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Abstract in the layout.
This paper discusses the role that computational fluid dy- Similarly, structural analysis is now almost entirely carried

namics (CFD) plays in the design of aircraft. An overview of out by computational methods, typically finite element meth-
the design process is provided, covering some of the typical de- ods. Commercially available software systems have been pro-
cisions that a design team addresses within a multi-disciplinary gressively developed and augmented with new features, and can
environment. On a very regular basis trade-offs between disci- treat the full range of requirements for aeronautical structures,
plines have to be made where a set of conflicting requirements including the analysis of stressed skin into the nonlinear range.
exists. Within an aircraft development project, we focus on the The concept of a numerical wind tunnel, which might even-
aerodynamic design problem and review how this process hastually allow computers “to supplant wind tunnels in the aerody-
been advanced, first with the improving capabilities of traditional namic design and testing process”, was already a topic of discus-
computational fluid dynamics analyses, and then with aerody- sion in the 1970-1980. In their celebrated paper of 1975, Chap-
namic optimizations based on these increasingly accurate meth-man, Mark and Pirtle [1] listed three main objective of computa-
ods. tional aerodynamics:
1. To provide flow simulations that are either impractical
or impossible to obtain in wind tunnels or other ground based
1 Background experimental test facilities.
The past 25 years have seen a revolution in the entire en- 2. To lower the time and cost required to obtain aerodynamic
gineering design process as computational simulation has comeflow simulations necessary for the design of new aerospace vehi-
to play an increasingly dominant role. Most notably, computer cles.

aided design (CAD) methods have essentially replaced the draw- 3. Eventually, to provide more accurate simulations of flight
ing board as the basic tool for the definition and control of the aerodynamics than wind tunnels can.
configuration. Computer visualization techniques enable the de- There have been major advances towards these goals. De-

signer to verify that no interferences exist between different parts spite these, CFD is still not being exploited as effectively as one
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would like in the design process. This is partially due to the long of the governing equations of interest. The adjoint method is ex-

set-up time and high costs, both human and computational, as-tremely efficient since the computational expense incurred in the

sociated with complex flow simulations. This paper examines calculation of the complete gradient is effectively independent of

ways to exploit computational simulation more effectively in the the number of design variables.

overall design process, with the primary focus on aerodynamic In the following sections we first examine the fundamen-

design, while recognizing that this should be part of an integrated tal design trade-offs between aerodynamic efficiency and struc-

multi-disciplinary process. ture weight. Then the design process itself is surveyed in Sec-
With the availability of high performance computing plat- tion 3. We discuss the formulation of shape optimization tech-

forms and robust numerical methods to simulate fluid flows, itis niques based on control theory in Section 4-9. In Section 10 we

possible to shift attention to automated design procedures which present several case studies which highlight the potential bene-

combine CFD with optimization techniques to determine opti- fits of aerodynamics shape optimization. Finally in Section 11

mum aerodynamic designs. The feasibility of this is by now well we suggest some future directions.

established, [2—-8] and it is actually possible to calculate optimum

three dimensional transonic wing shapes in a few hours, account-

ing for viscoug effects with the flow mo_deled by the ngnolds 2 Aerodynamic Design Trade-offs

averaged Navier-Stokes (RANS) equations. By enforcing con-

straints on the thickness and §pan-|oad distri_bution one can makegood first estimate of performance is provided by the Breguet

sure that there is no penalty in structure weight or fuel volume. range equation:

Larger scale shape changes such as planform variations can also

be accommodated [9]. It then becomes necessary to include a

structural weight model to enable a proper compromise between

minimum drag and low structure weight to be determined. Rn— \ﬂim Wo+Wr VL 1 I Vﬂ 1)
Aerodynamic shape optimization has been successfully per- D Estc Wo D Estc "Wo

formed for a variety of complex configurations using multi-block

structured meshes [10, 11]. Meshes of this type can be relatively

easily deformed to accommodate shape variations required intheSpeCifiC fuel consumption of the enginedh is the landing

redesign. However, it is both extremely time-consuming and ex- weight(empty weight + payload+ fuel resourced), alddis the
pensive in human costs to generate such meshes. Consequentl}llveight of fuel burnt

we believe it is essential to develop shape optimization methods
which use unstructured meshes for the flow simulation.

Typically, in gradient-based optimization techniques, a con-
trol function to be optimized (the wing shape, for example) is
parameterized with a set of design variables and a suitable cost
function to be minimized is defined. For aerodynamic problems,
the cogt fL_mct_ion is typically lift, drag or a specifieq target pres- pact of shape modifications on structure weight.
sure distribution. Then, a constraint, the governing equations - L . .

. . The drag coefficient can be split into an approximately fixed
can be introduced in order to express the dependence betweenCom onenta. . and the induced drag due to lift as
the cost function and the control function. The sensitivity deriva- P Do- 9
tives of the cost function with respect to the design variables are
calculated in order to get a direction of improvement. Finally, a
step is taken in this direction and the procedure is repeated un-
til convergence is achieved. Finding a fast and accurate way of
calculating the necessary gradient information is essential to de-
veloping an effective design method since this can be the most
time consuming portion (.)f the design pracess. This is particu- unity. Cp, includes contributions such as friction and form drag.
larly true in problems which involve a very large number of de-

. . : . ; . X It can be seen from this equation thaD is maximized by flying
sign \{arle.\bles as is the case in a typical three dimensional shapeat a lift coefficient such that the two terms are equal, so that the
optimization. . induced drag is half the total drag. Moreover, the actual drag

The control theory approach [12—-14] has dramatic computa-
tional cost advantages over the finite-difference method of calcu-
lating gradients. With this approach the necessary gradients are Do — 2.2
obtained through the solution of an adjoint system of equations VT mepV2b?

Focusing on the design of long range transport aircraft, a

HereV is the speedl./D is the lift to drag ratio,Essc is the

Equation (1) already displays the multi-disciplinary nature
of design. A light weight structure is needed to redge The
specific fuel consumption is mainly the province of the engine
manufacturers, and in fact the largest advances in the last 30
years have been in the engine efficiency. The aerodynamic de-
signer should try to maximiz€¢L/D, but must consider the im-

ct

Co=C —_—
D DO+T|EAR

(2)

whereARis the aspect ratio, argis an efficiency factor close to
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due to lift varies inversely with the square of the splanThus complete detail, together with complete systems, including the
there is a direct conflict between reducing the drag by increasing flight deck, control systems (involving major software develop-

the span and reducing the structure weight by decreasing it. ment for fly-by-wire systems), avionics, electrical and hydraulic
It also follows from equation (1) that one should try to max-  systems, landing gear, weapon systems for military aircraft, and

imizeVL/D. This means that the cruising spéédghould be in- cabin layout for commercial aircraft. Major costs are incurred at

creased until it approaches the speed of sdlinat which point this stage, during which it is also necessary to prepare a detailed

the formation of shock waves causes the onset of “drag-rise” . manufacturing plan, together with appropriate facilities and tool-

Typically the lift to drag ratio will drop from around 19 ata Mach  ing. Thousands of people define every part of the aircraft. Wind

number =V /C in the neighborhood of 0.85, to the order of 4 at Tunnel validation of the final design is carried out. Significant

Mach 1. Thus the optimum cruise speed will be in the transonic development costs are incurred over a 3 year period, plus an addi-

regime, when shock waves are beginning to from , but remain tional year of Flight Testing and Structural Qualification Testing

weak enough only to incur a small drag penalty. for Certification. Total costs are in the range of 3-12 billion dol-
The designer can reduce shock drag and delay the onset oflars. Thus, the final design would normally be carried out only

drag-rise by increasing the sweep back of the wing or reducing if sufficient orders have been received to indicate a reasonably

its thickness. Increasing the sweepback increases the structurenigh probability of recovering a significant fraction of the invest-

weight, and may incur problems with stability and control. De- ment. For a commercial aircraft there are extensive discussions

creasing the thickness both reduces the fuel volume (since thewith airlines.

wing is used as the main fuel tanks), and increases the structure

weight, because for a given stress level in the skin and a given

skin thickness, the bending moment that can be supported is di-

rectly proportional to the depth of the wing. In the absence of

winglets, the optimum span load distribution is elliptic, giving

an efficiency factoe = 1. When, however, the structure weight

is taken into account, it is better to shift the load distribution in-

board in order to reduce the root bending moment. It may also be

necessary to limit the section lift coefficient in the outboard part

of the wing, in order to delay the onset of buffet when the lift Preliminary

coefficient is increased to make a turn at a high Mach number. Design

Defines Mission
Preliminary sizing
Weight, performance

Conceptual
Design

3 Design Process

The design process can generally be divided into three
phases: conceptual design, preliminary design, and final detailed Final Design
design, as illustrated in Figure 1.

The conceptual design stage defines the mission in the light
of anticipated market requirements, and determines a general
preliminary configuration capable of performing this mission, to-
gether with first estimates of size, weight and performance. A Figure 1. The Overall Design Process
conceptual design requires a staff of 15-30 people. Over a period
of 1-2 years, the initial business case is developed. The costs
of this phase are the range of 6-12 million dollars, and there is In the development of commercial aircraft, aerodynamic de-
minimal airline involvement sign plays a leading role during the preliminary design stage,

In the preliminary design stage the aerodynamic shape and during which the definition of the external aerodynamic shape
structural skeleton progress to the point where detailed perfor- is typically finalized. The aerodynamic lines of the Boeing 777
mance estimates can be made and guaranteed to potential cuswere frozen, for example, when initial orders were accepted be-
tomers, who can then, in turn, formally sign binding contracts fore the initiation of the detailed design of the structure. Figure 2
for the purchase of a certain number of aircraft. At this stage the illustrates the way in which the aerodynamic design process is
development costs are still fairly moderate. A staff of 100-300 embedded in the overall preliminary design. The starting point
people is generally employed for up to 2 years, at a cost of 60- is an initial CAD definition resulting from the conceptual design.
120 million dollars. Initial aerodynamic performance is explored The inner loop of aerodynamic analysis is contained in an outer
through wind tunnel tests. multi-disciplinary loop, which is in turn contained in a major de-

In the final design stage the structure must be defined in sign cycle involving wind tunnel testing. In recent Boeing prac-
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tice, three major design cycles, each requiring about 4-6 months, plines in the next outer loop. These disciplines have their own
have been used to finalize the wing design. Improvements in inner loops, not shown in Figure 2. For an efficient design pro-

CFD which would allow the elimination of a major cycle would

cess the fully updated aero-design database must be accessible

significantly shorten the overall design process and therefore re-to other disciplines without loss of information. For example,

duce costs.
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Figure 2. The Aerodynamic Design Process

The inner aerodynamic design loop is used to evaluate nu-

merous variations in the wing definition. In each iteration it is

the thrust requirements for the power plant design will depend
on the drag estimates for take-off, climb and cruise. In order
to meet airport noise constraints a rapid climb may be required
while the thrust may also be limited. Initial estimates of the lift
and moments allow preliminary sizing of the horizontal and ver-
tical tail. This interacts with the design of the control system,
where the use of a fly-by-wire system may allow relaxed static
stability, hence tail surfaces of reduced size.

First estimates of the aerodynamic loads allow the design of
an initial structural skeleton, which in turn provides a weight es-
timate of the structure. One of the main trade-offs is between
aerodynamic performance and wing structure weight. The re-
quirement for fuel volume may also be an important considera-
tion. Manufacturing constraints must also be considered in the
final definition of the aerodynamic shape. For example, the cur-
vature in the spanwise direction should be limited. This avoids
the need for shot peening which might otherwise be required to
produce curvature in both the spanwise and chordwise directions.

From the foregoing considerations, it is apparent that in or-
der to carry out the inner loop of the aerodynamic design process
the main requirements for effective CFD software are:

1. Sufficient and known level of accuracy
2. Acceptable computational and manpower costs
3. Fast turn around time

4 Aerodynamic Shape Optimization

Traditionally the process of selecting design variations has
been carried out by trial and error, relying on the intuition and
experience of the designer. It is also evident that the number

necessary to generate a mesh for the new configuration prior to of possible design variations is too large to permit their exhaus-
performing the CFD analysis. Computer graphics software is tive evaluation, and thus it is very unlikely that a truly optimum

then used to visualize the results, and the performance is evalu-solution can be found without the assistance of automatic opti-
ated. The first studies may be confined to partial configurations mization procedures. In order to take full advantage of the pos-

such as wing-body or wing-body-nacelle combinations. At this

sibility of examining a large design space, the numerical sim-

stage the focus is on the design of the clean wing. Key points ulations need to be combined with automatic search and opti-
of the flight envelope include the nominal cruise point, cruise at mization procedures. This can lead to automatic design methods

high lift and low lift to allow for the weight variation between
the initial and final cruise as the fuel is burned off, and a long

range cruise point at lower Mach number, where it is important

which will fully realize the potential improvements in aerody-
namic efficiency.
Ultimately there is a need for multi-disciplinary optimiza-

to ensure there is no significant drag creep. Other defining points tion (MDO), but this can only be effective if it is based on suf-

are the climb condition, which requires a good lift to drag ratio
at low Mach number and high lift coefficient for the clean wing,
and buffet conditions. The buffet requirement is typically taken
as the high lift cruise point increased to a load of 1.3 g to allow
for maneuvering and gust loads.

The aerodynamic analysis interacts with the other disci-

4

ficiently high fidelity modeling of the separate disciplines. As
a step in this direction there could be significant pay-offs from
the application of optimization techniques within the disciplines,
where the interactions with other disciplines are taken into ac-
count through the introduction of constraints. For example the
wing drag can be minimized at a given Mach number and lift



coefficient with a fixed planform, and constraints on minimum of design parameters is large and the cost function is an expen-
thickness to meet requirements for fuel volume and structure sive evaluation. The simplest approach to optimization is to de-
weight. fine the geometry through a set of design parameters, which may;,
An approach which has become increasingly popular is to for example, be the weights applied to a set of shape functions
carry out a search over a large number of variations via a genetic Bi(x) so that the shape is represented as
algorithm. This may allow the discovery of (sometimes unex-
pected) optimum design choices in very complex multi-objective
problems, but it becomes extremely expensive when each eval-
uation of the cost function requires intensive computation, as is
the case in aerodynamic problems. Then a cost function is selected which might be the drag co-
In order to find optimum aerodynamic shapes with reason- efficient or the lift to drag ratio} is regarded as a function of
able computational costs, it is useful to regard the wing as a the parameters;. The sensitivities(%'i may now be estimated
device which controls the flow in order to produce lift with by making a small variatioda; in each design parameter in turn
minimum drag. As a result, one can draw on concepts which and recalculating the flow to obtain the changé.ifthen
have been developed in the mathematical theory of control of
systems governed by partial differential equations. In particu-
lar, an acceptable aerodynamic design must have characteristics
that smoothly vary with small changes in shape and flow condi-
tions. Consequently, gradient-based procedures are appropriate
for aerodynamic shape optimization. Two main issues affectthe ~ The main disadvantage of this finite-difference approach is
efficiency of gradient-based procedures; the first is the actual cal- that the number of flow calculations needed to estimate the gra-
culation of the gradient, and the second is the construction of an dient is proportional to the number of design variables [15].

efficient search procedure which utilizes the gradient. Similarly, if one resorts to direct code differentiation (ADI-
FOR [16, 17]), or complex-variable perturbations [18], the cost

) ) of determining the gradient is also directly proportional to the
4.1 Gradient Calculation number of variables used to define the design.
For the class of aerodynamic optimization problems under A more cost effective technique is to compute the gradient
consideration, the design space is essentially infinitely dimen- through the solution of an adjoint problem, such as that devel-
sional. Suppose that the performance of a system design can beyped in references [3, 19, 20]. The essential idea may be sum-

F(x)= Zaﬂ;i(x).

07|N |(C(i+50i)f|(0(i)
adi - 50(i ’

measured by a cost functiérwhich depends on a functiofi(x)

marized as follows. For flow about an arbitrary body, the aero-

that describes the shape, where under a variation of the design.gynamic properties that define the cost function are functions of

0 (x), the variation of the cost i8l. Now suppose thall can
be expressed to first order as

the flowfield variablegw) and the physical shape of the body,
which may be represented by the functi®n Then

5l — / G(X)SF (x)dx I =1(w,7)

whereG(x) is the gradient. Then by setting and a change iff results in a change of the cost function

ow 4 Eéf
0F

T

0F () = —AG(X)

one obtains an improvement Using a technique drawn from control theory, the governing

equations of the flowfield are introduced as a constraint in such
a way that the final expression for the gradient does not require
reevaluation of the flowfield. In order to achieve ti&a, must be
eliminated from the above equation. Suppose that the governing
equationR, which expresses the dependencevafnd # within

the flowfield domairD, can be written as

8l = —)\/gz(x)dx

unlessg(x) = 0. Thus the vanishing of the gradient is a necessary
condition for a local minimum.

Computing the gradient of a cost function for a complex sys-
tem can be a numerically intensive task, especially if the number

Rw, ) = 0. ®3)
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Thendw is determined from the equation 5 Design using the Euler Equations
The application of control theory to aerodynamic design

oR oR problems is illustrated in this section for the case of three-
OR= [6 } ow+ L’)f} oF =0. dimensional wing design using the compressible Euler equations

as the mathematical model. The extension of the method to treat
the Navier-Stokes equations is presented in references [4, 8, 21].
Next, introducing a Lagrange multipligr, we have It proves convenient to denote the Cartesian coordinates and ve-
locity components byi, X2, X3 andui, Up, uz, and to use the

a7 T oR oR convention that summation over= 1 to 3 is implied by a re-
ol = —éw—i- —3F —yT ({ } ow+ [ ] 6:7) . @ peated index. Then, the three-dimensional Euler equations may

oF oF be written as
With some rearrangement
: w0, ©
ot 0x
al’ oR aT  ;[oR
o= (G (o) o (G v 577 wnere
Choosingy to satisfy the adjoint equation P Pu
W b ) q puy pU; U1 + Pdi1
T W= ¢ puz o, fi=4q pujuz+ pdiz (7)
Ry ar 5) pus pUiU3 + Pdia
ow T oaw pE puH

the term multiplyingdw can be eliminated in the variation of the ~ andd;j is the Kronecker delta function. Also,
cost function, and we find that

1
_ 57, p—(v—l)p{E—z(U.U.)}, (8)

where and

0F 0F
wherey is the ratio of the specific heats.

In order to simplify the derivation of the adjoint equations,
we map the solution to a fixed computational domain with coor-
dinatest 1, &», &3 where

The advantage is that the variation in cost function is independent
of dw, with the result that the gradient bfwith respect to any
number of design variables can be determined without the need
for additional flow-field evaluations.

In the case that (3) is a partial differential equation, the ad- K — [0X| } J=det(K), K-1= {6&.]
joint equation (5) is also a partial differential equation and ap- 7ot T 0Xj
propriate boundary conditions must be determined. It turns out
that the appropriate boundary conditions depend on the choice g3pg
of the cost function, and may easily be derived for cost functions
that involve surface-pressure integrations. Cost functions involv-
ing field integrals lead to the appearance of a source term in the
adjoint equation.

The cost of solving the adjoint equation is comparable to that The elements o8 are the cofactors df, and in a finite volume
of solving the flow equation. Hence, the cost of obtaining the discretization they are just the face areas of the computational
gradient is comparable to the cost of two function evaluations, cells projected in they, X2, andxs directions. Using the permu-
regardless of the dimension of the design space. tation tensok;jx we can express the elementsSxs

S=JK 1L



1 0Xy 0
Sj = ésqusirST;Tg' (10)
Then
0 gy = Lo [0 2 0% 0%
g, 1 T 27IPAEs | 3% OE; 9Es | OF, 0EDE;

Also in the subsequent analysis of the effect of a shape vari-
ation it is useful to note that

0Xp 0
Sij :Squfzz)%a
0Xp 0
S; :squa—a‘s’a—g,
0Xp O
S5 :Equfii)%' (12)

Now, multiplying equation(6) byl and applying the chain
rule,

Ja—WJrR(W) =0

P (13)

where

9

3% (Sjfi).

of;
mm=&$f: (14)

using (11). We can write the transformed fluxes in terms of the
scaled contravariant velocity components

Ui = Sju;
as

pU;i
pUius +S1p
pUiuz 4+ Sap
pUiuz + S3p
pUiH

F=Sfj=

For convenience, the coordinatés describing the fixed

computational domain are chosen so that each boundary con-
forms to a constant value of one of these coordinates. Variations

7

in the shape then result in corresponding variations in the map-
ping derivatives defined blgj. Suppose that the performance is
measured by a cost function

I:/Q;M(W,S)dB,g—i-/DT(V\/,S)dDE,

containing both boundary and field contributions whe:Bg and

dDg are the surface and volume elements in the computational
domain. In generatyf and? will depend on both the flow vari-
ablesw and the metric§ defining the computational space. The
design problem is now treated as a control problem where the
boundary shape represents the control function, which is cho-
sen to minimizd subject to the constraints defined by the flow
equations (13). A shape change produces a variation in the flow
solutiondw and the metricdSwhich in turn produce a variation

in the cost function

3 :/QSM(V\/,S)dBE—F/D6?(V\I,S)dDE. (15)
This can be split as
3l = 3l; + 31y, (16)
with
SM = [Miy], S+ 3M;
5P = [B], SW+ O , (17)

where we continue to use the subscrip@ndll to distinguish
between the contributions associated with the variation of the
flow solutiondw and those associated with the metric variations
0S. Thus[My], and [P], represent‘% andg—\fl with the met-
rics fixed, whiled?; andd?, represent the contribution of the
metric variation®Sto dM anddP.

In the steady state, the constraint equation (13) specifies the
variation of the state vectdw by

0

SR= =
0¢;

3F = 0. (18)

Here alsodR anddF can be split into contributions associated
with dw anddS using the notation

O0R = dR, 48Ry

OF = [Fiw; Ow+OF. (19)



where

ofi
(Fwli :S‘J'W\f

Multiplying by a co-state vectap, which will play an anal-
ogous role to the Lagrange multiplier introduced in equation (4),
and integrating over the domain produces

A

Assuming thatp is differentiable, the terms with subscriptay
be integrated by parts to give

9

3% (20)

8FdDs = 0.

o’

T . L T _
/@n.w or, e — | 5 5F.|d@€+/ﬂw SRy dD; = 0. (21)

This equation results directly from taking the variation of the
weak form of the flow equations, wheteis taken to be an arbi-
trary differentiable test function. Since the left hand expression
equals zero, it may be subtracted from the variation in the cost
function (15) to give

ol = dly —/Zv)llJTéRlld@E"!‘/{B [6M _nin&:ll] dg{

g’
+/@[55P'+aa5':"]d@f' 22)

Now, sincey is an arbitrary differentiable function, it may be
chosen in such a way that no longer depends explicitly on
the variation of the state vectdw. The gradient of the cost
function can then be evaluated directly from the metric variations
without having to recompute the variatidw resulting from the
perturbation of each design variable.

Comparing equations (17) and (19), the variat@rmay be
eliminated from (22) by equating all field terms with subscript
“1” to produce a differential adjoint system governigig

oy’

a—Ei[F,W]l + [Py =0 inD.

(23)

Taking the transpose of equation (23), in the case that there is no

field integral in the cost function, the inviscid adjoint equation
may be written as

oy

qTaE =0 in D, (24)

where the inviscid Jacobian matrices in the transformed space are
given by

of;
G =S;j aivxj/

The corresponding adjoint boundary condition is produced by
equating the subscripti™ boundary terms in equation (22) to
produce

niw" [Ful, = [Mw]1 onB. (25)

The remaining terms from equation (22) then yield a simplified
expression for the variation of the cost function which defines the
gradient

Sl = dly — [D YTBR A, (26)

which consists purely of the terms containing variations in the
metrics, with the flow solution fixed. Hence an explicit formula
for the gradient can be derived once the relationship between
mesh perturbations and shape variations is defined.

The boundary conditions satisfied by the flow equations re-
strict the form of the left hand side of the adjoint boundary con-
dition (25). Consequently, the boundary contribution to the cost
function M cannot be specified arbitrarily. Instead, it must be
chosen from the class of functions which allow cancellation of
all terms containin@w in the boundary integral of equation (22).
On the other hand, there is no such restriction on the specification
of the field contribution to the cost functiap, since these terms
may always be absorbed into the adjoint field equation (23) as
source terms.

For simplicity, it will be assumed that the portion of the
boundary that undergoes shape modifications is restricted to the
coordinate surfac&, = 0. Then equations (22) and (25) may be
simplified by incorporating the conditions

nN=n3=0 n=1, dﬂg = dEldE'g,,

so that only the variatiod, needs to be considered at the wall
boundary. The condition that there is no flow through the wall
boundary a€, = Ois equivalent to

U, =0,
so that

0U, =0



when the boundary shape is modified. Consequently the varia- This amounts to a transpiration boundary condition on the co-

tion of the inviscid flux at the boundary reduces to state variables corresponding to the momentum components.
Note that it imposes no restriction on the tangential component
of | at the boundary.

0 0 We find finally that
S1 0S1 ayT
BF2= 8P4 Spp p + P4 BSpa ¢ - (27) o =~ |, 3 oSifid?
3 853 f ﬁaszlwﬁaszzwﬁaszsw)pdzldzg. (29)
0 0 Bw

Here the expression for the cost variation depends on the mesh
SincedF, depends only on the pressure, it is now clear that the variations throughout the domain which appear in the field inte-
performance measure on the boundayfw,S) may only be a  gral. However, the true gradient for a shape variation should not
function of the pressure and metric terms. Otherwise, Complete depend on the way in which the mesh is deformed, but on|y on
cancellation of the terms containidg in the boundary integral  the true flow solution. In the next section we show how the field
would be impossible. One may, for example, include arbitrary integral can be eliminated to produce a reduced gradient formula
measures of the forces and moments in the cost function, sincewhich depends only on the boundary movement.
these are functions of the surface pressure.

In order to design a shape which will lead to a desired pres-

sure distribution, a natural choice is to set 6 The Reduced Gradient Formulation

1 Consider the case of a mesh variation with a fixed boundary.
IZE/ (p—pq)?dS Then,
B

wherepy is the desired surface pressure, and the integral is eval- ol =0

uated over the actual surface area. In the computational domain
this is transformed to but there is a variation in the transformed flux,

1
=3/ /%<p— Pa)? |2l dE1dEs, 8F; = Gow+3S ;.

where the quantity Here the true solution is unchanged. Thus, the variadierns
due to the mesh movemedit at each mesh point. Therefore

1S2| = /S S )
ow=[Ow-dx= a—V\_Iéxj (=ow")
denotes the face area corresponding to a unit element of face area %]
in the computational domain. Now, to cancel the dependence

of the boundary integral oép, the adjoint boundary condition and since

reduces to
9
= 0F =0,
Wjnj = p—Pd (28) &
wheren; are the components of the surface normal it follows that
S; 0 0
=g 3z (Sifi) = — 5z (Gow"). (30)
I

T 3, PR



It is verified in the following paragraph that this relation holds in The term in% is
the general case with boundary movement. Now

OXp ((0%q 0f;  Oxq Of;
T _ 70 s €123 pgj2er (J—J) &k
] WroRdD = [ W7 G (Bw— B d P98, \ 98, 08 083 0%,
= /;“TCi (dw—dw")dB Here the term multiplying¢; is
oy’
1P\ 08, 08, 085 081 085 0%,

Here on the wall boundary
According to the formulas(12) this may be recognized as

Codw = OF, — 0 f;. (32)

. . . . o0fy 0fy
Thus, by choosing to satisfy the adjoint equation (24) and the Sj 3, + Sj 9%,
adjoint boundary condition (25), we reduce the cost variation to 2 3
a boundary integral which depends only on the surface displace-
ment: or, using the quasi-linear form(14) of the equation for steady

flow, as
8l = | YT (3 fj+CodW) d&1dEs
Baw o ofy
oz,

f KB\SNSZNJZ + 023 + 0Sp3Wa) pdg1dEs. (33)

L . . The terms multiplyin andoés are
For completeness the general derivation of equation (30) is plyingé2 &3

presented here. Using the formula (10), and the property (11)

. (%%aﬁ_%%aﬁ)__ 0f
£ (8S;1)) P9\ 082 082 085 082 0F3 082 19g,
_ 1o f (00 0x 0Xp00xq)
= 20% {e’pqs'fs(aar o€, 0%, 9%, ) | and

1 00X, 0 0Xp 00 of;
= 28qu5irs(aapa)£q—|'aapazxq>ag € %%%_%%% - _ %
roUhs TAT TAS ST P\ 985 08, 083 9E3 083 08, Yogs”

1 0 0Xq Of;
— Zsqusirs{aar (6’("6205:)}
2tipatirs | g, \ “3g, 3¢,
_ 0 . 0%q 0f; _a( RALY >
= TEr <6Xp5pq15r5|azsazi)- (34) P Sij %, &k

Now expresx, in terms of a shift in the original computational  Finally, with similar reductions of the terms %% and %, we
coordinates obtain 2 3

Thus the term irh‘g1 is reduced to

0X
Xp = =z O&k. ] 0 ( of > 0
0 — (8Sjfj) = —== | Sj 2208 | = — = (CiOW*
Ek a5, 0311 = g5 (Sigg, %) = g (GO
Then we obtain
as was to be proved.
In order to validate the concept, the new gradient equations

ag (0Sifi) =5 have been tested for various aerodynamic shape optimization

d d < %y @
aEi 6Er

o OXp 0%q 0fj
Epqjrsi 98, 9% 0% 6Ek) . (35)
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problems and the accuracy of the gradients using the reduced for-future convenience
mula are assessed by comparing with finite-difference gradients,

complex-step gradients, and gradients calculated by the previous 1u; Up Ug %
adjoint method which includes a volume integral [22]. Op 0 0 pu

The reduced gradient is crucial for unstructured meshes. If MT =00 p 0 pup
the gradient depends on the form of the mesh maodification, then 00 0 p pus
the field integral in the gradient calculation has to be recomputed 0000 Fll

for mesh modifications corresponding to each design variable.
This would be prohibitively expensive if the geometry is treated
as a free surface defined by the mesh points. Consequently in

order to reduce the computational cost with this approach, the WU uz (y-Duy

number of design variables would have to be reduced by param- (l) P Op OP _(y-1)u

eterizing the geometry. However, this reduced set of design vari- T p 1 y-1lu

ables could not recover all possible shape variations. M =100 5 O —(y=Duz
00 0 & —(y-1us
00 0O 0 y-1

7 The Viscous Adjoint Equations

The derivation of the viscous adjoint equations is presented The conservative and primitive adjoint operatbrandL corre-
in detail in [21, 23]. Here we summarize the main results, under sponding to the variation®v anddw are then related by
the assumption that the viscosity and heat conduction coefficients
pandk are essentially independent of the flow, and that their vari- . e
ations may be neglected. This simplification has been success- /1)5W Ly dDs = /@5W Ly dD,
fully used for may aerodynamic problems of interest. However,
if the flow variations could result in significant changes in the tur-
bulent viscosity, it may be necessary to account for its variation
in the calculation.

with

L=MTL,

7.1 Transformation to Primitive Variables
The formulation of the viscous adjoint terms can be simpli-
fied by transforming to the primitive variables

so that after determining the primitive adjoint operator, the con-
servative operator may be obtained by the transformdtien
M-1TL. Since the continuity equation contains no viscous terms,
it makes no contribution to the viscous adjoint system. There-
= (p,uz,Up, Uz, P), fore, the derivation proceeds by first examining the adjoint oper-
ators arising from the momentum equations and then the energy

; . .. _eguation.
because the viscous stresses depend on the velocity derivatives q

WT

%, while the heat flux can be expressed as _ o
! 7.2 The Viscous Adjoint Field Operator
In order to make use of the summation convention, it is con-
d /p venient to setpj, 1 = @ for j = 1,2,3 andis = 6. Collecting
Ko \ o together the contributions from the momentum and energy equa-
ox \ p g gy eq
tions, the viscous adjoint operator in primitive variables can be
finally expressed as
wherek = & = %. The relationship between the conserva-
tive and primitive variations is defined by the expressions ~ 8 20
o)y =B (six&)
Tu): . — @ . op | 09 - 0Q
dw=M&W, & =M"dw ()ics = 3 S 13y +TX:) A0 TXJ}
a 8 0 0
+ 2 Sj M Uiaij-i-Ujani))\éijukﬁ
g 08 i
which make use of the transformation matridds= g—v"l’v and B G'JSJ% for =123
M~1 = 2% These matrices are provided in transposed form for Lw)s =g (SiKng
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The conservative viscous adjoint operator may now be obtained in the constant temperature case or

by the transformation
L=m2"L.

7.3 Boundary Conditions for Force Optimization
Defining the components of the total surface stress as

Tk = N (3 P+ 0k;)
and the physical surface element

the force in a direction with cosinep has the form

Cy= /qu'[ids

Integrating the field terms by parts, cancellation with the flow
variation terms mandates the adjoint boundary condition

O = Q-

7.4 Boundary Conditions for Inverse Design
In the case of high Reynolds number, the boundary condition
for inverse design is well approximated by the equations

& =Nk (P—Pa), (36)

which should be compared with the single scalar equation de-
rived for the inviscid boundary condition (28).

The inviscid boundary condition (28) is satisfied by equation
(36), but this represents an over-specification of the boundary
condition since only the single condition (28) needs be specified,
corresponding to the slip boundary condition for the inviscid flow
equations.

7.5 Boundary Conditions Arising from the Energy
Equation
The form of the boundary terms arising from the energy

equation depends on the choice of temperature boundary con-

dition at the wall. A natural solution is to set

6=0

12

00
%—0

in the adiabatic case.

8 Planform Design

The shape changes in wing section needed to improve the
transonic wing design are quite small. However, in order to ob-
tain a true optimum design larger scale changes such as changes
in the wing planform (sweepback, span, chord, and taper) should
be considered. Because these directly affect the structure weight,
a meaningful result can only be obtained by considering a cost
function that takes account of both the aerodynamic characteris-
tics and the weight.

8.1 Cost Function for Planform Design

In order to design a high performance transonic wing, which
will lead to a desired pressure distribution, and to still maintain a
realistic shape, the natural choice is to set

1
| = 0a1Cp + 027 /B(p— Pa)?dS+ a3Cw @37)
with
Wwing
Cy=—— 38
qooS'ef ( )
where
Co = drag coefficient,
Cw = dimensionless wing structural weight,
p = current surface pressure,
Pg = desired pressure,
Qoo = dynamic pressure,
Sef = reference area,
Wiaing = wing structure weight, and
a1, 02,03 = weighting parameter for drag,

inverse design, and structural

weight respectively.
The constanti; is introduced to provide the designer some con-
trol over the pressure distribution.

A practical way to estimat@t/ying iS to use the so-called
Statistical Group Weights Method, which applies statistical
equations based on sophisticated regression analysis. For a
cargo/transport wing weight, one can use [24]

Wieight = 0.0051( Wy g[\12)0.557%.649 705

(t/C)rout (1+2)*1cogA) MO, (39)



Effect of the planform variables on the Statistical Group Weight Model
T

where
A = aspect ratio, 100000
N, = ultimate load factor
= 1.5xlimit load factor, 05000
Ssw = control surface area (wing-mounted),
Sy = trapezoidal wing area,
t/c = thickness to chord ratio, 2 0000
Wgg = flight design gross weight, g
A = wing sweep, and :
A = taper ratio at 25 % MAC. § 85,000

In addition, if the wing of interest is modeled by five plan-
form variables such as root chorc,), mid-span chordd), tip
chord €3), span b), and sweepback(, as shown in Figure 3, 80,000
the sensitivity of the weight to an individual planform variable
can be shown in Figure 4, indicating that the weight increases, as

T
Sweepback
—<— Span
—-©- Root chord
—&- Mid-span chord
—— Tip chord
3

75,000
0

sweepback, span, or chord-length increases.

50 100 150 200 250
Sweep angle (deg), Span length (ft), and Chord length (ft)

Figure 4. Effect of sweepback(/\), span (D), root chord(C1), mid-span
chord(Cy), and tip chord(C3) on the Statistical Group Weights Model

C3

variation of the weight can be expressed as

b/2
Cc2

6\/\/2:6\%%6\/\‘/“[19-

With fixed %fc and initial weight\W, the variation of Range can

f be stated as

Figure 3. Modeled wing governed by five planform variables; root chord
(C1), mid-span chord (Cp), tip chord (Cg), span (b), and sweepback(/\).

The increases of sweepback, span, and chord-length affectand
drag oppositely. As sweepback is increased, the shock drag is
weaken. Vortex drag can be reduced by increasing the span.

In these ways the inclusion of a weight estimate in the cost
function should prevent the optimization from leading to an un-

V(55 10g™ 4 L (10gM
. = o (a(D) loggs + D6<IogW2>)

Esic\ DD W, DWp
V L W (3D 1 W
——— log+ [ =+ =2
EafcD ng<D Iogw;VVz>

6Rn__<6cD 1 Mz)

R\ Co ' logh W

realistic wing planform, and yield a good overall performance. - 5Co 1 3w
~ T Tiog
Co  logw, gg
8.2 Choice of Weighting Constants
8.2.1 Performance C0n3|derat|0n The chqce Oﬁ_l If we minimize the cost function defined as
andaz greatly affects the optimum shape. An intuitive choice of
01 andas can be made by considering the problem of maximiz-
ing range of an aircraft. Considering the range equation(1) the | =Cp +aCy,
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wherea is the weighting multiplication, then choosing 9 Optimization Procedure
9.1 The Need for a Sobolev Inner Product in the Defi-
nition of the Gradient
o = Co (40) Another key issue for successful implementation of the con-
W2 _logos tinuous adjoint method is the choice of an appropriate inner prod-
qOOS(ef VV2 . ele . .
uct for the definition of the gradient. It turns out that there is an
enormous benefit from the use of a modified Sobolev gradient,
corresponds to maximizing the range of the aircraft. Wh'ICh enablles the generatloq of a sequence of smooth shapes.
This can be illustrated by considering the simplest case of a prob-
lem in the calculus of variations.
Suppose that we wish to find the patix) which minimizes

8.2.2 Pareto Front In order to present the designer
with a wider range of choices, the problem of optimizing both
drag and weight can be treated as a multi-objective optimiza- b ,
tion problem. In this sense one may also view the problem as a I = /F(y,y )ax
“game”, where one player tries to minimi@g and the other tries a
to minimizeCy. In order to compare the performance of various
trial designs, designated by the symboin Figure 5, they may
be ranked for both drag and weight. A design is undominated
if it is impossible either to reduce the drag for the same weight b
or to reduce the weigth for the same drag. Any dominated point oF oF _
should be eliminated, leaving a set of undominated points which ol = / <ay6y+ ay{’y) dx
form the Pareto front. In Figure 5, for example, the point Q is a
dominated by the point P (same drag, less weight) and also the b OF  d oF
point R (same weight, less drag). So the point Q will be elim- = / <ay - de) dydx
inated. The Pareto front can be fit through the points P, R and a
other dominating points, which may be generated by using an ar-
ray of different values ofi; andas in the cost function to com- Thus defining the gradient as
pute different optimum shapes. With the aid of the Pareto front
the designer will have freedom to pick the most useful design.

with fixed end pointy(a) andy(b). Under a variatiordy(x),

_OF _doF
9= dy dxay
ight | dthe | duct
Weight and the inner product as

X b
X (u,v) z/uvdx

X a

we find that
X 3l = (g,%y).
Pareto front If we now set

Drag

Figure 5. Cooperative game strategy with Drag and Weight as players

oy=-Ag, A>0
we obtain a improvement

ol =-A\(g,9) <0
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unlessg = 0, the necessary cond/itic/)/n for a minimum. andg = 0 at the end points. Thugcan be obtained frorg by a
Note thatg is a function ofy,y |y, smoothing equation. Now the step

g=avy,y) yr =y Ang"

In the well known case of the Brachistrone problem, for example, gives animprovement

which calls for the determination of the path of quickest descent

between two laterally separated points when a particle falls under 3l = -A"(g",.g"
gravity,

but y**1 has the same smoothnessyés resulting in a stable

, 14v?2 process.
Fhy) =/ yy

9.2 Sobolev Gradient for Shape Optimization
and In applying control theory to aerodynamic shape optimiza-
tion, the use of a Sobolev gradient is equally important for the
preservation of the smoothness class of the redesigned surface.

/2 14
= _1+y—+2y)g/2 Accordingly, using the weighted Sobolev inner product defined
2 (Y(1+)/2)) above, we define a modified gradightsuch that
It can be seen that each step ol =< éaf > .
yr =y —A"g" In the one dimensional casgeis obtained by solving the smooth-
ing equation
reduces the smoothnessydby two classes. Thus the computed
trajectory becomes less and less smooth, leading to instability. = i 0 = (41)
In order to prevent this we can introduce a weighted Sobolev €1 05 G=G

inner product [25]
In the multi-dimensional case the smoothing is applied in product

(V) = /(uvJr eu'V )dx form. Finally we set

: . . 5F = -AG (42)
whereg is a parameter that controls the weight of the derivatives.

Wi fi i h that
e now define a gradief@tsuch tha with the result that

ol = (9.3y) Sl=-A<G.G> <O,
Then we have unlessé =0, and correspondinglg = O.
o When second-order central differencing is applied to (41),
ol = /(géy+ €0 Oy )dx the equation at a given nodecan be expressed as
—/G——s— dydx Gi—-¢(G—2Gi+G 1) =G, 1<i<n,
= (9,%) _ _ _ _
whereg; and G; are the point gradients at nodkefore and after
the smoothing respectively, amds the number of design vari-
where R
ables equal to the number of mesh points in this case. Then,
g- 999 _ _
97 x"ax 9 G=AgG,
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where A is then x n tri-diagonal matrix such that

Flow Solution

1+2¢—-0. O

€

A_l = O . .. . IAdjoint Solution|
. .. —¢&
0 €142

Gradient Calculation
Repeat the Design Cycle
until Convergence

Using the steepest descent method in each design iteration, a
step,dF, is taken such that

Sobolev Gradient
0F = —MAG. (43)
Shape & Grid
Modification
As can be seen from the form of this expression, implicit smooth-

ing may be regarded as a preconditioner which allows the use of
much larger steps for the search procedure and leads to a large
reduction in the number of design iterations needed for conver-
gence.

Figure 6. Design cycle

9.4 Computational Costs

9.3 Outline of the Design Procedure

_ ’ ) In order to address the issue of the search costs, Jameson and
The design procedure can finally be summarized as follows: \assherg investigated a variety of techniques in Reference [29]

1. Solve the flow equations fax, us, Up, Us, p. using a trajectory optimization problem (the brachistochrone) as
2. Solve the adjoint equation’s féup 'sub'ject to appropriate @ representative model. The study verified that the search cost
boundary conditions. (i.e., number of steps) of a simple steepest descent method ap-
3. Evaluateg and calculate the corresponding Sobolev gradi- Plied to this problem scales a¢”, whereN is the number of
ent é design variables, while the cost of quasi-Newton methods scaled
4. Projectg into an allowable subspace that satisfies any geo- In€arly with N as expected. On the other hand, with an appro-
metric constraints. priate amount of smoothing, the smoothed descent method con-
5. Update the shape based on the direction of steepest descent/€"9€d in a fixed number of steps, independeiN.oConsidering
6. Return to 1 until convergence is reached. that the evaluation of the gradient by a finite difference method

requiresN + 1 flow calculations, while the cost of its evaluation
Practical implementation of the design method relies heavily by the adjoint method is roughly that of two flow calculations,

upon fast and accurate solvers for both the stajeand co-state one arrives at the estimates of total computational cost given in
(W) systems. The result obtained in Section 10 have been ob- Tables 1-2.

tained using well-validated software for the solution of the Euler

and Navier-Stokes equations developed over the course of many

years [26-28]. For inverse design the lift is fixed by the target

pressure. In drag minimization it is also appropriate to fix the
lift coefficient, because the induced drag is a major fraction of

Table 1. Cost of Search Algorithm.

the total drag, and this could be reduced simply by reducing the Steepest Descent O(N?) steps
lift. Therefore the angle. Qf att.ack is gdjusted during gach flow Quasi-Newton O(N) steps
solution to force a specified lift coefficient to be attained, and _

the influence of variations of the angle of attack is included in Smoothed Gradient O(K) steps

the calculation of the gradient. The vortex drag also depends on
the span loading, which may be constrained by other consider-
ations such as structural loading or buffet onset. Consequently,
the option is provided to force the span loading by adjusting the
twist distribution as well as the angle of attack during the flow
solution.

(Note: K is independent dl)
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Table 2. Total Computational Cost of Design.

Finite Difference Gradients

+ Steepest Descent O(N3

~—

Finite Difference Gradients

=

A\

+ Quasi-Newton Search O(N?)

Adjoint Gradients

N\
I

AN
N ANNNNNNARRR
S

+ Quasi-Newton Search O(N)

I
I’II”%%%%%%W
W

Adjoint Gradients

+ Smoothed Gradient Search  O(K) T ——
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N\\\\\\\\\\\\\\\‘“nn‘

. MM
(Note: K is independent o) Wb ,,,,,;';';';'"l‘l“\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\lll||l|||

WWWWIw\\%\l}\\\\WWW%%
| =\
v Sccza?;?a?fjuedsl%sn efforts which have utilized these methods in- /////// //////////////////////
Sren et o ac e MoK e S i ///////////// /
Body [30, 31]. Some representative examples of design calcu-

.
clude: Raytheon’s and Gulfstream business jets, NASAs High- Z
lations are presented in this section to illustrate the present capa-

Figure 7. Computational Grid of the B747 Wing Fuselage

bility. duce the fuel volume, but it would also require an increase in
skin thickness to support the bending moment. Thus these con-
10.1 Viscous Transonic Redesign of the Boeing 747 straints assure that there will be no penalty in either structure
wing weight or fuel volume.

Over the last decade the adjoint method has been success-  Figure 8 displays the result of an optimization at a Mach
fully used to refine a variety of designs for flight at both transonic number of 0.86, which is roughly the maximum cruising Mach
and supersonic cruising speeds. In the case of transonic flight, it number attainable by the existing design before the onset of sig-
is often possible to produce a shock free flow which eliminates nificant drag rise. The lift coefficient of 0.42 is the contribution
the shock drag by making very small changes, typically no larger of the exposed wing. Allowing for the fuselage, the total lift co-
than the boundary layer displacement thickness. Consequentlyefficient is about 0.47. It can be seen that the redesigned wing
viscous effects need to be considered in order to realize the full is essentially shock free, and the drag coefficient is reduced from
benefits of the optimization. 0.01269 (127 counts) t0 0.01136 (114 counts). The total drag co-

Here the optimization of the wing of the Boeing 747 is pre- efficient of the aircraft at this lift coefficient is around 270 counts,
sented to illustrate the kind of benefits that can be obtained. In so this would represent a drag reduction of the order of 5 percent.
these calculations the flow was modeled by the Reynolds Av- Figure 9 displays the result of an optimization at Mach 0.90.
eraged Navier-Stokes equations. A Baldwin-Lomax turbulence It might be expected that the Boeing 747 wing could be modified
model was considered sufficient, since the optimization is for the to allow an increase in the cruising Mach number because it has a
cruise condition with attached flow. The computational mesh is higher sweep-back than later designs, and a rather thin wing sec-
shown in Figure 7. tion with a thickness to chord ratio of 8 percent. In this case the

The calculations were performed to minimize the drag co- shock waves are not eliminated, but their strength is significantly
efficient at a fixed lift coefficient, subject to the additional con- weakened, while the drag coefficient is reduced from 0.01819
straints that the span loading should not be altered and the thick- (182 counts) to 0.01293 (129 counts). Thus the redesigned wing
ness should not be reduced. It might be possible to reduce thehas essentially the same drag at Mach 0.9 as the original wing at
induced drag by modifying the span loading to an elliptic dis- Mach 0.86. Figures 10 and 11 verify that the span loading and
tribution, but this would increase the root bending moment, and thickness were not changed by the redesign, while Figures 12
consequently require an increase in the skin thickness and struc-and 13 indicate the required section changes at 42 percent and 68
ture weight. A reduction in wing thickness would not only re- percent span stations.
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10.2 Viscous Planform Redesign of the Boeing 747 10.3 Shape optimization of complete aircraft configu-
wing rations on unstructured meshes

We have recently extended the adjoint design method to un-
structured meshes in order to facilitate the treatment of complete
aircraft configurations [32]. Here we take advantage of the re-
duced gradient formula (33) to reduced the computational cost
of the gradient calculation. The results for a transonic business
jet are shown below. As shown in Figures 18, 19, 20, 21, the
outboard sections of the existing wing have a strong shock while
flying at cruise conditionsM«. = 0.80, a = 2°). The results of
a drag minimization that aims to remove the shocks on the wing
are shown in Figures 22, 23, 24, 25. The drag has been reduced

Figure 15 shows the effect of allowing changes in sweep- from 235 counts to 215 counts in about 8 design cycles. The lift
back, span, root chord, mid-span chord, and tip chord. The pa- Was constrained at 0.4 by perturbing the angle of attack. Further,
rameteras was chosen according to formula (40) such that the the original thickness of the wing was maintained during the de-
cost function corresponds to maximizing the range of the aircraft. Sign process ensuring that fuel volume and structural integrity
In 50 design iterations the drag was reduced from 181.9 counts to Will be maintained by the redesigned shape.

124.9 counts (31.3% reduction), while the dimensionless struc- Thickness constraints on the wing were imposed on cutting
ture weight was slightly increased from 0.02956 to .03047 (3.1% planes along the span of the wing and by transferring the con-
increase). This test case shows a good trade off among the plan-strained shape movement back to the nodes of the surface tri-
form variables to achieve an optimal performance for a realistic angulation. The volume mesh was deformed to conform to the
design. At Mach 0.9, which is an off design point, the drag is shape changes induced using the spring method. The entire de-
quite high. As a result, the optimizer increases the sweepback to sign process typically takes about 4 hours on a 1.7 Ghz Athlon
weaken shock drag, increases the span to reduce vortex drag, angrocessor with 1 Gb of memory. Parallel implementation of the
reduces the thickness to chord ratio (with the thickness fixed) to design procedure has also been developed that further reduces
alleviate shock drag. These changes cause a slight increase othe computational cost of this design process.

wing weight. But if the wing structural weight is not included

in the cost function, the optimal shape will result in an excessive

span, chord-length, and sweep angle. As a result of the trade-

off between drag reduction and increased wing weight, the over- 11 Conclusion

all drgg redyction was more than in the previous figure, .while The accumulated experience of the last decade suggests
the wing weight was slightly increased. These results verify the ¢ most existing aircraft which cruise at transonic speeds are
feagb_ﬂﬂy_ of including the effects of planform variations in the amenable to a drag reduction of the order of 3 to 5 percent, or an
optimization. increase in the drag rise Mach number of at least .02. These im-
provements can be achieved by very small shape modifications,
which are too subtle to allow their determination by trial and

variables are sweepback, span, chords at three different span lo-€0F methods. The potential economic benefits are substantial,
cations and mesh points' on th;a wing surface. In Fig. 16 each considering the fuel costs of the entire airline fleet. Moreover,
point corresponds to an optimal shape for one specific choice T ©N€ Were to take full advantage of the increase in the lift to
of (a1,03). By varyingas; andas, we capture the Pareto front drag ratio during the design process, a sm.alle.r aircraft could be
which bounds all the non-dominated solutions. All points on this des'?”ed to perform tf:e same task,f_resultlgg in further Cr?St re-f
front are acceptable designs in the sense that no improvement ca u_ctlons. _Consequenty we are con ident t, at some methods o
be achieved in one objective that doesn't lead to degradation in this type will provide a basis for aerodynamic designs of the fu-

the other objective. The optimum shape that corresponds to the r€-
optimal Breguet range is also marked in the figure.

We present results to show that the optimization can success-
fully trade planform parameters. The case chosen is the Boeing
747 wing fuselage combination at Mach 0.90 and a lift coefficient
CL = 0.42. We allowed section changes together with variations
of sweepback, span, root chord, mid-span chord, and tip chord.
Figure 14 shows a baseline calculation with the planform fixed.
Here the drag was reduced from 181.9 counts to 127.9 counts
(29.7% reduction) in 50 design iterations with relatively small
changes in the section shape.

Figure 16 shows the effect of varying the weighting param-
etersa; andas in the cost function (37). As before the design

Figure 17 shows the change of planform when gﬁezl.
This value ofg—'i‘ is sufficient to cause the optimizer to reduce the Acknowledgment
sweepback, reducing wing weight. But it allows the optimizer to This work has benefited greatly from the support of the Air
increase the span, reducing vortex drag. This yields an optimum Force Office of Science Research under grant No. AF F49620-
shape which has low structure weight and moderate drag. 98-1-2002.
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Effects of the weighting constants on the optimal shapes
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Figure 16. Pareto front of section and planform modifications

Figure 17. Superposition of the baseline geometry (green/light) and the optimized planform geometry (blue/dark), using 0(1=1 and 03=1
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DENSITY

Figure 18. Density contours for a business jetat M = 0.8, o0 = 2. Ex-

isting wing.
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Pressure distribution at 66 % wing span
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Figure 20. Pressure distribution at 77 % wing span
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Figure 21. Pressure distribution at 88 % wing span
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Figure 22. Density contours for a business jetat M = 0.8, a = 2.3.

After redesign.
Figure 24. Pressure distribution at 77 % wing span, after redesign,

Dashed line: original geometry, solid line: redesigned geometry
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Dashed line: original geometry, solid line: redesigned geometry Figure 25. Pressure distribution at 88 % wing span, after redesign,

Dashed line: original geometry, solid line: redesigned geometry
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