work we restrict ourselves to the solution of equations of
the form

∂u

∂t
+∇ · F = 0 , (x, t) ∈ Ω× [0, T ] , (1)

where Ω ⊂ Rd, and u = (u1, . . . , up). We consider one and two dimensional problems (d = 1 and d = 2)
subject to suitable initial and boundary conditions. Suppose we are given a triangulation of Rd, which is
assumed in this work, for the sake of simplicity, to consist of simplexes. The Spectral Difference method
uses a pseudo-spectral collocation-based reconstruction for both the dependent variables u(x) and the flux
function F (u) inside a mesh element, Ti, say. The reconstruction for the dependent variables can be written

ui(x) = Im(u)(x) =
N(m)∑
j=0

Lj(x)uij , x ∈ Ti , (2)

where uij = u(xij). Throughout the paper the double index notation refers to a node (second index) inside
a cell (first index). Here xij is the jth solution collocation node in the ith mesh element. Henceforth we shall
frequently omit the cell index i, whenever it is clear that the quantity in question is defined in a particular
element. The interpolation operator Im denotes a collocation using polynomials of total degree m. The
Lj(x) are the cardinal basis functions for the chosen set of collocation nodes xj , where j = 0, . . . , N(m), and
N(m) = m for d = 1, whereas for d = 2 we have

N(m) =
(m + 1)(m + 2)

2
− 1 . (3)

This leads to an asymptotic order of accuracy of n = m + 1 for the collocation. If the discrete solution
uh is defined as the union of all the interpolated functions on the mesh elements, uh = ∪iui, it will be
discontinuous across the element boundaries. The treatment of the solution variables at the boundaries is
one of the key ingredients of the spectral difference method and is discussed below. The reconstruction of
the flux function in Ti reads

Fi(u(x)) = Im+1(F (u))(x) =
N(m+1)∑

k=0

Mk(x)Fk , x ∈ Ti , (4)

where the Mk are the cardinal basis functions corresponding to the collocation nodes xk , k = 0 . . . N(m+1),
and Fk = F (u(xk)). If the solution is reconstructed to order n, the flux nodes are interpolated to order
n + 1, because of the differentiation operation in eq. (1). Again the interpolation will be discontinuous at
element boundaries. We define the numerical flux function Fh on the triangle Ti as

Fh =

{
Fi , x ∈ Ti

G(ui(x), ue,1, . . . , ue,k . . . ) , x ∈ ∂Ti

, (5)

where the ue,1, . . . , ue,k . . . are “external” solutions on triangles Tj with j(k) 6= i such that x ∈ ∂Tj , and the
value is given by ue,k = limy→x uj(y). For nodes on edges of triangles there is only one external solution
ue. It is necessary for discrete conservation that the normal flux component be continuous across the edge,
which suggests using numerical flux functions, standard in finite-volume formulations, such that the normal
flux component Fn = Fi ·n, for the node xk, say, is replaced by the numerical flux h(ui(xk), ue, n), where n is
the edge normal, and h is the numerical flux function approximating Fn (see section III for a brief discussion
on the properties of the numerical flux). A schematic illustration is shown in figure 1(a). For flux nodes on
corners there is more than one external solution and the optimal treatment is still an open problem. One
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(a) Flux computation for points on edges (b) Flux computation for points on corners

Figure 1. Illustration of flux computation for nodes on element boundaries.

may compute the corner fluxes from normal fluxes on the two incident edges of the triangles by imposing

Fh · n1 = hn1

Fh · n2 = hn2 , (6)

where n1 and n2 are the normals on the incident edges, and hn1 , hn2 are the associated numerical fluxes.
This treatment was suggested by Wang et al.2 and makes the flux unique, while allowing for conservation.
The linear system, eq. (6), can be solved analytically to give modified numerical fluxes on corners that can
be split into two parts, which are associated with the two incident edges. This is shown in figure 1(b).

A simple average with scalar dissipation may be used as numerical flux function for convective terms on
element boundaries:

h(ui(xk), ue, n) =
1
2
{(F (ui(xk)) + F (ue)) · n− αn (ue − ui(xk))} , (7)

where αn is proportional to the spectral radius of the local flux Jacobian, αn ∝ |un| + c, where un is the
velocity normal to the edge, and c is the local speed of sound. We have also used the CUSP construction
of artificial diffusion10 instead of the simple dissipation of eq. (7) with good results. The CUSP flux is an
attractive alternative, because it is significantly less dissipative, yet relatively inexpensive. This is beneficial
for lower order computations, where one wishes to avoid excessive dissipation. For higher order reconstruction
the difference becomes smaller, as the dissipation introduced is proportional to the discontinuity in the
solution, which diminishes with increasing order or accuracy, at least in smooth regions. The treatment for
nonsmooth flow is discussed in section IV. Tangential flux components can either be evaluated in each cell
and left unchanged or averaged across cell interfaces using an arithmetic average to produce a flux function
Fh which is single-valued everywhere. In practice the treatment of the tangential components seems to be
of minor importance.

The baseline scheme is now readily defined in ODE form as uh = Lh(uh), where the degrees of freedom
are given by the values of the solution at the collocation nodes, uij = uh(xij), where again xij is the jth

solution collocation node in the ith mesh element, and the right-hand side solution operator is given by the
exact differentiation of the reconstructed flux function:

duh,ij

dt
= (∇ · Fh) (xij) (8)
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In most implementations this ODE is solved with a Runge-Kutta time integration scheme.
The SD method is closely related to staggered grid multidomain spectral methods, proposed by Ko-

priva11 . Here, in a sense, each simplex is a subdomain, and instead of tensor product forms of one-
dimensional basis functions, we use two-dimensional collocation methods.

Any combination of collocation nodes may be used, provided that the nodes for u support a quadrature
of the order of the interpolation n, and the restriction of the flux nodes to the boundaries supports a
d− 1-dimensional quadrature of order n + 1. This ensures discrete conservation in the sense that

d

dt

∫
Ti

uh dx = −
∫

∂Ti

Fh · n dA , (9)

is satisfied exactly for the solution and reconstructed flux function3 . For the solution nodes one can choose
Gauss quadrature points. Hesthaven proposed nodes based on the solution of an electrostatics problem for
simplexes12 , which support both a volume and a surface integration to the required degree of accuracy.
These nodes can be used for both flux and solution collocation. Figure 2 shows examples of nodes for
elements of various orders.

(a) Linear Triangle (b) Quadratic Triangle (c) Cubic Triangle

Figure 2. Schematic depiction of collocation nodes for triangles.

III. Properties of the Baseline Scheme

Conservation is a very important property in the context of numerical schemes for hyperbolic PDE.
Consider for the sake of simplicity the one-dimensional equation on a uniform mesh. A scheme for the
equation

∂u

∂t
+

∂f

∂x
= 0 (10)

is said to be conservative if it can be written for the time instance tn with corresponding solution uh(tn):

ūn+1
i = ūn

i − λ
(
hi+ 1

2
− hi− 1

2

)
(11)

where ui denotes the volume average of uh in cell i, λ = ∆tn/∆x, and h stands for the numerical flux function
at the element interfaces. Here we consider only three-point consistent, Lipschitz-continuous flux functions,
i.e. h = h(u1, u2), and h(u, u) = f . Conservation requires h(u1, u2) = −h(u2, u1). These properties are
important in the theory of total-variation-diminishing (TVD) stability theory briefly discussed below.

The nth-order accurate one-dimensional Spectral Difference Scheme uses polynomials of degree m = n−1
and m + 1 for the solution and flux function, respectively. Let these collocations be defined by the local
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solution nodes xj , j = 0 . . .m and flux nodes xk , k = 0, . . . m+1. With a forward-Euler time discretization
the scheme reads

un+1
ij = un

ij − λ
m+1∑
k=0

mjkfik (12)

where 1
∆x

∑
mjkfk = d

dxI
m+1(fh)(xj). Conservation is ensured by construction, which can be seen by

noting that the equation for the volume averages can be written

m∑
j=0

wju
n+1
ij = ūn+1

i = ūn
i − λ

m∑
j=0

wj

m+1∑
k=0

mjkfik =
m+1∑
k=0

w̃kfik (13)

where the wj are quadrature weights corresponding to the chosen set of solution nodes, which must support
exact quadrature of polynomials at least up to degree m. Also,

fk =


hi− 1

2
k = 0

hi+ 1
2

k = m + 1

f(uk) otherwise

. (14)

Hence the modified quadrature weights w̃k are given by

w̃k =
m∑

j=0

wjmjk . (15)

This, however, can be simplified by noting that mjk = ∆xM ′
k(xj), where M(x) is the cardinal basis function

for the flux collocation, whose derivative is a polynomial of degree m by construction, and is hence integrated
exactly, which means that

m∑
j=0

wjmjk =
∫

M ′
k(x) dx = Mk(xi+ 1

2
)−Mk(xi− 1

2
) =


−1 k = 0
1 k = m + 1
0 otherwise

, (16)

using the fact that Mk(x) is an interpolation polynomial for which Mk(xl) = δkl holds. Note that the Interval
endpoints must be flux collocation nodes for the scheme to be well defined, since numerical flux functions
must be used there to provide the inter-element coupling. Upon substitution of this result into equation (13),
the conservation form for the volume averages, equation (11), is recovered.

For our purposes we restrict ourselves to Lipschitz-continuous fluxes, which together with the conservation
property allows us to inherit useful results from the theory of total-variation stability for the volume averages,
as long as the total variation can be bounded. This is usually accomplished by using a suitable local limiting
procedure (or “local projection” in the parlance of DG methods). An example is given by the minmod
function, which reads

m(a, b, c) =

{
sign(a) min(|a|, |b|, |c|) sign(a) = sign(b) = sign(c)

0 otherwise
, (17)

where, when used during the reconstruction at the interface xi+ 1
2

= xi,m+1 = xi+1,0, the numerical fluxes at
the interface xi+ 1

2
are evaluated with ui+ 1

2
= ui + m(a, b, c) we have

a = δui+ 1
2

= Im(uh)(xm+1)− ui (18)

b = ∆ui+ 1
2

= ui+1 − ui (19)

c = ∆ui− 1
2

= ui − ui−1 . (20)
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We discuss the limiting procedure for practical implementations in greater detail in section IV.
While a discussion on TVD stability is outside the scope of this paper (basic concepts are documented

for example in13), the line of thought is that the local projection bounds the variation at time instance n,
which carries over to the numerical fluxes via the Lipschitz property. Since only the numerical fluxes at the
interfaces affect the update of the volume average for a conservative scheme, it also can be bounded under
some CFL-like condition for an explicit scheme. This allows for estimates following exactly along the lines
of those for Discontinuous Galerkin and other methods. Roughly speaking, the method of reconstruction is
immaterial, as long as the scheme is conservative, the limiting procedure ensures the verification of a local
maximum principle, and standard Lipschitz continuous numerical fluxes are used.

IV. Implementation Details

A. Solution-Adaptive Meshing

To replace mesh resolution by increased order of approximation is perhaps the main rationale behind using
high-order numerical methods. However, for hyperbolic equations, one has to expect to encounter shock
waves. A significant challenge is thus introduced: If a coarser mesh is used to reap the benefits of a high-
order numerical approximation, what is to become of the shock capturing capabilities? Putting all questions
of robustness and stability aside, it is evident that shock resolution must necessarily deteriorate, as the shock
thickness will be determined by the local characteristic mesh length. Adaptive meshing is thus particularly
attractive in conjunction with high-order approximations when shock waves have to be expected. One
may use this technique to locally refine the mesh near a discontinuity in order to improve shock capturing
capabilities.

Furthermore, local limiting procedures, necessary for monotonicity in the presence of discontinuities,
are rather intrusive for high-order methods, where a local high-order reconstruction is usually replaced by
a carefully limited linear one (see section B). For large mesh elements this will be an extremely poor
approximation and at the same time a very massive change in the solution representation, likely to lead to
limit cycles and impede convergence. For smaller elements near a discontinuity, on the other hand, the linear
approximation will be more fitting.

Although not used here, adaptive coarsening may also prove useful in conjunction with a locally increased
order of approximation in smooth regions to reduce the computational cost.

The solution-adaptive mesh refinement used in the present work has been patterned after the methodology
documented by Kim et al.14 , and we refer the interested reader to their paper. The criterion for adaptation
are gradients in the solution. We have used both gradients in the pressure and the entropy.

B. An improved Limiting Procedure

Limiting of the reconstruction is essential to shock capturing. For one-dimensional schemes strict estimates
regarding TVD stability can be obtained depending on standard limiting procedures. The challenge is a
successful translation to an implementation on unstructured meshes in higher dimensions. In15 the authors
present such an extension for the Runge-Kutta DG scheme and multidimensional scalar equations. Stability
and convergence estimates have been obtained, albeit for special classes of triangulations. The procedure
has subsequently been extended to the two-dimensional Euler equations in a semi-heuristic fashion16 .

Let us first consider a scalar equation of the form

∂u

∂t
+∇ · f(u) = 0 . (21)

The most basic steps of the limiting procedure, to be carried out at each time instance in each cell of the
triangulation, can be identified in generic terms as

1. compute a number of local reference states
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2. compare the current reconstruction to the local reference states

3. if necessary, modify the reconstruction to comply with a local maximum/minimum principle established
by a predefined criterion which limits the admissible range of the reconstructed solution as a function
of the reference state

As an example consider again the one-dimensional procedure outlined in section III. Step one is represented
by computing the volume averages in adjacent cells. The minmod function combines steps 2 and 3 by
comparing the slopes of the reconstruction and reference states and returning the original reconstruction in
smooth monotone regions and zero otherwise.

The main task in devising the multidimensional limiting procedure is to select the right method for each
of these steps. For the local reference state the cell-averaged solutions in a local neighborhood of a cell, Ti

say, may be used. We restrict the discussion in this section to the two-dimensional case. The extension to
three dimensions is straight forward. Consider the quantities

ui,max = max(ui, max
k∈Ni

(uk)) (22)

ui,min = min(ui, min
k∈Ni

(uk)) (23)

where we define the index set Ni = {k : Tk ∩ Ti ∈ E}, and E is the set of edges of the triangulation.
Alternatively a nodal neighborhood can be defined, for a node xi, say: Ni = {k : xi is a node of Tk}. The
reference state becomes

ui,max = max
k∈Ni

(uk) (24)

ui,min = min
k∈Ni

(uk) (25)

Step 1 is thus complete. Step 2 depends to some extend on how the reference state has been chosen and on
what part of the reconstruction is to be compared to the reference state. In16 the authors suggest to use the
linear portion of the reconstruction under the assumption that limiting is only necessary if it is necessary
for the linear restriction. In any case, however, we may define the quantity ∆u at new collocation nodes xr,
r = 1, 2, 3 inside the triangle.

∆u(xr) = (P(ui)(xr)− ui) , (26)

where the projection P may be the projection onto the space of linear function or the identity if the full
reconstruction is used in the comparison. If a cellwise neighborhood has been used in step 1 the nodes xr

may be chosen at edge midpoints, whereas for the nodal neighborhood the nodes of the triangle are used.
If one insists that the reconstructed solution must not exceed the bounds established by the maximum

and minimum volume averages of the chosen local neighborhood, the limiter will be activated whenever the
magnitude of ∆u exceeds the magnitude of the allowed variation

∆uref = max(ui − ui,min, ui,max − ui) (27)

at any of the nodes xr. The quantity φ(xr) may be defined as

φ(xr) =

{
1 |∆u(xr)| ≤ ∆uref

∆uref

|∆u(xr)| otherwise
. (28)

Whenever φ < 1 the local reconstruction may be modified according to

ũi = ui + I1(∆̃u)(x) , (29)

where I1 is the linear interpolation operator defined by the nodes xr, and

∆̃u(xr) = φ(xr) (P(ui)(xr)− ui) , (30)
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A modification may be introduced by rejecting any limiting whenever ∆u < M(∆x)2, where ∆x is a
characteristic mesh length. This will prevent a modification of the solution near smooth extrema and is
related to the theory of total-variation boundedness (TVB)4 . In practice we usually choose values of M
between 0 and 40.

The extension to systems is straight forward. In principle a characteristic decomposition could be carried
out, and the limiting could be applied to the characteristic variables, which has the advantage that the 1D
stability estimates for the scalar equation carry over to 1D systems. For higher dimensions, however, these
strict estimates do not hold, and the additional expense of a characteristic decomposition seems unwarranted.
We prefer to apply the limiting procedure componentwise, which means that each conservative variable is
tested for monotonicity and assigned its own limiter variable φl, where l stands for the lth conserved variable.

The procedure is sufficient to ensure that the reconstruction stays within the prescribed bounds, but it
is not conservative in the sense that in general∫

Ti

ũi dx 6=
∫

Ti

ui dx . (31)

A further modification of the linear solution is proposed in16 , which ensures conservation in a way that
prevents an increase of the slope. We adopt this strategy for the present work, omitting the technical
details for the sake of brevity, and refer instead to16 . Our general procedure becomes identical to the one
described in16 if a cell-wise neighborhood is used to compute the reference states, and the linear component
of the solution is used for comparison. In the present work we use the nodal neighborhood, and the full
reconstruction is evaluated at the nodes of the triangles and compared to the reference state.

We have tested this limiting procedure for both unsteady and steady state problems. The well-known
Mach reflection case, studied by Woodward and Colella17 , and subsequently many other researchers, has
been chosen for unsteady validation. Figure 3 shows results for the third-order SD scheme at time t = 0.2

(a) contour lines of the density. Mesh: 133,480 Triangles (b) contour lines of the density. Mesh: 533,920 Triangles

Figure 3. The Mach reflection testcase using the third order Spectral Difference scheme.

in terms of density contours for two different triangular meshes. While no mesh refinement has been used
for this testcase, it can bee seen that shocks are nevertheless very well captured. To illustrate the operation
of the limiting procedure, consider fig. 4, which corresponds to the numerical solution in fig. 3(a). The plot
shows contour lines of the values of the limiting variable φ, clipped above minl φl = 0.99 where the l stands
for the lth conserved variable. This effectively shows the regions of active limiters, which can be seen to be
confined to the vicinity of the shock and the contact discontinuity in the solution. In smooth regions there
is virtually no limiting, which means that the full resolution of the quadratic polynomials is available.

Steady-state test cases involving shocks are extremely challenging for high-order schemes. We have
carried out preliminary test for transonic flow over a NACA 0012 airfoil. A rather popular testcase for
inviscid aerodynamics is given by the flow conditions M = 0.8 at an angle of attack α = 1.25o. Fig. 3
shows contour lines of the Mach number for this test case for a finite-volume scheme and the SD scheme
using quadratic polynomials. Both solutions have been computed on the same mesh, which can be seen in
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(a) Contour lines of the Mach num-
ber for the third-order SD scheme

(b) Contour lines of the Mach num-
ber for the second order Finite-
Volume scheme

(c) Close-up view of refined area on
the suction side

Figure 5. The NACA 0012 airfoil in transonic flow. M = 0.8, α = 1.25

fig. 5(c). Adaptive refinement has been used on the suction side to aid in shock resolution. While these
are the first steady-state solutions for transonic flow computed with the high-order SD method, it must be
pointed out that convergence of the residuals to machine zero was not attained, because the activity of the
limiters causes the scheme to be caught in limit cycles, which locally stalls the reduction of the residuals,
thus impeding convergence. The resolution of this problem will be subject of further research.

C. Surface Parametrization

Figure 4. cells with active limiters

A piecewise linear approximation of
surfaces is standard in second order
accurate numerical schemes, which
is sufficient, because such a scheme
cannot tell the difference between
the actual surface and a piecewise
linear approximation. For higher-
order schemes, however, such a sim-
plified surface representation can
have disastrous effects. This is
demonstrated in fig. 6, which an-
alyzes spurious entropy production
for inviscid subsonic flow (M∞ =
0.3) around the NACA 0012 airfoil
at zero angle of attack. The relative entropy error is defined here as s = (p/p∞)(ρ∞/ρ)γ − 1, where ρ is the
density, p is the static pressure, and γ is the ratio of specific heats. The subscript ∞ refers to free stream
conditions. In 6(a) contour lines of the entropy error are shown for a piecewise linear surface approximation
computed with the 3rd order SD scheme, while in 6(b) the same contour plot is shown for a parametric surface
representation using cubic splines and 80 knots (i.e. the original surface points given as input parameters).
The spurious entropy production for the piecewise linear approximation is clearly visible and is even more
obvious in fig. 6(c) where the entropy error is plotted along the airfoil on a logarithmic scale. For the para-
metric surface treatment there is significant entropy production only at the stagnation point at the leading
edge and at the sharp trailing edge. In between the entropy error is practically negligible. For the piecewise
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(a) Contour lines of the entropy
error near the airfoil leading edge
for the third-order SD scheme and
piecewise linear surface representa-
tion

(b) Contour lines of the entropy er-
ror near the airfoil leading edge for
the third order SD scheme and para-
metric surface representation using
cubic splines

(c) Comparison of the relative en-
tropy error long the airfoil surface
for a piecewise linear surface and
parametric surface representation

Figure 6.

linear surface representation, however there is significant entropy production along the entire airfoil. The
reason for this behavior is that if a piecewise linear airfoil is specified, a high order numerical scheme will
compute precisely that, a flow over a piecewise linear surface, because it is able to discern the difference.
This can dramatically deteriorate the quality of the solution. We use a parametric surface representation for
all curved surfaces. This means that some cells will have curved boundaries, which in turn means that all
reconstruction coefficients will no longer be universal for these elements. For linear elements, i.e. elements
with straight boundaries theses coefficients are universal up to simple geometric scaling factors, which can
be expressed in terms of the face areas and volumes. For curved boundaries these coefficients have to be
computed individually and stored for each element, which is a one-time implementation effort (the memory
penalty is mild since only few elements usually have a curved boundary).

V. Viscous Terms

The hyperbolic character of the Euler equations is a major influence in the formulation of the Spectral
Difference Method. However, many physical phenomena, even if they are dominated by wave propagation,
have dissipative features as well, which often cannot be neglected even if they are small. Fluid flow is a
notable example: For one thing, the boundary conditions change (from slip to no-slip at walls). Furthermore,
although the viscous effects are often restricted to a small boundary layer, for general flow situations viscous
effects can cause phenomena, such as separation, that affect the entire flow. Therefore, a suitable way of
treating dissipative terms must be found, while we would like to keep the treatment of the convective terms
intact.

For the compressible Navier-Stokes equations in differential form the viscous fluxes can be modeled as

Fv = ∇ · τ , (32)

where the tensor τ is given by

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− δij

∂ul

∂xl

)
, (33)

where summation over repeated indices is understood. For incompressible flow the viscous terms reduce to
a Laplacian operator, which is why a simplified equation including a Laplacian operator is often taken as
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a model equation to test viscous discretization techniques. Let us first consider the one-dimensional linear
advection-diffusion equation, where the laplacian operator is simply the second derivative:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
(34)

One way of solving eq. (34) is to rewrite it as a system:

∂u

∂t
+ c

∂u

∂x
= ν

∂q

∂x
(35)

∂u

∂x
− q = 0 . (36)

This general approach has been taken by many researchers for viscous discretization in finite element meth-
ods,7,8, 18 such as the Discontinuous Galerkin Method.

If the discretization of the variable q is “local”, i.e. it depends only on the latest solution of u, the
system can be solved in a segregated manner. This means that the approximation for the gradient q can
be computed first, using the latest estimate of u and a suitable discretization of eq. (36). Subsequently
this approximation is used in eq. (35) to advance the solution u. Consider eq. (35) of the new system in
semi-ODE form and Spectral Difference discretization, where again xj and xk are the nodes defining the
collocation for the solution and the flux function, respectively:

∆t
duij

dt
+ λ

m+1∑
j=0

mjkfh,ik , (37)

where fh = fh,c − fh,v. The fluxes fh,c and fh,v discretize the convective and dissipative terms, fc = cu and
fv = νq, respectively. For the convective part one may choose an upwind discretization:

fh,c = cvk , where vk =

{
pik k 6= 0
pi−1,m+1 k = 0

, (38)

and pk = p(xk) = Im(uh)(xk) is the reconstructed solution at the flux nodes. The concepts of wave
propagation that guide the discretization of the convective terms do not apply to dissipation, which is not
associated with a preferred direction of propagation. In principle a central discretization of dissipative terms
is therefore appropriate, and has (in one form or another) often been applied to both scalar equations and
systems such as the Navier-Stokes equations. However, stability concerns have to be addressed. We define
a more general weighted discretization of the form

fv,k =
ν

∆x
q̃k , where q̃k = ∆x ·


1
2 (qi−1,m+1 + qi,0)− σ (qi−1,m+1 − qi,0) , k = 0
qik, k 6= 0,m + 1
1
2 (qi,m+1 + qi+1,0)− σ (qi,m+1 − qi+1,0) , k = m + 1

(39)

Using the definition of the CFL number cfl = λc and introducing the cell Peclet number Pe = c∆x/ν the
scheme becomes

∆t
duij

dt
+ cfl

m+1∑
j=0

mjk

(
vik −

q̃ik

Pe

)
(40)

The remaining task of discretizing the second equation of the new system, eq. (36), is equivalent to precom-
puting an estimate of the gradient if the scheme is local. Consistent with the above rationale we write a
weighted discretization of the form

qk =
1

∆x

m+1∑
l=0

µklp̃l (41)
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where µkl are elements of a differentiation matrix, evaluating the derivative of the quantity p̃ at the flux
nodes xk, i.e. 1

∆x

∑m+1
l=0 µklp̃l = d

dx p̃(x)(xk) in each cell i, and p̃ is given by

p̃il =


1
2 (pi−1,m+1 + pi,0) + σ (pi−1,m+1 − pi,0) l = 0
pil l 6= 0,m + 1
1
2 (pi,m+1 + pi+1,0) + σ (pi,m+1 − pi+1,0) l = m + 1

(42)

where pl is the reconstructed solution at the lth flux collocation node. Note the change of sign between
eq. (39) and eq. (42) in the term augmenting the central average. We may characterize this discretization
as having a complementary upwind/downwind bias. It can be easily verified that in the case of a first
order scheme, i.e. m = 0, the above discretization collapses to the standard three-point stencil for the
second derivative if σ = 0.5 or σ = −0.5. The central discretization is recovered for σ = 0, which leads to
a decoupled five-point stencil for the first order scheme (to avoid such a decoupled stencil is the primary
motivation behind introducing this weighted form of discretization). The method is closely related to the
LDG method8 , which utilizes a very similar upwind/downwind splitting for the viscous terms, and reduces
to the same first order scheme (that is to say, for the first order scheme the present SD method and LDG
scheme become identical if the same numerical flux function for the convective terms are used).

The asymptotic convergence in p refinement must be expected to be suboptimal in general, in the sense
that convergence no better than order n can be guaranteed if polynomials of order n are used (as opposed
to the inviscid case, where we expect order n + 1). This is due to the extra derivative for the dissipative
terms. This property is also shared by the LDG method. In practice, however, optimal order of convergence
is often achieved. We will continue to refer to the design accuracy of n = m + 1 if polynomials of degree m
are used, keeping in mind that optimal convergence for viscous problems may not alway be achieved.

Consider the numerical solution of eq. (34) using the scheme (40). Several tests for varying order of
accuracy, cell Peclet number, and discretization parameter σ have been carried out. The optimal order of
convergence has always been achieved for this linear problem. We show a few illustrative examples (tables 1
through 4 on the following page). The accuracy is maintained until machine zero is approached. A four stage

# Elements L∞(Error) Order L2(Error) Order
10 6.547057e-02 3.888390e-02
20 1.749077e-02 1.904253 1.002766e-02 1.955188
30 7.804592e-03 1.990211 4.479220e-03 1.987590
40 4.398009e-03 1.993730 2.526923e-03 1.989858
50 2.828825e-03 1.977608 1.621178e-03 1.989075
75 1.266920e-03 1.981114 7.239641e-04 1.988251
100 7.168179e-04 1.979693 4.086552e-04 1.987854

Table 1. Second Order scheme, σ = −0.5, Pe = 0.01

Runge-Kutta scheme has been used to advance the solution. However, time accuracy plays no role in this
test, since the time step has been chosen small so that the error is dominated by the spatial discretization.
The equation has been integrated to T = 1 for Pe = 0.01. For Pe = 0.1 we have chosen T = 0.1 as the
solution will decay much more quickly. Fig. 7 on page 14 summarizes the convergence study for σ = −0.5
and Pe = 0.1. In fig. 7(a) the error is measured as the mesh is refined for the 2nd through 5th order scheme,
while fig. 7(b) demonstrates spectral convergence as the order of accuracy is increased at constant number
of mesh elements (40 in this case).

For the extension to higher dimensions we need to translate the symmetric upwind/downwind bias of
the one-dimensional discretization to unstructured multidimensional mesh elements. For the Navier-Stokes

12 of 18

American Institute of Aeronautics and Astronautics



# Elements L∞(Error) Order L2(Error) Order
10 2.111335e-03 1.188727e-03
20 2.386526e-04 3.145172 1.460845e-04 3.024542
30 7.050337e-05 3.007283 4.264994e-05 3.036413
40 2.974449e-05 2.999897 1.789916e-05 3.018165
50 1.515007e-05 3.023340 9.170556e-06 2.996976
75 4.611315e-06 2.933648 2.746238e-06 2.973785
100 1.985667e-06 2.928782 1.172301e-06 2.959043

Table 2. Third Order scheme, σ = 0, Pe = 0.01

# Elements L∞(Error) Order L2(Error) Order
10 2.896343e-06 1.477824e-06
20 2.137082e-07 3.760518 1.036278e-07 3.833991
30 4.458241e-08 3.865369 2.124086e-08 3.908792
40 1.452898e-08 3.897337 6.844647e-09 3.936498
50 6.049254e-09 3.926667 2.833991e-09 3.951631
75 1.219807e-09 3.949149 5.680424e-10 3.963954
100 3.897074e-10 3.966364 1.808876e-10 3.977725

Table 3. Fourth Order scheme, σ = −0.5, Pe = 0.1

# Elements L∞(Error) Order L2(Error) Order
10 6.517415e-08 3.716928e-08
20 2.042238e-09 4.996077 1.109798e-09 5.065742
30 2.675080e-10 5.013137 1.439591e-10 5.037188
40 6.346705e-11 5.000759 3.396990e-11 5.019619
50 2.088936e-11 4.980117 1.112197e-11 5.003740
75 2.818483e-12 4.940107 1.375349e-12 5.155104
100 1.060079e-12 3.399083 4.199459e-13 4.123778

Table 4. Fifth Order scheme, σ = −0.5, Pe = 0.1
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(a) Accuracy in h refinement for the SD scheme, 2nd

through 5th order scheme.
(b) Accuracy in p refinement for the linear advection dif-
fusion equation and the spectral difference scheme with
σ = −0.5 and Pe = 0.1 at N = 40

Figure 7.

equations we can write the viscous fluxes as

Fv = ∇ · g(u, v, q1, q2, q3) (43)
q1 = ∇u (44)
q2 = ∇v (45)
q3 = ∇T (46)

where the velocity components are denoted by u and v, and T is the temperature. We can write for g

g = (g, h) where g =

 τ11

τ21

uτ11 + vτ12 − Ξ1

 h =

 τ12

τ22

uτ21 + vτ22 − Ξ2

 , (47)

where τ(q1, q2) is the rate-of strain tensor, eq. (33), and Ξ = −κq3 is the heat flux vector (κ is the thermal
conductivity). Both are linear functions of the new variables qi, and hence so is the the function g. The
ideas behind the discretization discussed above thus carry over to the Navier-Stokes equations. We introduce
the weighted discretization first in the computation of the gradients qi in eqns. (44) to (46) that form the
rate of strain tensor and the heat flux vector, and subsequently a complementary discretization is used when
discretizing the flux function g in a manner analogous to eq. (39) and eq. (42). Several techniques can
be conceived to introduce the splitting, such as switching the sign of the coefficient σ based on the local
normal velocity across a face, i.e. qn = v · n, where v is the velocity vector and n is the edge normal. This
would in fact mimic the standard concept of upwinding. However, for the discretization of the viscous fluxes
this splitting is not necessarily more meaningful than other heuristic techniques. The important property
is the complementary character of the upwind/downwind bias, and the optimal treatment is very much an
open problem. In the present work we use the free stream direction to split the discretization: Whenever
U∞ · n > 0, where U∞ is the free stream velocity vector and n is the edge normal pointing from the logical
left cell to the right cell, upwind bias is introduced for the computation of the gradients, i.e. more weight is
given to the left cell, while the opposite is true for the computation of the fluxes.
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A subsonic low Reynolds number flow around the NACA 0012 profile serves as validation for the Navier
Stokes equations. We have chosen the flow conditions M = 0.3 and Re = 100 at zero angle of attack.
Fig. 8(a) shows a contour plot of the Mach number distribution computed with the 3rd order SD scheme

(a) Contour lines of the Mach number for the third Order
SD scheme

(b) Numerical grid with 960 triangles

Figure 8. The NACA 0012 profile at M = 0.3, Re = 100, α = 0o

on a coarse triangular mesh with 960 elements. For the 3rd order scheme this results in 5760 degrees of
freedom (6 nodes to each triangle). The weighting parameter σ = −0.5 has been used, which results in a
full splitting. The computational mesh is shown in figure 8(b).

We use discontinuous rendering of the solution for all high-order computations in this section, such as the
one shown in fig. 8(a), which helps assess the quality of the solution. Each triangle is rendered individually
which makes the contour lines discontinuous across elements, as is the solution. Fig. 9 on the next page
illustrates this using a close-up view of a region upstream of the leading edge for the 2nd and 3rd order SD
scheme. The highly curved streamlines can be seen to be discontinuous across the triangles for the 2nd order
scheme, but become almost continuous for 3rd order computations. which suggests adequate resolution, even
on this relatively coarse mesh (fig. 8(b)), for the 3rd order scheme. For a 2nd order finite-volume scheme this
is not true, which is confirmed by fig. 10, where the same testcase is shown, computed on the same mesh
(fig. 8(b)) with a standard cell-centered finite volume scheme using a linear reconstruction of the solution
variables and a central discretization of the viscous terms, as documented in previous work19,20 . It is clear
that the mesh resolution is not adequate for a second order scheme. To compute a comparison for the
3rd order SD solution the finite-volume scheme requires a finer mesh. A solution on a mesh with 10240
triangles is shown in figure 11 where a contour plot of the Mach number distribution is shown along with
the computational mesh. Note that the finite volume scheme uses roughly twice as many degrees of freedom,
compared to the 3rd order SD scheme.

VI. Conclusion and Future Work

A high order methodology for the Euler and Navier-Stokes equations has been presented with emphasis
on practical implementation, treatment of shock waves and viscous terms. The method has been tested
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(a) Second Order SD scheme (b) Third Order SD scheme

Figure 9. The NACA 0012 profile at M = 0.3, Re = 100, α = 0o. Contour lines of the Mach number. Close-up
view of the solution near the leading edge

(a) Numerical grid with 10240 triangles (b) Contour lines of the Mach number for the second order
finite-volume scheme

Figure 11. The NACA 0012 profile at M = 0.3, Re = 100, α = 0o
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on various testcases ranging from the linear advection-diffusion equation to the Euler and Navier-Stokes
equations.

Figure 10. Cell-Centered Finite-Volume Scheme with
linear reconstruction

Good shock capturing capabilities have been
demonstrated for both time-dependent and steady-
state problems. For steady-state problems involving
discontinuous solutions results are extremely rare in
the literature. We are able to compute transonic
steady flow on unstructured meshes using the SD
scheme, for which adaptive mesh refinement is a
valuable aid in confining the discontinuities to nar-
row regions in the flow field, where they can be cap-
tured using limited linear reconstruction. Conver-
gence of the residuals to machine zero is the remain-
ing goal for such testcases.

For viscous flow, superior resolution of the high-
order SD scheme has been demonstrated, compared
to standard finite-volume methods. Regarding the
viscous discretization, further investigation of the
optimal splitting and the influence of the weighting
parameter σ is needed. This will be subject of fur-
ther research.

In general, convergence acceleration is needed to
make high-order methods competitive for steady-
state problems. So far this has not been an objective
of this work. While research in this area is taking place, for example multigrid techniques for high-order
methods, the field is not very mature, in particular for transonic and viscous flow, and an increased research
effort is necessary to address this problem.
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