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1.1 Introduction

The focus of CFD applications has shifted to aerodynamic design. This shift
has been mainly motivated by the availability of high performance comput-
ing platforms and by the development of new and efficient analysis and de-
sign algorithms. In particular automatic design procedures, which use CFD
combined with gradient-based optimization techniques, have had a significant
impact on the design process by removing difficulties in the decision making
process faced by the aerodynamicist.

A fast way of calculating the accurate gradient information is essential
since the gradient calculation can be the most time consuming portion of
the design algorithm. The computational cost of gradient calculation can be
dramatically reduced by the control theory approach since the computational
expense incurred in the calculation of the complete gradient is effectively inde-

pendent of the number of design variables. The foundation of control theory for
systems governed by partial differential equations was laid by J.L. Lions [1].
The method was first used for aerodynamic design by Jameson in 1988 [2, 3].
Since then, the method has even been successfully used for the aerodynamic
design of complete aircraft configurations [4].

In the present work a continuous adjoint formulation has been used to
derive the adjoint system of equations, in which the adjoint equations are
derived directly from the governing equations and then discretized. This ap-
proach has the advantage over the discrete adjoint formulation in that the
resulting adjoint equations are independent of the form of discretized flow
equations. The adjoint system of equations has a similar form to the govern-
ing equations of the flow, and hence the numerical methods developed for the
flow equations [5, 6, 7] can be reused for the adjoint equations. Moreover,
the gradient can be derived directly from the adjoint solution and the surface
motion, independent of the mesh modification.

In order to accelerate the convergence of the descent process the gradient
is then smoothed implicitly via a second order differential equation. This is
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equivalent to redefining the gradient in a Sobolve space. The resulting proce-
dure is very efficient, often yielding the optimum in 10-20 design cycles.

Recently wing planform parameters have been included as design vari-
ables and the Aerospace Computing Laboratory at Stanford University has
successfully designed a wing which produces a specified lift with minimum
drag, while meeting other criteria such as low structure weight, sufficient fuel
volume, and stability and control [8]. Based on the promising results from
our wing planform optimization strategy applied to inviscid flow and from
our viscous aerodynamic design techniques [9, 10], we are now applying wing
shape and planform optimization methods to viscous flow in order to take into
account the viscous effects such as shock/boundary layer interaction, flow sep-
aration, and skin friction and eventually produce more realistic designs [11].

Additionally, the design method, which is greatly accelerated by the use
of control theory, has been further enhanced by the use of a new continuous
adjoint method, which reduce the volume integral part of the adjoint gra-
dient formula to a surface integral [12], thus eliminating the dependence of
the gradient formulas on the mesh perturbation. The computational savings
in the gradient calculation are particularly significant for three-dimensional
aerodynamic shape optimization problems on general unstructured and over-
set meshes. The use of unstructured grid techniques hold considerable promise
for aerodynamic design by facilitating the treatment of complex configurations
without incurring a prohibitive cost and bottleneck in mesh generation. The
computational feasibility of using unstructured meshes for design is essentially
enabled by the use of the continuous adjoint approach and the reduced gra-
dient formulas [13]. Representative calculations are displayed in figures 1.2
through 1.6.

1.2 Adjoint and gradient formulations for the equations

of transonic flow

The adjoint method may be applied directly to the partial differential equa-
tions to derive a continuous adjoint equation, which must then be discretized
to obtain a numerical solution. Alternatively one may derive a discrete ad-
joint equation directly after first discretizing the flow equations. In this work
the first procedure has been adopted because it allows more flexibility in the
formulation of the gradient.

The procedure is illustrated here for the Euler equations. These are rep-
resented in transformed coordinates ξi on a fixed computational domain.
Let

S = JK−1

where

Kij =
∂xi

∂ξj
, J = det(K)
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Then the transformed equations are

∂Fi

∂ξi
=
∂(Sijfj)

∂ξi
= 0

As an example, consider the case of an inverse problem where one wishes
to find the shape which brings the pressure as close as possible to the specified
target pressure, pt. Hence we try to minimize the cost function

I =
1

2

∫

B

(p− pt)
2dS

over the design surface B, which for convenience is assumed to be the surface
ψ2 = 0. Now a shape modification induces a change δp in the pressure and
consequently

δI =

∫

B

(p− pt)δpdS +
1

2

∫

B

(p− pt)
2dδS

Also the change in the solution is given by

∂

∂ψi

(δFi(w)) = 0

Here the flux changes are

δFi = δSijfj + Ciδw

where

Ci = Sij

∂fj

∂w

Consequently one can augment the cost variation by

∫

D

ψT ∂δFi

∂ξi
dξ =

∫

B

niψ
T δFidξB −

∫

D

∂ψT

∂ξ
δFidξ

Now choose ψ to satisfy the adjoint equation

CT
i

∂ψ

∂ξi
= 0

with the boundary condition

ψ2ηx + ψ3ηy + ψ4ηz = p− pt

where ηx, ηy , ηz are the components of the surface normal. Then the boundary
integrals involving δp and the field integral involving δw are eliminated and
the gradient is reduced to

1

2

∫

B

(p− pt)
2dδS −

∫ ∫

B

(δS21ψ2 + δS22ψ3 + δS23ψ4) pdξ1dξ3
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−

∫

D

∂ψT

∂ξ
(δSijfj)dξ

where typically the first term is negligible and can be dropped. Other cost
functions, such as the drag coefficient, lead to different adjoint boundary con-
ditions. When a mesh perturbation procedure is defined the perturbations
δSij can be directly related to the surface perturbation. Finally one obtains
the cost variation as an inner product

δI = (G, δF) =

∫ ∫

GδFdξ1dξ2

where G is the pointwise gradient, and F defines the surface shape.

1.3 Optimization procedure

Another key issue for successful implementation of the continuous adjoint
method is the choice of an appropriate inner product for the definition of
the gradient. It turns out that there is an enormous benefit from the use of
a modified Sobolev gradient, which enables the generation of a sequence of
smooth shapes.

The gradient G is generally in a lower smoothness class than the initial
shape F . Then a sequence of steps

δF = −λG

progressively reduces the smoothness, leading to instability.
In order to prevent this we can introduce a weighted Sobolev inner prod-

uct [14] of the form

〈u, v〉 =

∫

(uv + εu
′

v
′

)dx

in one dimension, where the parameter ε controls the smoothness. Correspond-
ingly we define a modified gradient Ḡ such that

δI =< Ḡ, δF > .

In the one dimensional case Ḡ is obtained by solving the smoothing equation

Ḡ −
∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G. (1.1)

In the multi-dimensional case the smoothing is applied in product form. Fi-
nally we set

δF = −λḠ (1.2)

with the result that
δI = −λ < Ḡ, Ḡ > < 0,

unless Ḡ = 0, and correspondingly G = 0.
The implicit smoothing procedure acts as a preconditioner which allows

the use of much larger steps for the search procedure and leads to a large
reduction in the number of design iterations needed for convergence.
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1.3.1 Outline of the design procedure

The design procedure can finally be summarized as follows:

1. Solve the flow equations for ρ, u1, u2, u3, p.
2. Solve the adjoint equations for ψ subject to appropriate boundary condi-

tions.
3. Evaluate G and calculate the corresponding Sobolev gradient Ḡ.
4. Project Ḡ into an allowable subspace that satisfies any geometric con-

straints.
5. Update the shape based on the direction of steepest descent.
6. Return to 1 until convergence is reached.

Sobolev Gradient

Gradient Calculation

Flow Solution

Adjoint Solution

Shape & Grid

Repeat the Design Cycle
until Convergence

Modification

Fig. 1.1. Design cycle

Practical implementation of the design method relies heavily upon fast and
accurate solvers for both the state (w) and co-state (ψ) systems. The result
obtained in Section 1.4 have been obtained using well-validated software for
the solution of the Euler and Navier-Stokes equations developed over the
course of many years [5, 15, 16]. For inverse design the lift is fixed by the
target pressure. In drag minimization it is also appropriate to fix the lift
coefficient, because the induced drag is a major fraction of the total drag,
and this could be reduced simply by reducing the lift. Therefore the angle of
attack is adjusted during each flow solution to force a specified lift coefficient
to be attained, and the influence of variations of the angle of attack is included
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in the calculation of the gradient. The vortex drag also depends on the span
loading, which may be constrained by other considerations such as structural
loading or buffet onset. Consequently, the option is provided to force the span
loading by adjusting the twist distribution as well as the angle of attack during
the flow solution.

The design procedure has been implemented in the computer programs
Syn88 and Syn107 for three-dimensional wing-fuselage design using the Euler
and RANS equations respectively on structured meshes. Both codes include
automatic mesh generation. The method has also been implemented for un-
structured meshes in the computer program Synplane, which treats complete
aircraft.

1.4 Case studies

1.4.1 B747 Euler planform result

The shape changes in the section needed to improve the transonic wing design
are quite small. However, in order to obtain a true optimum design larger scale
changes such as changes in the wing planform (sweepback, span, chord, section
thickness, and taper) should be considered. Because these directly affect the
structure weight, a meaningful result can only be obtained by considering a
cost function that accounts for both the aerodynamic characteristics and the
weight.

In references [8, 11, 17] the cost function is defined as

I = α1CD + α2

1

2

∫

B

(p− pd)
2dS + α3CW ,

where CW ≡ W
q∞Sref

is a dimensionless measure of the wing weight, which

can be estimated either from statistical formulas, or from a simple analysis of
a representative structure, allowing for failure modes such as panel buckling.
The coefficient α2 is introduced to provide the designer some control over the
pressure distribution, while the relative importance of drag and weight are
represented by the coefficients α1 and α3. By varying these it is possible to
calculate the Pareto front of designs which have the least weight for a given
drag coefficient, or the least drag coefficient for a given weight. The relative
importance of these can be estimated from the Breguet range equation;

δR

R
= −

(

δCD

CD

+
1

logW1

W2

δW2

W2

)

= −

(

δCD

CD

+
1

logW1

W2

δCW

W2

q∞Sref

)

.

Figure 1.2 shows the Pareto front obtained from a study of the Boeing 747
wing [17], in which the flow was modeled by the Euler equations. The wing
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planform and section were varied simultaneously, with the planform defined
by six parameters; sweepback, span, the chord at three span stations, and
wing thickness. The weight was estimated from an analysis of the section
thickness required in the structural box. The figure also shows the point on
the Pareto front when α3

α1

is chosen such that the range of the aircraft is
maximized. The optimum wing, as illustrated in figure 1.3, has a larger span,
a lower sweep angle, and a thicker wing section in the inboard part of the
wing. The increase in span leads to a reduction in the induced drag, while the
section shape changes keep the shock drag low. At the same time the lower
sweep angle and thicker wing section reduce the structural weight. Overall,
the optimum wing improves both aerodynamic performance and structural
weight. The drag coefficient is reduced from 108 counts to 87 counts (19%),
while the weight factor CW is reduced from 455 counts to 450 counts (1%).

80 85 90 95 100 105 110
0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

CD (counts)

C
w

Pareto front

baseline 
 optimized section  
with fixed planform 

maximized range 

= optimized section 
   and planform     

Fig. 1.2. Pareto front of section and planform modifications
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Fig. 1.3. Superposition of the baseline (green) and the optimized section-and-
planform (blue) geometries of Boeing 747. The redesigned geometry has a longer
span, a lower sweep angle, and thicker wing sections, improving both aerodynamic
and structural performances. The optimization is performed at Mach .87 and fixed
CL .42, where α3

α1

is chosen to maximize the range of the aircraft.

1.4.2 Super B747

In order to explore the limits of attainable performance the B747 wing has
been replaced by a completely new wing to produce a “Super B747”. An initial
design was created by blending supercritical wing sections obtained from other
optimizations to the optimum planform which was found in the planform
study described in the previous section. Then the RANS optimization code
Syn107 was used to obtain minimize drag over 3 design points at Mach .78, .85,
and .87, shown in figures 1.4 (a)-(c) with a fixed lift coefficient of .45 for the
exposed wing, corresponding to a lift coefficient of about .52 when the fuselage
lift is included. Because the new wing sections are significantly thicker, the
new wing is estimated to be 12,000 pounds lighter than the baseline B747
wing as shown in table 1.1. At the same time the drag is reduced over the
entire range from Mach .78 to .90 with a maximum benefit of 25 counts at
Mach .87, as shown in figure 1.4 (d). Figure 1.5 and table 1.2 display the lift-
drag polar at Mach .86. The drag coefficient of the Super B747 is 142 counts
at a lift coefficient of .5, whereas the baseline B747 has the same drag at a
lift coefficient of .45. This represents improvement in L/D of more than 10
percent. In combination with the reduction in wing weight and an increase in
fuel volume due to the thicker wing section, this should lead to an increase in
range which is substantially more than 10 percent.

Table 1.1. Comparison between Baseline B747 and Super B747 at Mach .86

CL CD CW

counts counts

Boeing 747 .45 141.3 499
(107.0 pressure, 34.3 viscous) (82,550 lbs)

Super B747 .50 141.9 427
(104.8 pressure, 37.1 viscous) (70,620 lbs)
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B747 WING-BODY                                                                  
Mach: 0.780    Alpha: 2.683                                                     
CL:  0.449    CD: 0.01137    CM:-0.1369                                         
Design:  30    Residual:  0.1710E-02                                            
Grid: 257X 65X 49                                                               

Cl:  0.344    Cd: 0.05089    Cm:-0.1171                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.569    Cd: 0.00036    Cm:-0.2516                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.453    Cd:-0.01561    Cm:-0.2117                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.220                                                     
CL:  0.449    CD: 0.01190    CM:-0.1498                                         
Design:  30    Residual:  0.7857E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.335    Cd: 0.05928    Cm:-0.1213                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.572    Cd:-0.00217    Cm:-0.2602                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.462    Cd:-0.01878    Cm:-0.2213                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

(a) Mach .78 (b) Mach .85

B747 WING-BODY                                                                  
Mach: 0.870    Alpha: 1.997                                                     
CL:  0.449    CD: 0.01224    CM:-0.1590                                         
Design:  30    Residual:  0.3222E-03                                            
Grid: 257X 65X 49                                                               

Cl:  0.332    Cd: 0.06246    Cm:-0.1273                                         
Root Section:  13.0% Semi-Span

Cp = -2.0

Cl:  0.574    Cd:-0.00334    Cm:-0.2674                                         
Mid Section:  50.6% Semi-Span

Cp = -2.0

Cl:  0.464    Cd:-0.02110    Cm:-0.2222                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0
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Fig. 1.4. (a)-(c): Super B747 at Mach .78, .85, and .87 respectively. Dash line
represents shape and pressure distribution of the initial configuration. Solid line
represents those of the redesigned configuration. (d): Drag Vs. Mach number of
Super B747.
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B747 WING-BODY                                                                  

MACH       0.860    CD0        0.000

GRID   256X64X48
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Fig. 1.5. Drag Polars of Baseline and Super B747 at Mach .86. (Solid-line represents
Super B747. Dash-line represents Baseline B747.)

Table 1.2. Comparison of drag polar; B747 Vs. Super B747

Boeing 747 Super B747
CL CD CL CD

0.0045 94.3970 0.0009 76.9489
0.0500 82.2739 0.0505 67.8010
0.1000 74.6195 0.1005 64.6147
0.1501 72.1087 0.1506 65.5073
0.2002 73.9661 0.2006 69.4840
0.2503 79.6424 0.2507 76.0041
0.3005 88.7551 0.3008 84.9889
0.3507 101.5293 0.3509 95.6117
0.4009 118.0487 0.4010 106.9625

0.4512 141.2927 0.4510 121.7183
0.5014 177.0959 0.5010 141.8675
0.5516 228.1786 0.5512 175.2569
0.6016 298.0458 0.6014 222.5459

(CD in counts)
Note equal drag of the baseline B747 at CL .45 and the Super B747 at CL .5.
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1.4.3 Shape optimization for a transonic business Jet

The unstructured design method has also been applied to several complete
aircraft configurations. The results for a business jet are shown in figures 1.6
(a) and (b). There is a strong shock over the out board wing sections of
the initial configuration, which is essentially eliminated by the redesign. The
drag was reduced from 235 counts to 215 counts in about 8 design cycles.
The lift was constrained at 0.4 by perturbing the angle of attack. Further,
the original thickness of the wing was maintained during the design process
ensuring that fuel volume and structural integrity will be maintained by the
redesigned shape. Thickness constraints on the wing were imposed on cutting
planes along the span of the wing and by transferring the constrained shape
movement back to the nodes of the surface triangulation.

                                                                                

      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

                                                                                

      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

(a) Baseline (b) Redesign

Fig. 1.6. Density contours for a business jet at M = 0.8, α = 2o

1.5 Conclusion

The accumulated experience of the last decade suggests that most existing
aircraft which cruise at transonic speeds are amenable to a drag reduction
of the order of 3 to 5 percent, or an increase in the drag rise Mach number
of at least .02. These improvements can be achieved by very small shape
modifications, which are too subtle to allow their determination by trial and
error methods. When larger scale modifications such as planform variations
or new wing sections are allowed, larger gains in the range of 5-10 percent are
attainable. The potential economic benefits are substantial, considering the
fuel costs of the entire airline fleet. Moreover, if one were to take full advantage
of the increase in the lift to drag ratio during the design process, a smaller
aircraft could be designed to perform the same task, with consequent further
cost reductions. Methods of this type will provide a basis for aerodynamic
designs of the future.
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