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ABSTRACT: The most appropriate model for genetic parameters estimation for calving ease and birth weight 
in beef cattle was selected. A total of 27 402 field records were available from the Czech Charolais breed. 
For estimation of genetic parameters for calving ease and body weight, three bivariate models were tested: a 
linear-linear animal model (L-LM) with calving ease classified into four categories (1 – easy; 2–4 – most dif-
ficult), a linear-linear animal model (SC-LM) in which calving ease scores were transformed into Snell scores 
(Snell 1964) and expressed as percentage of assisted calving (ranging 0–100%), and a bivariate threshold-linear 
animal model (T-LM) with calving ease classified into four categories (1 – easy, 2–4 – most difficult). All tested 
models included fixed effects for contemporary group (herd × year × season), age of dam, sex and breed of a 
calf. Random effects included direct and maternal genetic effects, maternal permanent environmental effect, 
and residual error. Direct heritability estimates for calving ease and birth weight were, with the use of L-LM, 
SC-LM, and T-LM, from 0.096 ± 0.013 to 0.226 ± 0.024 and from 0.210 ± 0.024 to 0.225 ± 0.026, respectively. 
Maternal heritability estimates for calving ease and birth weight were, with the use of L-LM, SC-LM, and T-LM, 
from 0.060 ± 0.031 to 0.104 ± 0.125 and from 0.074 ± 0.041 to 0.075 ± 0.040, respectively. Genetic correlations 
of direct calving ease with direct birth weight ranged from 0.46 ± 0.06 to 0.50 ± 0.06 for all tested models; 
whereas maternal genetic correlations between these two traits ranged from 0.24 ± 0.17 to 0.25 ± 0.53. Cor-
relations between direct and maternal genetic effects within-trait were negative and substantial for all tested 
models (ranging from –0.574 ± 0.125 to –0.680 ± 0.141 for calving ease and from –0.553 ± 0.122 to –0.558 
± 0.118 for birth weight, respectively), illustrating the importance of including this parameter in calving ease 
evaluations. Results indicate that any of the tested models could be used to reliably estimate genetic parameters 
for calving ease for beef cattle in the Czech Republic. However, because of advantages in computation time and 
practical considerations, genetic analysis using SC-LM (transformed data) is recommended.
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INTRODUCTION

Calf survival is a complex trait that is influenced 
by a number of genetic (maternal and direct) and 
non-genetic factors. The majority of calf losses 
occur in the first days after calving, so attention 
should be paid to this period in particular. Parturi-

tion itself is the first critical moment. Its length and 
course critically influence subsequent calf survival 
(Fries and Ruvinsky 1999). Difficult calving may 
result in brain injury to the foetus due to oxygen 
deprivation that interfers with the onset of post-
partum reflexes of calves, often resulting in death. 
In beef cattle, up to 10% of cows experiencing a 
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difficult calving die (Ruvuna et al. 1992). Phocas 
and Laloe (2003) reported that 8% of parturitions 
in the Charolais breed required mechanical as-
sistance or a caesarean section. Difficult calving 
is associated not only with higher calf losses. It 
also negatively impacts animal welfare, increases 
demands on husbandry and veterinary care, and 
may restrict future productivity of cows and calves. 
From the economical point of view, the calving 
ease is one of the most important trait for beef 
cattle (Wolfova et al. 2005). From a biological 
perspective, calving ease is influenced by direct 
effects of the foetus (calf weight, head width, occur-
rence of deformations, ability to assume a normal 
calving position, etc.) and by maternal effects of 
the dam, particularly pelvic dimensions (Fries 
and Ruvinsky 1999). Most experiments (Varona 
et al. 1999a; Carnier et al. 2000 and others) that 
estimated genetic parameters for both direct and 
maternal effects on calving ease document adequate 
genetic variance in these traits to allow practical 
and effective selection. Genetic improvement in 
calving ease may, however, be restricted by its 
high genetic correlation with birth weight of the 
calf (Koots et al. 1994). However, if sires with low 
predicted breeding values for birth weight were 
used, it would result in lower growth potential as 
well as lower birth weight of the offspring. 

Typically, calving ease is recorded and analyzed as a 
discrete variable. Gianola (1982), however, stated that 
the evaluation of threshold traits using a linear model 
is not suitable. The estimation of genetic parameters 
by threshold models was studied e.g. by Varona et al. 
(1999a, b), Ramirez-Valverde et al. (2001), and Hansen 
et al. (2004). Eriksson et al. (2004) and Jamrozik et 
al. (2005) are among many who used linear models 
for the estimation of genetic parameters for calving 
ease. Tong et al. (1977) and Mujibi and Crews (2009) 
estimated genetic parameters for calving ease using 
a linear model with logistic transformation by means 
of Snell scores (Snell 1964). 

Developing a statistical model for a maternally 
affected trait requires a careful balance between 
sufficient predictive ability and computational 
feasibility, which in turn is affected by the size of 
the dataset and potential biases in data recording 
(Eaglen et al. 2012).

The objective of the present paper was to compare 
a model with Snell score transformation with linear 
and threshold models for estimation of genetic 
parameters and prediction of breeding values for 
calving ease in Czech beef cattle. 

MATERIAL AND METHODS

Data. The Czech Beef Breeders Association (www.
cschms.cz) provided birth weight and calving ease 
data from a Charolais progeny test program. In-
cluded were records from animals with 88–100% 
genes of Charolais ancestry in the years 1990–2012. 
Average live weight at birth was 42.2 ± 6.39 kg for 
bull calves and 39.22 ± 5.40 kg for heifers. Ani-
mals with birth weights three times exceeding the 
standard deviation above or below the mean were 
discarded from the data set for estimation of genetic 
parameters. Calving ease records were scored as: 
easy calving – spontaneous calving without any 
help from a breeder (1), assisted calving – calving 
with help from one or two breeders (2), difficult 
calving – calving requiring help from three or more 
people or help from a vet (3), and caesarean sec-
tion or dystocia requiring postpartum treatment 
from a vet (4). Only those animals with records 
for both traits were included in the analysis. The 
input database was adjusted so that components 
of variance among all considered effects would be 
estimable for all traits. After adjustment the data 
set included: sires who had at least 5 offspring 
with tested performance, sires who had offspring 
in at least two herd × year × season classes, herd × 
year × season classes that had offspring of at least 
two sires, herd × year × season classes that had at 
least 5 individuals, and dams that had at least two 
offspring and at least one half-sister (Vostry et al. 
2007) (n = 27 402). The pedigree file for estimation 
of genetic parameters comprised three generations 
of ancestors (n = 39 546 animals). The effects of 
gestation length and weight of cows could not be 
included in the analysis because reliable data were 
not available for those traits.

Statistical analysis. Variance components and 
genetic parameters for calving ease were estimated 
by a two-trait BLUP animal model based upon the 
BLUP animal model currently used for breeding 
value estimation for the Czech national progeny 
test (Pribyl et al. 2003).

yijklmno = μ + HYSj + AgeDk + Sexl + am + mn + peo+ 
              + eijklmno

where:
yijklmno 	= i

-th trait (calving ease or birth weight – 27 402 
records)

μ 	 = general mean
HYSj 	 = fixed effect of j-th herd × year × season (j = 1, 

…, 1457)

http://www.cschms.cz
http://www.cschms.cz
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AgeDk 	= fixed effect of kth age of dam (k = < 2, 2–3, 
3–4, 4–5, > 5 years old)

Sexl 	 = fixed effect of lth sex (l = bull, bulls twins, 
heifers, heifers twins)

am 	 = random effect of mth animal (m = 1, …, 39, 
546)

mn 	 = random effect of nth dam (n = 1,…, 6605)
peo	 = random effect of oth maternal permanent	

environmental effect (o = 1,…, 6605)
eijklmno 	= residual error

Assumptions on the variance-covariance of the 
random components were:

where:
G 	 = A ⊗ G0 , M = A ⊗ M0 , C = A ⊗ C0,
Pe 	= Ipeσ2

pe
u 	 = vector of direct animal genetic effects
m 	 = vector of maternal genetic effects
pe 	 = vector of permanent environmental effects
e 	 = vector of residuals
R	 = covariance matrix of the order equal to the number 

of records, with the diagonal elements equal to 
the residual variance of the involved traits and 
diagonal elements equal to the residual covari-
ance between traits if the elements correspond 
to records of different traits belonging to the 
same animals, and zero otherwise

G0 	= covariance matrix for additive genetic effects
M0 	= covariance matrix for maternal genetic effects
C0 	 = covariance matrix between direct additive and 

maternal genetic effects
A 	 = additive genetic relationship matrix
Ipe 	= identity matrix of the order equal to the number 

of dam effects
σ2

pe 	= variance of maternal permanent environmental 
effects

⊗ 	 = Kronecker product

The analysis of the interactions between the fixed 
effects was performed using the GLM procedure 
of SAS (Statistical Analysis System, Version 9.1, 
2005). The interactions between the fixed effects 
were not significant for all traits, therefore they 
were not included in the tested models.

Different models and data transformations were 
tested for their impact on genetic parameter esti-
mation for calving ease as a threshold trait:

Two-trait linear-linear model (L-LM) – calving 
ease and birth weight are modelled as linear traits 
– calving ease is expressed by recorded phenotypic 
value (1–4); 

Two-trait threshold-linear model (T-LM) – calv-
ing ease is modelled as a threshold trait and birth 
weight is modelled as a linear trait – calving ease 
is expressed by recorded phenotypic value (1–4); 

Two-trait linear-linear model with data transforma-
tion (SC-LM) – calving ease is modelled as a linear 
trait transformed by means of the Snell score and 
birth weight is modelled as a linear trait – calving 
ease is expressed as percentage of assisted calving, 
ranging 0–100% (least to greatest) (Snell 1964).

Snell score. The basic assumption of the Snell 
score (Snell 1964) is that for a categorical trait 
such as calving ease there exists a latent discrete 
distribution for which the Snell score represents 
the middle of the interval. It is computed by an 
approximation procedure from Snell (1964). In 
this procedure, a logistic model is applied to com-
pute the score that may be generalized for normal 
distribution. An approximate solution to a pair of 
boundary points is estimated by substituting the 
observed proportions as the theoretical propor-
tions into the derivatives of the log likelihood. 
In general, if we consider i = 1, 2, …, m groups 
of observations and j = 1, 2, …, k categories (e.g. 
calving ease), the following estimation equations 
have been derived (for details see Snell 1964):

for j= 2, 3, …, k – 2

for j = k – 1

where:
x̂j	 = estimated boundary points such as the score for 

category j
Pij 	 = observed probability of group i in category j
nij 	 = frequency of scale values in group i and category j
Nj 	 =  ∑m

j=1nij

These two equations provide estimates for the 
intervals (x̂2 – x̂1), (x̂3 – x̂2), …, (x̂k–2 – x̂k–1). One 
set = 0 to obtain estimates for all individual bound-
ary points is taken as the scores. For the two ex-
treme categories, scores are derived from the 
corresponding expected values under the two tails 
of the distribution. The scores for the first and last 
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category are given by x̂2 + (loge P1/Q1) and x̂k–1 + 
loge Pk–1/Qk–1), where P1 is the probability of a 
value greater than x1 and Q1 = 1 – P1, and Pk–1 = 
probability of a value less than xk–1 and Qk–1 = 
1 – Pk–1 (Tong et al. 1977).

The Snell score was transformed to a 0–100 
range (percentage calving ease: score 1 = 0.1%, 
score 2 = 31%, score 3 = 51.8%, score 4 = 100%).

Selection of a model. The suitability of the vari-
ous models for genetic parameters estimation and 
breeding values prediction for calving ease was tested 
on the basis of splitting or cross-validation (Shao 1993). 
Here the data splitting technique involved duplicating 
the data set, randomly discarding one-half of the calv-
ing difficulty records in one subset with the remaining 
calving difficulty records discarded in the other subset. 
Thus, each calving difficulty phenotype was present 
in only one of the two subsets. Solutions for each of 
the three models were obtained from both subsets 
and the correlations between individual predicted 
breeding values from the two subsets were calculated. 
Repeated samples were created according to the above 
criteria, and reported correlations were the average 
of 10 replicates. For each model, these correlation 
coefficients provide an informative comparative as-
sessment of model predictive performance, useful for 
ranking the tested models (Ramirez-Valverde et al. 

2001). These authors showed that higher correlations 
between complementary subsets implied a higher 
reliability of the model for predicting breeding value 
solutions in deleted animals.

Only linear models were compared on the basis 
of the ratio of residual error variance to total phe-
notypic variance (e2) (Jamrozik et al. 2005). Because 
measurement scales differ between threshold and 
linear models (liability vs observed value, respec-
tively, it is not possible to use the ratio of residual 
error variance to total phenotypic variance for com-
parison between them (Gianola and Norton 1981).

For the estimation of variance and covariance 
components for the full data set, the AIREMLF90 
programme (Misztal et al. 2002) was used for the 
linear-linear models and the THRGIBBS1F90 pro-
gramme (Misztal et al. 2002), which applies the 
Bayesian approach by means of the Gibbs sampling 
algorithm, was used for the threshold-linear model. 
According to a graphical representation, the first 
100 000 samples were excluded as the burn-in. A 
total of 50 000 samples were then used to estimate 
the posterior mean and SD of the variance compo-
nents. The following population parameters were 
derived from the estimated variance-covariance 
components: σ2

y = phenotype variance (σ2
y = σ2

a + 
σ2

m + σam + σ2
lit + σ2

cg+ σ2
e) (Willham 1972), h2

a = 
direct heritability coefficient (h2

a = σ2
a/σ2

y), h2
m = 

maternal heritability coefficient (h2
m = σ2

m/σ2
y), ram = 

genetic correlation of direct and maternal effects 
(ram = σam/(σa × σm)), where σ2

a = additive genetic 
variance of direct effect, σam = genetic covariance 
of direct and maternal effect, σ2

m = additive genetic 
variance of maternal effect, σ2

hys = variance of the 
effect of the herd × year × season, σ2

pe = variance 
of maternal permanent environmental effects, 
σ2

e = variance of the effect of residual error. The 
pedigree set for estimation of genetic parameters 
comprised three generations of ancestors. Errors 
of the estimated heritability coefficient were ap-
proximated according to the method of Klei and 
Tsuruta (2008). Breeding values were predicted 
using the BLUPF90 and CBLUP90THR computer 
programmes (Misztal et al. 2002). 

RESULTS AND DISCUSSION

Estimation of genetic parameters. Estimated 
genetic parameters for birth weight were identi-
cal for all of the tested models (Table 2). For this 
reason, subsequent discussion will be directed 
only at the calving ease trait.

Table 1. Structure of data used for estimation of genetic 
parameters for birth weight, calving ease, and Snell score

Structure of data Birth weight 
(kg)

Calving  
ease

Snell score 
(%)

Sires (n) 470
Dams (n) 6 605
Average n of animals 
per sire 58.30

Average n of animals 
per dam 4.15

Average n of animals  
per contemporary group 18.80

Average n of sires per 
contemporary group 3.01

Average n of contempo-
rary groups per sire 14.46

Average n of farms  
per sire 3.63

Animals with records 27 402
Animals in total 39 546
Mean 40.81 1.13* 9.49
SD 6.12 0.43* 21.26

*expressed by recorded phenotype values; calving ease = Snell 
score expressed as percentage of assisted calving
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Heritability estimates for direct effects on calv-
ing ease were low, ranging 0.096–0.210 (Table 2). 
The heritability estimate from the T-LM model 
was twice as large as estimates from the other 
models, and its standard errors also were dou-
bled. Higher heritability estimates from threshold 
compared to linear models were also reported by 
Hansen et al. (2004); and threshold models have 
resulted in higher genetic parameter estimates 
than linear models for body conformation (Vesela 
et al. 2011) and health status traits (Silvestre et al. 
2007; Vostry et al. 2012a, b). However, estimated 
heritability in the present work may not be a real-
istic heritability. The substantial negative direct-
maternal correlation fixed a phenotypic variance, 
and consequently direct and maternal heritability 
may be overestimated. The SC-LM model had 
slightly higher values of direct heritability com-
pared to the L-LM model. Maternal heritability 
was half as large as direct heritability in all tested 
models. Our estimated values of heritability for 
direct and maternal effects had slightly lower val-
ues from linear models (L-LM and SC-LM) than 
those published by Luo et al. (2001), Eriksson et 

al. (2004), and Mujibi and Crews (2009). On the 
contrary, our heritability estimates from T-LM 
were identical to those in Varona et al. (1999b) 
and Lee (2002) in cows.

Correlations between direct and maternal genetic 
effects within traits were negative and intermedi-
ate. The largest negative value for calving ease was 
from the threshold model in comparison with SC 
and LM (–0.680 vs –0.606 vs –0.574, respectively). 
These substantial direct/maternal effect correla-
tions and maternal effect heritabilities reinforce 
the importance of including maternal effects in the 
genetic evaluation of calving ease. Estimations of 
the direct genetic correlation between calving ease 
and birth weight of calf showed that the threshold 
model provided the lowest value of correlation in 
comparison with SC and LM. Estimations of the 
maternal genetic correlation between calving ease 
and birth weight of calf were obtained for all of 
the tested models. The positive values of direct 
genetic correlation between traits were in agree-
ment with Varona et al. (1999a) and Eriksson et 
al. (2004). These authors estimated slightly higher 
correlations (0.79 and 0.62). Koots et al. (1994) 

Table 2. Estimated genetic parameters for calving ease (CE) and live weight at birth (BW) from tested models. Linear-
linear model (L-LM), linear model with calving ease transformed by the Snell score (SC-LM), and threshold model (T-LM)

L-LM SC-LM T-LM
CE BW CE BW CE BW

σ2
m 0.01 (0.00)* 3.20 (0.24)  25.30 (2.80) 3.20 (0.24) 0.25 (0.05) 3.20(0.24)

σ2
m 0.01 (0.00) 1.05 (0.13)  16.33 (2.12) 1.06 (0.13) 0.13 (0.03) 1.07 (0.14)

σ2
pe 0.01 (0.00) 0.59 (0.07)  7.76 (1.15) 0.59 (0.07) 0.15 (0.02) 0.56 (0.07)

σ2
e 0.13 (0.00) 10.38 (0.14) 213.35 (1.98) 10.38 (0.14) 0.80 (0.15) 10.39 (0.05)

σ2
y 0.15 14.20 250.41 14.19 1.20 14.20

h2
a 0.10 (0.01) 0.23 (0.02) 0.10 (0.01) 0.23 (0.02) 0.21 (0.02) 0.23 (0.03)

h2
m 0.06 (0.03) 0.07 (0.04) 0.07 (0.01) 0.07 (0.04) 0.10 (0.13) 0.08 (0.04)

c2 0.03 (0.01) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.13 (0.02) 0.04 (0.01)
e2 0.853 0.73 0.852 0.73 0.66 0.73
ram –0.57 (0.12) –0.56 (0.12) –0.61 (0.05) –0.56 (0.12) –0.68 (0.14) –0.55 (0.12)
rg 0.50 (0.06) 0.47 (0.05) 0.46 (0.06)
rm 0.25 (0.35) 0.24 (0.17) 0.25 (0.53)
re 0.24 0.23 0.27

σ2
a

 = variance of additive direct genetic effect, σ2
m = variance of additive maternal genetic effect, σ2

pe = variance of maternal 
permanent environmental effect, σ2

e = variance of temporary environmental effects (residual error), σ2
y = phenotypic variance, 

h2
a = coefficient of direct heritability, h2

m = coefficient of maternal heritability,c2 = proportion of the maternal permanent 
environmental variance in the total phenotypic variance, e2 = proportion of the residual variance in the total phenotypic 
variance, ram = correlation between direct and maternal effect, rg = direct genetic correlation between traits, rm = maternal 
genetic correlation between traits, re = residual correlation between traits
*standard error (posterior standard deviation from Bayesian methods) in brackets
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reported the average correlation of 0.58 between 
calving ease and birth weight. High negative cor-
relations between calving ease and birth weight 
significantly constrain possibilities for efficient 
breeding for birth weight because calving ease is 
a very important trait from the economic aspect. 
Based on this genetic correlation, single trait se-
lection for calving ease would result in reduced 
birth weight, and vice versa.

Ratios of maternal permanent environmental 
to total phenotypic variance (c2) were identical in 
results from all linear models (L-LM and SC-LM) 
– 3% for calving ease and 4% for live weight at 
birth. In T-LM, this ratio was 12.5%. Eriksson et 
al. (2004) published similar values of c2 for Swed-
ish Charolais and Hereford (3–5%). Nujiby and 
Crews (2009), however, reported c2 values of 35% 
for Canadian Charolais. These differences may 
have been caused by data structure and differ-
ent recording system. Mujibi and Crews (2009) 
included only first parity records from heifers in 
analysis, used a different scoring system for calving 
ease, and used a three-trait animal BLUP model 
(birth weight, calving ease, and gestation length).

Selection of a model. Both linear models (L-LM  
and SC-LM) yielded identical values for the ratio 
of residual error variance to total phenotypic vari-
ance (e2 = 0.85). Thus, both models explained the 
same proportion of total variability.

When evaluated with the technique of data 
splitting, T-LM was the most suitable because it 
achieved 1.2 times and 1.8 times higher average 
correlation among predicted breeding values for 
calving ease than the SC-LM and L-LM models, 
respectively (Table 3). However, unlike for the ratio 
of residual variance to total phenotypic variance, 
SC-LM showed 1.5 times higher values than L-LM 
when data splitting was used. Ramirez-Valverde 
et al. (2001) stated that models producing higher 

values for the correlation among breeding values 
estimated from complementary subsets are more 
suitable for estimating breeding values of individual 
animals. Hence, L-LM provided the least reliability 
in breeding value estimation while T-LM provided 
the highest one. This also implies variability in cor-
relations of breeding values during 10 replications 
when models T-LM and SC-LM showed the same 
values of standard deviations and the highest value 
of standard deviations was calculated for L-LM 
(SD = 0.27). Based on selection criteria (on the 
basis of data splitting), the highest reliability for 
the estimation of genetic parameters and subse-
quent predictions of breeding value was found in 
T-LM. These lower correlations of breeding values 
during 10 replications were probably caused by 
data structure with a smaller number of animals in 
groups of herd mates and limited use of artificial 
insemination in beef breeds in the Czech Republic.

The implementation of threshold models often 
requires complicated computations, substantially 
more time demanding than when using a linear 
model (Misztal et al. 1989; Kadarmideen et al. 
2000). Up to several days of additional time to 
solve threshold models was also shown in our 
study. Furthermore, the threshold model has 
limitations in variance component estimation 
and breeding value prediction when the num-
ber of fixed effect classes is high (Misztal et al. 
1989). This limitation can partially be solved by 
high information content for fixed effects and by 
inclusion of the effect of herd as the random ef-
fect (Varona et al. 1999b). Luo et al. (2001) also 
stated that convergence is problematic in threshold 
models and that it can result in overestimations 
of genetic parameters. Ramirez-Valverde et al. 
(2001) reported that conversion of a single-trait 
to a multi-trait model increases the reliability of 
genetic parameter estimation to a greater extent 
than conversion of a linear to a threshold model. 
In addition, linear models are routinely used for 
the estimation of genetic parameters and predic-
tion of breeding values of categorical traits by 
animal model. Considering the above arguments 
and in spite of higher suitability, it is not neces-
sary to use a threshold model for genetic analysis 
of categorical traits. Jamrozik et al. (2005) stated 
that the introduction of the Snell score technique 
did not significantly improve or markedly change 
results in comparison with a linear model. This, 
however, was not confirmed in the present study. 
Based on results from data-splitting analyses, 

Table 3. Means, standard deviations (SD), minimum and 
maximum values of correlation coefficients between split 
data sets for calving ease estimated by tested models

Model Mean SD Min Max
L-LM 0.41 0.27 0.02 0.73
SC-LM 0.63 0.06 0.57 0.74
T-LM 0.75 0.05 0.70 0.84

L-LM = linear-linear model, SC-LM = linear model 
with calving ease transformed by the Snell score, 
T-LM = threshold model
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transformation of the categorical trait of calving 
ease using Snell scores (SC-LM) achieved better 
outcomes than the linear-linear model.

Abdel-Azim and Berger (1999) reported that 
L-LM and T-LM models provide comparable 
values only if the categorical traits have 10 or 
more observed scores, which would allow data 
to be closer to normally distributed. They further 
concluded that for categorical data with smaller 
numbers of classes and for those skewed from a 
normal distribution, it is more advantageous to 
use a threshold model than data transformation 
or creation of a new variable to be analyzed with a 
linear model. In contrast, SC-LM and TM models 
in our experiment led to similar results and con-
clusions. We therefore conclude that, in spite of 
the lower values of tested criteria, the model with 
data transformation using Snell score (SC-LM) 
would be more suitable for the routine genetic 
evaluation of calving ease given its advantage in 
computation time and its approximation to the 
threshold model.

CONCLUSION

Any of the models tested in our experiment could 
be used to estimate genetic parameters and pre-
dict breeding values for calving ease in the Czech 
Charolais cattle population. Based, however, on the 
testing criteria and for practical considerations, 
threshold-linear and linear-linear models with 
transformation of calving ease score by means 
of the Snell score would achieve the highest reli-
ability for routine genetic parameter estimation 
and breeding value prediction. Threshold-linear 
models, however, are significantly less suitable for 
practical application of breeding value prediction. 
Therefore, linear-linear models with transforma-
tion of calving ease by means of the Snell score are 
deemed most suitable for the genetic parameter es-
timation and breeding value prediction for calving 
ease for beef cattle breeds under management and 
environmental conditions in the Czech Republic.
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