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ABSTRACT 
Two unstructured-grid Euler-based CFD codes, AIR-
PLANE and FLOWCART were coupled to a gradient-
based quasi-Newton finite-difference optimization algo-
rithm.  These two optimization techniques were devel-
oped to provide detailed aerodynamic shape optimiza-
tion methods for complete configurations with efficient 
grid generation methods.  AIRPLANE utilizes a tetra-
hedral mesh whereas FLOWCART uses a hexahedral 
Cartesian mesh.  Several codes were developed to fa-
cilitate aerodynamic shape optimization.  These include 
developing surface grid perturbation methods with 
thickness constraint and overall surface overlap evalua-
tions, used with both Euler codes, and adding a multi-
grid capability and a variety of mesh movement tech-
niques to the AIRPLANE method.  The AIRPLANE 
multigridding approach was proven to be accurate and 
effective, with typical speedup ratios of 3 to 5.  The 
mesh movement techniques were effective in reducing 
the grid generation wall clock time by 70%.  Detailed 
results of the AIRPLANE-based optimization technique 
are presented.  The performance gains resulting from 
optimization are verified by computations with 
FLOWCART and OVERFLOW, and comparisons with 
experimental data on the baseline and optimized con-
figurations.  The low speed computational results of the 
baseline and optimized models were incorporated into 
an approach and landing simulation database. The con-
trollability and handling qualities were good to excel-
lent based on a piloted simulation in the NASA Ames 
Vertical Motion Simulator (VMS).  FLOWCART-
based optimization was validated by comparing its gra-
dients and design solutions with AIRPLANE’s on two 
separate optimization problems with identical design 
variables and objective functions. 

INTRODUCTION 
Aerodynamic shape optimization using structured grids 
was used successfully for several years at NASA Ames 
on High Speed Civil Transport designs.1  An adjoint 
method enabled rapid gradient computation,2-4 and effi-
cient surface and volume mesh movement techniques5 
were applied.  However, these structured grid methods 
required start-up periods of a few months of labor to 
generate suitable meshes for complete configurations. 

The volume meshes consisted of many abutting zones, 
with points matching at abutting boundaries.  For mul-
tigridding, each coarser mesh required half the number 
of points in each direction or one-eighth of the total grid 
points of the next finer mesh, matching alternate points 
in each direction.  In addition to the full configuration 
mesh, another surface representation, consisting of sec-
tional cuts, was required for rapid surface perturbations 
during optimization. 

Unstructured grid methods can establish the baseline 
surface and volume grid in far less time and more easily 
than for structured grid methods.  Volume grid genera-
tion is completely automated for both Cartesian and 
tetrahedral approaches, independent of the geometric 
complexity of the configuration.  These methods allow 
point insertion and deletion without introducing hang-
ing nodes or extraneous points.  Thus, the unstructured 
approach is well suited for the emergence or removal of 
surface components during optimization, or for adapta-
tion to dynamic changes in flow field phenomena. 

 
Fig. 1.  Baseline CTV Configuration. 
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Complete configuration multipoint numerical optimiza-
tion can begin within a few days using unstructured 
methods.  Optimization results can be obtained within a 
couple of weeks with a dedicated computer system, 
potentially before a structured-grid based optimization 
program could even begin.  The negative side to using 
an unstructured optimization technique is that it is more 
expensive computationally and requires more memory.  
In addition, there is not currently an adjoint solver 
available, and the expense of finite-difference gradient 
computations severely limits the number of design vari-
ables that can be used simultaneously.  In spite of these 
limitations, the reduced grid generation times for the 
unstructured methods may still tip the balance in their 
favor. 

Examples of the AIRPLANE based optimization proc-
ess will be illustrated through the redesign of a Crew 
Transfer Vehicle (CTV) at multiple design points.  
NASA Ames Research Center personnel are conducting 
conceptual design studies of sharp-edged re-entry vehi-
cles.6  The leading edges of the nose and wing will be 
composed of a new Ultra High Temperature Ceramic 
(UHTC) material7 to withstand the re-entry heat loads.  
These vehicles are being evaluated since they may im-
prove the re-entry cross range capability and therefore 
the safety during abort mission scenarios.  The plan-
form, wing twist and dihedral have recently been modi-
fied since the publication of the original baseline6 to 
improve the low speed trim characteristics of the 
model.  The modified baseline CTV is shown in Fig. 1. 

The stability and control of this class of vehicle is prob-
lematic since the vehicle must operate from hypersonic 
speeds during re-entry to subsonic speeds upon ap-
proach and landing, and trim must be achieved 
throughout this extensive Mach number range.  AIR-
PLANE was used to conduct detailed simultaneous 
optimization at the landing speed of Mach 0.3, and the 
re-entry descent speed of Mach 6.0.  The design objec-
tive was to trim the vehicle at the two conditions simul-
taneously while achieving the best L/D in the process.  
The results for the baseline and optimized CTVs from 
AIRPLANE based optimizations are compared with 
FLOWCART, OVERFLOW Navier-Stokes analyses, 
and experimental results from a low-speed wind tunnel.  
In addition NASA astronaut piloted time-histories from 
VMS flight simulation data for the baseline and opti-
mized configurations for approach and landing will be 
presented. 

NUMERICAL OPTIMIZATION 
A gradient method was employed since it is well suited 
to detailed aerodynamic design.  Gradient-based algo-
rithms such as QNMDIF8,9 should require fewer func-
tion evaluations to find local minima or design im-
provements in contrast to non-gradient methods such as 

genetic algorithm (GA) techniques.  QNMDIF is an 
unconstrained quasi-Newton finite-difference method 
that is capable of achieving a local minimum in a de-
sign space, but it is not guaranteed to find the true 
global minimum.  The gradient calculations are some-
what expensive since they require two flow solutions 
for each design variable for forward and backward dif-
ference calculations.  An AIRPLANE adjoint method is 
currently under development using techniques that have 
been successfully developed for aerodynamic design.10-

14  When this adjoint method is available it will reduce 
the CPU time for gradient computations to the equiva-
lent of two flow solutions for any number of design 
variables. 

For the present methods, a limited number of design 
variables is recommended, unless many processors are 
available.  QNMDIF is an unconstrained method with a 
single objective function, so constraints must be im-
plemented by adding penalty terms to the objective 
function. 

QNMDIF calls a user-supplied function named FUN 
that returns the value of the objective for a prescribed 
set of design variables.  An overview of the function 
FUN using AIRPLANE-based optimization is shown in 
Fig. 2.  FUN controls surface shape perturbation, mesh 
movement or grid regeneration, and computation of the 
flow solution.  This function is called repeatedly during 
the gradient and search steps of the optimization.  The 
optimization code stops after a user-supplied number of 
design iterations is reached or when no further im-
provements can be made for the current design vari-
ables. 

The user supplies a range of values for each design 
variable to constrain the sizes of the perturbations.  If 
the variables are outside of this range, a penalty func-
tion is returned to QNMDIF.  If the design variables are 
in range, the code checks for a stored solution/objective 
function, matching the flow conditions and design vari-
ables.  This is used to “restart” the optimization process 
by quickly retracing the steps of previous optimization 
runs.  If no existing solution/objective function is 
found, the code will proceed to modify the surfaces of 
the configurations.  APSHAPER perturbs the triangu-
lated surfaces ensuring that the number of points and 
connectivity remain unchanged.  It then computes sur-
face vertical positions and thicknesses at user-
prescribed points and writes the information to a file.  
The AIRPLANE15,16 volume mesh of tetrahedra is de-
formed rather than regenerated using MESHMV.  This 
code also preserves the number of points and connec-
tivity of the original mesh.  If the method should invert 
any tetrahedra, the entire mesh is automatically regen-
erated using MESH3D.17  Following this, the multigrid 
version of AIRPLANE is run.  Then the surface vertical 
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positions and thicknesses at constraint points previously 
computed via APSHAPER are used to determine the 
thickness or vertical position differences between base-
line and optimized configurations.  Penalty terms are 
nonzero when geometric constraints such as thickness 
or vertical location are violated.  An aerodynamic ob-
jective function, such as CD/CL, is added to the geomet-
ric penalty constraint terms and returned to QNMDIF.  
The flowchart for FLOWCART18,19 is similar to the 
AIRPLANE flowchart but the mesh is regenerated from 
scratch rather than deformed during optimization. 

SURFACE MESH PERTURBATION TECHNIQUES: 
WING AND BODY DESIGN VARIABLES 

The triangulated surfaces of wing type components are 
perturbed during the course of either AIRPLANE-based 
or FLOWCART-based optimization using the program 
APSHAPER (AP referring to AIRPLANE data struc-
tures).  The design variables are multipliers of user-
defined sets of analytic shape functions added to the 
wing surfaces.  The optimizer adjusts these to improve 
an objective function.  The function minimized is typi-
cally a specified aerodynamic quantity such as drag/lift 
or drag coefficient at fixed lift, but can include other 
aerodynamic quantities of interest in the form of appro-
priately weighted penalty function terms, such as a 
squared difference of the current and target pitching 
moment coefficients.  A few trial and error runs are 
needed to determine the appropriate weighting parame-
ters. 

The most commonly used shape functions are sine 
bumps that reach a peak value of unity at a user-defined 
chordwise position and vanish at the wing leading and 
trailing edges.  The designer chooses the rate at which 
each shape function decays to zero via the function’s 
“width” exponent.  The sine bumps are typically cen-
tered at uniformly spaced intervals along the chord at 
wing defining stations.  These rows of design variables 
are lofted over user specified portions of the span.  
Other wing design variables include polynomial func-
tions for leading- and trailing-edge droop, exponential 
functions to modify the leading-edge bluntness, twist, 
and longitudinal and vertical displacement functions to 
modify the planform or dihedral of the wing, respec-
tively.  Use of shape functions allows for isolated re-
gions of the configurations to be modified, reducing the 
number of design variables for the design problem. 

APSHAPER requires a surface (U-V) parameterization 
of the wing upper and lower surfaces so that each mesh 
point maintains an association with the normalized lo-
cal chord (U) and local span (V) of the wing after sur-
face perturbations.  This is accomplished via the pro-
gram APPLANFM, given the wing leading and trailing 
edges. 

APSHAPER computes mesh displacements using the 
points of a regular (U-V) structured grid covering the 
wing planform.  The structured grid points are per-
turbed directly, then bilinear mapping is used to perturb 
each point of the triangulated surface mesh.  The per-
turbation and mapping operations are quick since the 
grid is regular and the association of mesh points to grid 
quadrilaterals is explicit. 

Body type component perturbations are achieved using 
APSHBODY.  The body design variables allow for 
fore- and aft-body droop, body thickness and body 
camber changes.  Sine bumps can be applied vertically, 
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Fig. 2.  FUN:  Objective Function for QNMDIF. 
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spanwise or radially.  Thus, the fuselage height and 
width can be independently perturbed, or the perturba-
tion of both height and width can be performed using 
radial perturbations, which place the peak value of the 
sine function at user-specified circumferential locations 
from the bottom to the top of the fuselage.  The bumps 
can extend beyond the top and bottom of the fuselage to 
permit the centers of the bumps to be placed at the top 
or bottom of the body. 

APSHBODY differs from APSHAPER in that the body 
does not require an U-V mapping file, but rather com-
putes the relative longitudinal and circumferential loca-
tion of each grid point on the fly. 

Several design variable perturbations on the wing and 
fuselage of a CTV are demonstrated in Fig. 3.  The left 
side (pilot’s perspective) of the configuration in the 
figure is prior to perturbation, and the right side is after 
perturbation.  The forebody is drooped and a radial 
bump extending beyond the crest was used to perturb 
the centerline of the fuselage to represent a canopy.  A 
radial sine bump near the aft body is shown with its 
peak value placed approximately half way between the 
body center and the crown.  The forebody and aft body 
thickness design variables diminish to zero in the axial 
direction at the curvature break from the sharp to 
rounded fuselage.  The wing dihedral is reduced, and 
the outboard wing is washed out with 15° of twist.  A 
sine bump was applied to both upper and lower wing 
surfaces on the wing tip to demonstrate a large camber 
change.  A flap hinged at 20% chord (negative deflec-
tion) is simulated on the inboard panel of the wing.  
Simulations of leading and/or trailing edge flaps about 
arbitrary hinge lines can be used, and gaps are permit-
ted. 

Fig. 3.  Example of Surface Shape Functions Applied to 
the CTV Configuration. 

VOLUME MESH MOVEMENT STRATEGIES 
During the course of optimization the volume mesh of 
tetrahedra is perturbed in response to surface mesh per-
turbation, rather than being regenerated, if possible.  
Three reasons for this approach are (1) that it can take 
less wall clock time to derive a perturbed mesh, (2) the 
mesh-to-mesh interpolation scheme runs faster by reus-
ing previous results when mesh topologies are pre-
served, and (3) the gradients are typically more accurate 
when mesh movement is used compared with mesh 
regeneration.  Further information on mesh movement 
is available.20,21 

The idea behind mesh movement is to relax the volume 
mesh points so that they assume new positions that are 
compatible with the new boundary position.  Three par-
tial differential equation approaches were implemented:  
Laplace, biharmonic, and stress equilibrium.  All of 
these iterative techniques maintain the mesh topology, 
and are successful, at convergence, when the mesh is 
deformed without cell inversion (caused by overlapping 
edges).  It is possible to interpret the Laplace equation 
approach as modeling the mesh by a set of springs con-
necting the mesh points along the mesh edges.  Thus, 
the solution of Laplace’s equation corresponds to the 
equilibrium position of a set of springs in response to 
the new boundary position. 

The biharmonic equation can be thought of as a double 
application of Laplace’s equation, and this has the ad-
vantage of allowing a greater degree of mesh smooth-
ing.  Laplace’s equation and the biharmonic equation 
only allow for a weak coupling between the X, Y, and 
Z components of displacement. 

The equation for stress equilibrium allows X, Y, and Z 
displacements to be strongly coupled, unlike the previ-
ous two methods.  In this case, the mesh volume can be 
thought of as an elastic solid that relaxes to a new posi-
tion in response to the new boundary position. 

Solution of Laplace's equation is the least expensive 
option; solving the biharmonic equation is more com-
putationally expensive, and solving equations of stress 
equilibrium involves the largest computational cost.  
All mesh movement schemes were parallelized to make 
use of the allotted number of processors during 
optimization.  The loops were restructured, employing 
OpenMP™ directives. 

The three perturbation methods do require more CPU 
time than mesh regeneration from scratch, if a single 
processor is used.  The mesh movement techniques are 
more cost effective than re-creating a volume mesh 
when several CPUs (about 8 or more) are used simulta-
neously.  MESHMV is typically run on 16 processors 
so that simultaneous movements on successively 
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coarser meshes run together.  This takes about 2 min-
utes wall time for a 320,129-point mesh with 16 CPUs. 

It had been expected that the biharmonic and stress 
equilibrium equations would permit larger mesh defor-
mations without cell inversion.  Experience has shown 
only marginal improvements over the Laplace method 
with greater computational cost.  The mesh movement 
techniques work best for small surface perturbations.  If 
cell inversion occurs, the mesh is regenerated by 
MESH3D.  MESH3D is extremely robust and has not 
been known to fail during optimization.  However, the 
gradient computations have been shown to be less accu-
rate when the mesh is regenerated.  This is understood 
by realizing that mesh regeneration does not guarantee 
that a consistent number of volume mesh points or that 
mesh connectivity will be maintained under surface 
perturbations.  Changes in the number of mesh points or 
connectivity will lead to very small changes in the dis-
crete flow solution which will in turn reduce the accu-
racy of the gradient calculations. 

MESH3D takes about 7 minutes for a 320,129-point 
grid (1.9 million cells).  The Cartesian grid generation 
method used with FLOWCART takes about 2 minutes 
for a 1.7 million-point grid.  It also has never failed 
during the course of optimization.  Both MESH3D and 
FLOWCART are scalar, each using only one CPU. 

MULTIGRID MODIFICATIONS TO AIRPLANE 
Multigridding involves the use of two or more unstruc-
tured meshes to speed up the transfer of information 
through the flow field, thus shortening the time needed 
to find a steady solution.22,23 

The multigrid Runge-Kutta time stepping scheme re-
quires extra work per cycle.  Multigridding pays off 
because information travels farther on coarser meshes 
each time step than it can on the finest mesh.  Computer 
time spent on the coarser meshes and transferring in-
formation between meshes is a fraction of the time re-
quired for the finest mesh.  Each coarser mesh typically 
has 2 to 20 times fewer points than its successor. 

Each mesh in the collection is based on an AIRPLANE 
mesh that could be used by itself, without multigrid-
ding.  The aircraft surface triangulation should be simi-
lar from one mesh to the next, but points do not have to 
overlap.  A few aircraft surface points may be located 
slightly outside the next coarser or finer mesh, without 
harm.  Triangles on the symmetry plane and far field 
boundaries are typically on the same Cartesian bounda-
ries.  All meshes are stored in memory at the same time, 
ordered coarse to fine, together with interpolation ar-
rays, communication arrays, metrics, and many other 
quantities. 

 

INTERPOLATION 
Information is transferred from one mesh to the other 
by way of trilinear interpolation.  When a point, P, of 
one mesh lies geometrically inside a tetrahedral cell, 
ABCD, of another mesh, this information is stored in 
the flow solver as the four addresses of the containing 
cell vertices together with their four corresponding in-
terpolation coefficients.  For example, values of a func-
tion W at each of the cell vertices are combined in the 
following expression to find an interpolated value, WP, 
at point P: 

WP = ΦA W(A) + ΦB W(B) + ΦC W(C) + ΦD W(D) 

The interpolation coefficients ΦA, ΦB, ΦC, ΦD are 
formed by volume ratios, using the opposite face to 
form the numerator.  For example: 

ΦA = (Volume of PBCD) / (Volume of ABCD) 

The four coefficients sum to 1.0, so there are only three 
independent values. 

LOST POINTS 
Not every point in one mesh can be found in the next 
coarser or finer mesh.  This condition commonly occurs 
on the aircraft surface.  Fig. 4 illustrates this in two di-
mensions. 

A fine mesh on points A, B, C, D, E, and F is drawn 
with thin lines, and a coarse mesh on points P, Q, and R 
is drawn with thick lines.  The aircraft surface is below 
the dotted line, which joins points A, P, B, Q, C, R, and 
D.  Both polygonal curves ABCD and PQR are on the 
aircraft surface.  Coarse mesh point P is found in fine 
mesh triangle ABE, but coarse mesh point R is not con-
tained in the fine mesh—it is lost.  Similarly, fine mesh 
points A and B are found in the coarse mesh, while C 
and D are lost to the coarse mesh. 

In fine-to-coarse interpolation, lost coarse points are 
assigned values of neighboring points.  In the example 
above, values at fine mesh point C would be assigned to 
coarse mesh point Q because C is the fine mesh point 
closest to Q.  This rule is routinely applied to the solu-
tion when multigridding. 

A

B C 

D
E 

F

P

RQ 

Fig. 4.  Lost Points on the Aircraft Surface. 
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In coarse-to-fine interpolation, values at lost fine points 
are set to zero for a correction or to free-stream for a 
solution.  The latter case is not part of multigridding, 
but is only used when sequencing a converged solution 
from a coarse mesh to the next finer mesh.  The coarse-
to-fine interpolation coefficients are applied to aggre-
gate fine mesh corrections to the next coarser mesh, 
where they are called residuals, and they are also used 
to interpolate corrections in the other direction, from a 
coarse mesh to a fine mesh. 

TRANSFER OPERATORS 
Information passes between meshes during multigrid-
ding by way of three transfer operators: 

1. Solution variables are interpolated from fine to 
coarse by fine-to-coarse coefficients. 

2. Residuals are aggregated from fine to coarse by 
coarse-to-fine coefficients. 

3. Corrections are interpolated from coarse to fine by 
coarse-to-fine coefficients. 

The first and third interpolation operators are applied as 
previously described.  The second operator uses the 
same interpolation coefficients as the third operator to 
accumulate fine corrections to coarse residuals.  The 
sum of fine corrections equals the sum of coarse residu-
als, if there are no lost points. 

Residual aggregation with cells in 3D is analogous to 
triangles in 2D, shown in Fig. 5.  Thick coarse-mesh 
edges are drawn over thin fine-mesh edges.  Coarse 
point P is contained in the pentagonal neighborhood 
ABCDE.  Each fine mesh point sends portions of its 
correction to the vertices of the triangle containing it 

(red and blue dashed lines).  The size of the fraction is 
determined by an area ratio.  The fraction of the correc-
tion at Q, for example, that is added to the residual at P 
is the area of QAB divided by the area of PAB.  Only 
corrections at fine mesh points inside the pentagon con-
tribute to the residual at P (red dashed lines). 

V AND W SCHEMES 
When using two meshes for multigridding, the usual 
procedure is to alternate work between meshes, in what 
is known as a V cycle.  This is illustrated in the top 
diagram of Fig. 6.   The letter E in each circle indicates 

one step in the evaluation of the flow field.  In the pre-
sent case, three meshes are used, which we may call C, 
M, and F, for Coarse, Medium, and Fine, respectively.  
The V cycle on three meshes involves working in the 
order F-M-C-M-F.  This is shown in the bottom dia-
gram of Fig. 6.  The letter E in each circle has the same 
meaning as before, and the letter T indicates a transfer 
of data without updating the solution.  After the first F, 
a cycle in the time stepping scheme consists of -M-C-
M-F.  Convergence is evaluated at the end of each cy-
cle, and, when the scheme stops, it is the solution on the 
finest mesh that is used to compute forces. 

A more effective way to spread out the work is to re-
peat the V at the medium level, creating what is known 
as a W cycle.  In this approach, each cycle past the first 
F consists of -M-C-M-C-M-F.  This is illustrated in Fig. 
7.  The wall time required per cycle increases, but the 
number of cycles required for convergence is typically 
reduced, as is the total wall time for convergence. 

Many options exist beyond this, especially when using 
more meshes.  For example, adding a third V in the 
middle of a 3-mesh scheme can improve convergence.  
It can be useful to move a converged solution from one 
mesh to the next finer mesh, and then continue multi-
gridding, in what is known as mesh sequencing.  When 
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Fig. 5.  Aggregate Transfer Operator. 

Fig. 6.  The V Scheme on 2 and 3 Meshes. 
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using four or more meshes, a natural approach is to 
apply the W scheme recursively, see Fig. 8. 

Using a W cycle on three meshes is a robust approach, 
and it is the only variant applied in this report. 

The AIRPLANE multigridding flow solver has six free 
parameters to control aspects of each multigrid cycle.  
The Courant number, dissipative coefficient, and en-
thalpy-damping factor may be different for the coarse 
meshes than for the fine mesh.  The far field boundary 
condition on the coarse meshes may be frozen or up-
dated.  A relaxation factor may be applied to the aggre-
gate residuals, and a smoothing operator may be ap-
plied to the interpolated corrections.  These parameters, 
once established, may be left alone.  The solver is ob-
served to be robust and well suited to its role in the 
function evaluation part of the optimization process. 

THE AIRPLANE MULTIGRIDDING PROCESS 
This section describes the steps involved in running 
AIRPLANE using three-mesh multigridding in the con-
text of optimization.  Coarse, medium, and fine mesh 
files (numbered 1, 2, and 3, respectively) are created by 
MESH3D or MESHMV.  The three meshes may be 
generated simultaneously. 

The next step is to compute interpolation files using a 
program named APREPHIS.  The name indicates that it 
is an AIRPLANE (AP) utility that may re-compute 
(RE) the interpolation coefficients (PHIS).  APREPHIS 
uses multiple processors via compiler directives, and 
four copies may execute simultaneously.  When using 
three mesh files, there are four mesh pairings that re-
quire interpolation coefficients, namely (1,2), (2,1), 
(2,3), and (3,2).  The interpolation files are named 

phisnm.unf, where (n,m) indicates the pairing between 
meshes. 

A divide-and-conquer approach keeps the search down 
to roughly order N log(N) operations.  When 
MESHMV is successful, earlier interpolation files may 
be available, which can further cut the search time by 
roughly two orders of magnitude.  This works because 
MESHMV preserves topology.  APREPHIS checks for 
a match using old information before searching for a 
cell in one mesh containing a point in another mesh. 

The mesh files are quickly combined together into a 
file, named meshmg.unf, with a program named AP-
CATMSH, and the entire domain is split into regions of 
approximately equal size by PREMG.  PREMG is a 
recursive bisection preprocessor (PRE) that handles 
multigridding (MG).  At this point the number of proc-
essors to be used by the flow solver, a positive non-unit 
power of 2, is selected.  PREMG usually takes a few 
minutes and runs on only one CPU.  Message passing is 
organized around edges that cross boundaries between 
subdomains.  PREMG creates a large file, named 
premg.unf, containing the mesh information for the 
flow solver. 

The iterative part of the AIRPLANE flow solver, 
named MIDMPIMG, applies the Runge-Kutta scheme 
to find a steady Euler flow solution.  It uses the MPI 
message passing library and multigridding.  The opti-
mization program passes run control and convergence 
parameters to the flow solver through a text file.  The 
surface pressures and flow field solution may be stored 
in files at the end of the run.  MIDMPIMG usually 
takes much more wall time than APREPHIS, AP-
CATMSH, and PREMG.  Post-processing utilities may 
optionally be applied in order to carefully examine the 
flow field. 

AIRPLANE MULTIGRID ACCURACY AND SPEEDUP 
Performance of AIRPLANE when using 3-mesh multi-
gridding with a W cycle is examined for a transport 
aircraft and for a baseline CTV across a range of Mach 
numbers.  Accuracy and speedup for several multigrid-
ding cases across subsonic to transonic Mach numbers 
for the transport, and subsonic to high supersonic for 
CTV, are described in this section. 
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Fig. 7.  Two Cycles of The W Scheme on 3 Meshes. 

Fig. 8.  One Cycle of the W Scheme on 4 Meshes. 
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TRANSPORT AIRCRAFT 

Fig. 9.  Transport Aircraft, Mesh 6. 

The transport is a simple wing-body with an under-
wing pylon and flow-through nacelle (Fig. 9).  All cases 
were run at a constant angle of attack of –1.0° and 0.0° 
yaw.  Unstructured meshes of 7 different sizes were 
prepared.  The number of points in the first mesh is 
29,184.  The sixth mesh has 1,955,784 points.  Relative 
mesh sizes are shown in the following bar chart, Fig. 
10. 

Normalized Mesh Sizes

1.5% 4.7% 19.3%
52.9% 69.9%

100.0%
155.5%

1 2 3 4 5 6 7

Mesh Number

Fig. 10.  Transport Mesh Sizes Relative to Mesh 6. 

Solutions were generated for increasing Mach numbers 
up to 0.78, or until the flow solver returned unsteady or 
unstable results.  Convergence parameters were set at 
the beginning and left alone; it might be possible to 
extend some of the cases to higher transonic Mach 
numbers by changing convergence parameters. 

Fig. 11.  AIRPLANE Transport Drag Predictions. 

Drag predictions for all 7 meshes across the range of 
successful Mach numbers are shown in Fig. 11.  Curves 
are ordered top to bottom for meshes 1 to 7.  The curves 
get closer together as the meshes get finer.  The finer 
meshes encounter unsteady flow behavior near the py-
lon trailing edge at lower transonic Mach numbers.  The 
first three transport meshes produce inaccurate solu-
tions when used alone, but can be useful when multi-
gridding.  The predictions in the figure use no multi-
gridding for the first five meshes, then multigridding 
for the last two (346W and 347W).  The curve name 
indicates which meshes and cycle type were used.  For 
example, 346W indicates a solution on mesh number 6 
using meshes 3, 4, and 6, in a W cycle. 

Accuracy of the final prediction depends upon the finest 
mesh as well as the collection of meshes used.  The 
latter issue was studied in detail, using all combinations 
of three meshes ending with mesh 6. 

Fig. 12 shows how convergence of residual and drag 
vary across the ten possible multigridding cases, plus 
mesh 6 without multigridding, at three different Mach 
numbers, 0.6, 0.7, and 0.72, for the transport.  The 
curves are ordered top to bottom by decreasing flow 
solver wall time required to achieve an average residual 
of 10−6 in each figure.  The horizontal axis is hours, 
scaled 0 to 10 in each plot.  Every case uses 32 CPUs, 
each at 400 MHz, on an SGI Origin 2000 at NASA 
Ames.  Total mesh size, wall time, drag, and lift are 
tabulated at the bottom of the figure for every case. 

The force coefficients obtained with or without multi-
gridding indicate that the solution accuracy is not af-
fected via the multigridding approach.  Lift predictions 
differ by 0.0001, and drag predictions differ by about 
one tenth of a count, for all three Mach number cases.  
Cases marked “Unst.” are either unsteady or unstable 
for the set of meshes and/or convergence parameters 
used. 
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Mach 0.60 Mach 0.70 Mach 0.72 Meshes 

 & Cycle 
Total 
Points hours CD cts CL hours CD cts CL hours CD cts CL 

Mesh 6 1955784 6.754 62.205 .220365 7.092 78.665 .245895 11.856 85.920 .255108 
456 W 4356896 3.509 62.263 .220349 4.305 78.717 .245843 4.506 85.995 .255046 
356 W 3701263 2.562 62.265 .220342 3.123 78.719 .245834 3.303 85.998 .255037 
346 W 3367821 2.368 62.265 .220343 3.010 78.718 .245836 3.163 85.997 .255039 
256 W 3415536 2.007 62.270 .220332 2.529 78.724 .245821 3.027 86.003 .255023 
246 W 3082094 1.929 62.270 .220333 2.383 78.723 .245822 2.697 86.002 .255025 
156 W 3352245 1.816 62.279 .220319 2.202 78.734 .245801 2.349 86.013 .255001 
146 W 3018803 1.712 62.279 .220320 2.085 78.733 .245802 2.163 86.012 .255002 
236 W 2426461 1.261 62.275 .220318 1.526 78.729 .245804 Unst. N/A N/A 
136 W 2363170 1.092 62.279 .220311 Unst. N/A N/A Unst. N/A N/A 
126 W 2077443 0.831 62.292 .220285 Unst. N/A N/A Unst. N/A N/A 

 

Fig. 12.  AIRPLANE Transport Multigrid Convergence at Three Mach Numbers 
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AIRPLANE TRANSPORT
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Fig. 13.  Multigrid Speedup for the Transport Aircraft. 

The largest multigridding speedup, relative to the single 
grid solution on mesh 6, was obtained when the coarse 
meshes were much coarser than mesh 6.  The 126W 
case was over 8 times faster at Mach 0.6, for example, 
but it did not work at Mach numbers above 0.65.  Mul-
tigrid speedup for the transport is plotted in Fig. 13, for 
Mach numbers ranging from 0.3 to 0.74.  The curve 
labels are ordered top to bottom to match the order of 
the curves, with regard to the speedup ratio. 

Each point in the plot required two runs of the flow 
solver, one with and one without multigridding.  The 
ten experiments that ran at Mach numbers 0.6, 0.7, and 
0.72 for the three combinations ending with mesh num-
ber 6 are plotted with solid lines.  Speedups for these 
cases are ratios of wall times (hours spent in the itera-
tive part of the flow solver) seen in the table of Fig. 12.  
Multigrid speedup increases sharply between Mach 0.7 
and 0.72 in many cases, probably because of extra nu-
merical dissipation which is present when multigrid-
ding.  The solver without multigridding has a harder 
time converging at Mach 0.72 because of a strong 
shock, which is present at the trailing edge of the pylon. 

Results of three other measurements for meshes 4, 5 
(dashed lines), and 7 (circle, one point) are presented in 
the same plot for comparison.  Case 235W goes from 
Mach 0.3 to 0.72, case 234W goes from Mach 0.3 to 
0.74, and case 347W has only one point at Mach 0.7 
with a speedup of 3.  The result for mesh number 7, 
which has over 3 million points, took 14.2 hours with-

out multigridding, but only 4.6 hours with multigrid-
ding. 

Five of the speedup curves start at Mach 0.3 and go to 
Mach 0.7, 0.72, or 0.74, after which the results were 
unsteady or unstable. 

Using finer meshes on the coarse end tends to be more 
robust, but it is much slower.  The 236W case ran to 
Mach 0.7, but it is only 4-5 times faster. 

BASELINE CTV 
Multigridding results for the CTV baseline configura-
tion were also examined for accuracy and speedup, but 
across a wider range of 11 Mach numbers, from 0.3 to 
8, at alpha 5°. 

Normalized Mesh Sizes

4.4% 19.3%

100.0%

1 2 3
Mesh Number

Fig. 14.  CTV Mesh Sizes Relative to Mesh 3. 

The single grid case used a fine mesh of 324,475 points.  
Only one multigrid case was examined, using coarse 
and medium meshes of 14,234 and 62,687 points, re-
spectively, and the same fine mesh as before.  Mesh 
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sizes are shown in Fig. 14, scaled relative to the fine 
mesh. 

Convergence parameters were tuned for each case, and 
each run stopped at residual 5×10−5 (approximately 5 
orders of magnitude reduction of the average residual).  
Suitable multigridding parameters were not found be-
yond Mach 4 (solution divergence or no computational 
time improvement when multigridding).  Drag predic-
tions are plotted in Fig. 15.  The use of multigridding 
has little affect on the solutions.  The drag prediction 
changed by an average of 2 counts.  The largest differ-
ence was 7 counts at Mach 2 (1%).  At Mach 0.8 the 
difference was 0.4 drag counts. 

Fig. 15.  AIRPLANE CTV Drag Predictions. 

When multigridding worked, it achieved a speedup of 
at least 2, with a speedup of 12 at Mach 0.8, see Fig. 16. 

Fig. 16.  Multigrid Speedup for Baseline CTV. 

OPTIMIZATION COMPUTATIONAL TIME ESTIMATES 
An example of the wall and computational time will be 
reported for a three design point optimization for the 
CTV.  The goal was to improve the performance and 
handling characteristics compared to a baseline con-
figuration, by applying small to moderate shape 
changes to the wing and body.  The three Design Points 
(DP), are shown in Table 1, below. 

A full span solution was required for DP 3, with a 10° 
side slip angle.  Multigridding (M.Grid) was success-
fully used for the Mach 0.3 cases, but was not success-
ful at Mach 6.  The Mach 6.0 solution was obtained 
solely on the fine mesh.  Approximate flow solver wall 
times (seconds) when using 64 CPUs on a 300 MHz 
SGI Origin 2000 are shown in the rightmost column. 

DP M α β Iter. Span M.Grid Sec. 
1 0.3 8.5 0 200 Half Yes 381 
2 6.0 13.1 0 1000 Half No 470 
3 0.3 10.0 10 200 Full Yes 580 

Table 1.  CTV Design Points 

Note that the full span solutions required less than dou-
ble the half span solution times.  Parallelization is more 
efficient for the full span case because of the reduction 
in the ratio of inter-domain communication time com-
pared with domain processing time.  The flow solver 
generates these three solutions in about 24 minutes.  A 
single-point design requiring half-span computations 
would likely take one-quarter of this time, or about 6 
minutes. 

Seven design variables were used.  These include wing 
twist, fore/aft body droop, forebody camber and fore-
body upper surface thickness.  The objective function is 
a sum of six terms, shown below.  The weights σ1-σ6 
were chosen based on the starting solutions at each 
DP(1-3) and the importance of each term.  Typically σn 
is chosen such that each term is equal to 1.0 and then 
scaled based on importance of each term relative to the 
others as determined by the designer. 

Objective function = 
 σ1  CD(DP1)/CL(DP1) + σ2  CD(DP2)/CL(DP2) + 
 σ3 (CM(DP1) − 0.0001)2 + σ4 (CM(DP2) − 0.0001)2 + 
 σ5 (Cl(DP3) + 0.01)2 + σ6 (Cn(DP3) − 0.01)2 

The first two terms address aerodynamic performance, 
the next two are pitching moment penalty terms to ad-
dress vehicle trim, and the last two are rolling and yaw-
ing moment penalty terms. 

The optimization process required 127 function evalua-
tions to complete 10 design iterations.  Each evaluation 
involved perturbing the mesh and computing three flow 
solutions, one for each design point. 

The time required by the optimization program 
QNMDIF is insignificant.  Wall clock time is domi-
nated by function evaluation, that is, the time it takes to 
analyze a given shape at the three design points for this 
case.  Flow solutions for each design point are gener-
ated sequentially.  AIRPLANE’s domain decomposi-
tion programs recursively splits the computational mesh 
in half requiring the number of processors (64 in this 
case) to be a power of 2.  The main steps and approxi-
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mate wall times for this multipoint optimization are 
shown below: 

 

Runs Operation CPUs Time 
3 Perturb surface mesh 1 26 s. 
3 Move volume mesh 16 125 s. 
8 Find interp. coeff.s 16 207 s. 
2 Mesh preprocessing 1 543 s. 
3 Run the flow solver 64 1431 s. 

  Total 2332 s. 

Table 2.  Operations and Wall Clock Times 

 

Surface mesh perturbations include a thickness check, 
and are run sequentially for the three surface meshes.  
This takes a total of about 26 seconds. 

Volume mesh perturbation is parallelized and is usually 
much faster than regenerating the mesh from scratch.  
Three meshes are moved at the same time.  Wall time is 
dominated by the finest mesh, the other two perturba-
tions are essentially free.  In one case it took about 125 
wall seconds, 1506 seconds CPU time on 16 CPUs (12× 
speedup) for the finest mesh; the other two meshes fin-
ished earlier. 

Computation of the interpolation coefficients is 
parallelized, four sets of coefficients are required for 
three level multigridding, and each set may be 
computed simultaneously.  Typically four 16-CPU 
processes run at the same time, the interpolations are 
rapid between the coarse meshes and with substantially 
greater CPU time requirements for interpolations 
involving the finest mesh.  It takes about 69 wall 
seconds on the finest mesh, 676 CPU seconds on 16 
CPUs (10× speedup).  These numbers are for a half-
span mesh, and the results are used for the first two 
design points.  The full-vehicle mesh is obtained by 
mirroring the half-span mesh, but interpolation 
coefficients are recomputed.  
The flow solver requires a scalar preprocessing step to 
set up recursive bisection domain decomposition used 
by MPI.  It takes about 181 seconds to preprocess a 
non-yawed mesh.  This step only needs to be done once 
for the first two (half span) design points.  It takes about 
twice as long for the full span mesh. 

The three design points have different computational 
requirements (Table 1), about 1431 seconds total.  The 
flow solver uses 3-mesh multigridding for design points 
1 and 3, and no multigridding (computation on just the 
finest mesh) for design point 2.  The mesh and compu-
tational requirements are less than doubled for design 
point 3 in order to compute rolling and yawing moment 
coefficients with a full span mesh at non-zero sideslip. 

The optimization was stopped after 127 function 
evaluations, during the eleventh optimization iteration 
when improvements were no longer achieved.  Assum-
ing the mesh movement procedure always had been 
successful, the wall time would have been about 83 
hours, or three and a half days.  (It takes about 39 min-
utes wall time per function evaluation, Table 2).  A 
more conservative estimate would be four days to re-
peat this case. 

A single-point optimization such as design point 1 
(Mach 0.3) would require approximately 21 minutes per 
function evaluation, or 45 hours (1.9 days) for the 127 
function evaluations used for the aforementioned opti-
mization problem. 

OPTIMIZATION EXAMPLE 
An example of the AIRPLANE optimization process 
will be shown for a design modification of a CTV con-
figuration in which wind tunnel data, Navier-Stokes 
computations, and flight simulation data were obtained 
for the baseline and optimized configurations.  AIR-
PLANE was chosen since it was found to be more ro-
bust than FLOWCART.  Previous use of FLOWCART 
and AIRPLANE optimization on a proprietary vehicle 
found that FLOWCART would become unstable during 
the course of optimization.  The CFL number input was 
periodically modified manually to obtain convergence 
and optimization was restarted.  Very small changes to 
the CFL number (values between 1.3 and 1.5) were 
found to correct the convergence problem.  Hence, 
FLOWCART would require an automated method to 
change the CFL number when the optimization method 
detected no convergence.  AIRPLANE, in contrast, did 
not exhibit any convergence failures during optimiza-
tion. 

The AIRPLANE-based optimization example is some-
what academic in nature since the wing twist and cam-
ber were modified without appropriate structural or 
weight constraints.  It is often quite informative to op-
timize without constraints to determine the design vari-
able sensitivity, and to determine constraint locations, 
before starting the design in earnest. 

The CTV was optimized at two design points (Mach 
0.3, α=9°, and Mach 6.0, α=13°).  The design objective 
was to modify the longitudinal stability so that the ve-
hicle would be trimmed or nearly trimmed while simul-
taneously improving the performance of the vehicle at 
both design points.  The objective function was of the 
form: 

Objective Function = σ1 (CD/CL) + σ2 (CM − 0.0001)2 

where σ1=10, and σ2 =10,000.  The wing twist, camber 
and elevator (wing flap) deflection angle were modi-
fied.  This required 13 wing design variables, 1 twist, 
10 camber variables, (5 sine functions distributed at the 
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break and 5 along the tip of the wing), and 2 elevator 
(wing flap) deflection angles.  The wing flap angle was 
determined independently of the camber and twist de-
sign variables at the two Mach numbers, thus different 
geometries were analyzed at each design point during 
optimization, since separate meshes were required for 
the different flap settings at the two Mach numbers.  
The wing tip camber modifications were lofted inward 
to the wing break, and the break section modifications 
were lofted to the tip and inward to near the side of the 
body.  It is possible to carry the wing modification in-
board of the body intersection, however, when wing 
and body components are altered independently, poor 
quality triangles are formed near the intersection, mak-
ing the surface mesh unsuitable for AIRPLANE.  On 
the other hand, FLOWCART can handle this situation. 

The optimized configuration showed significant camber 
changes combined with 12.4° of twist (wash out) about 
the wing trailing edge.  The camber at the break was 
deemed excessive, since the upper surface was concave.  
The upper surface of the break section was modified 
manually to eliminate the concavity.  The resulting de-
sign is shown in Fig. 17 (compare with Fig. 1).  The 
optimized elevator deflection angles were 0.05° (flap 
down) and −5.2° (flap up) for the Mach 0.3 and Mach 
6.0 design points, respectively.  Plastic models of this 
configuration and the baseline configuration were built 
for evaluation in the Ames 32 inch by 48 inch atmos-
pheric low speed wind tunnel (Mach 0.11).24  The scale 
factor was 1/20 of the full size configuration, resulting 
in a model length of 22 inches. 

Fig. 17.  Optimized CTV Configuration. 

The moment coefficients for the baseline and optimized 
configurations are shown in Figs. 18 and 19, respec-
tively.  Computations from FLOWCART, OVER-
FLOW,25,26 and the experimental data can be compared.   
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Fig. 18.  Baseline CTV Configuration, Mach ≤ 0.3. 
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Fig. 19.  Optimized CTV Configuration, Mach ≤ 0.3. 
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The optimized vehicle has greatly improved longitudi-
nal trim characteristics compared to the baseline con-
figuration (compare Figs. 18 and 19).  Although the 
optimization objective fought to reduce drag, the drag 
coefficient increased approximately 190 counts or 16% 
(not shown). 

The CFD computations were obtained at Mach 0.3, 
without the flap deflections obtained with optimization.  
The experimental data were taken at Mach 0.11 (also 
without flap deflections), with a Reynolds number of 
1.1 million based on body length.  The subsonic Mach 
number difference between the computational and ex-
perimental data should have minimal effects on the 
force and moment coefficient data. 

The Navier-Stokes viscous computations were at the 
wind tunnel Reynolds number (0.5 million per foot) 
using the k-ε turbulence model. 

The wind tunnel data do not include a base drag or cav-
ity correction.  The Euler and Navier-Stokes computa-
tional data include the base in the integration of force 
and moment coefficients, without any special treatment 
of the base. 

Hypersonic characteristics for the second design point 
at Mach 6 were computed using AIRPLANE, FLOW-
CART and OVERFLOW.  Moment coefficient compu-
tations of the baseline and optimized configurations are 
shown in Fig. 20. Here, the OVERFLOW computations 
were near flight conditions at a Reynolds number of 2 
million per foot and the Baldwin-Barth turbulence 
model was used. 

Note that the predictions are not plotted to the same 
scale as the Mach 0.3 results.  The aerodynamic 
changes resulting from optimization are small at Mach 
6.0 in comparison with the subsonic results.  This is due 
to the nearly constant upper surface pressures at high 
Mach and angle of attack.  However, the trim character-
istics of the optimized configuration show improvement 
for both the Euler and Navier-Stokes computations 
compared with the baseline.  The configurations would 
be closer to trim if the computations had included the 
−5.2° flap deflection determined during optimization.  
The changes to the drag coefficient were minimal, with 
a 15 count or 5% increase over the baseline (not 
shown). 

PILOTED SIMULATIONS 
Navier-Stokes and Euler computational analyses were 
used as data for the Ames Vertical Motion Simulator.  
NASA astronaut piloted time-history flight data for the 
baseline and optimized configurations are shown in Fig. 
21 for approach and landing flight starting from an alti-
tude of 5000 feet at a velocity of 250 knots.  Spoilers (a 
split rudder) were necessary to reduce the velocity of 
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Fig. 20.  Baseline and Optimized Configurations, Mach 
6.0. 

the vehicles.  However, upon deflection they increase 
the pitching moment (nose up) of the vehicles com-
pared to the computations in Figs. 18 and 19.  The im-
provement in trim characteristics of the optimized con-
figuration is shown by the reduction of the magnitudes 
of the elevator deflections used, compared to the base-
line configuration when the spoilers are not deflected 
(after 50 seconds). 

The optimization example just reported is one of four 
AIRPLANE-based designs of the CTV configuration 
that were assessed in the VMS using Cooper-Harper 
ratings27 for the handling quality assessment.  AIR-
PLANE was further used to re-design one of the four 
vehicles during a two-week period.  Five separate op-
timizations from which a single design was selected 
were performed during this period.28  This rapid redes-
ign allowed the astronauts to assess a 5th configuration 
during the one-month entry in the flight simulator.  
Four of the five optimized configurations obtained 
Cooper-Harper ratings of 2 (good/negligible deficien-
cies), and one of them was rated at level 1 (excel-
lent/highly desirable). 
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Fig. 21.  VMS Flight Simulation Data for Approach and Landing from 5000 feet at 250 knots. 

 

AIRPLANE/FLOWCART GRADIENT 
AND SOLUTION COMPARISONS 

Prior to the design of the CTV, FLOWCART and AIR-
PLANE were used to study the X-37 configuration.  
These optimization tools were used in an attempt to 
improve the stability and control and lift/drag ratio of 
the configuration.  The design variables in this example 
are the multipliers of sine-based shape functions ap-
plied to the wing surfaces.  Forward and backward fi-
nite difference calculations for each design variable and 
for each code are shown in Fig. 22. 
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Fig. 22.  RLV Finite Difference Gradients. 

Confidence in finite difference gradient accuracy is 
high when the forward and backward gradients have the 
same sign and have approximately the same magnitude.  
Notable differences in the gradient values between 
AIRPLANE and FLOWCART led to an examination of 
the second derivatives calculated based upon the for-
ward and backward first derivatives (see Fig. 23). 
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Fig. 23.  RLV Second Derivatives. 

The negative values of the second derivatives seen in 
the FLOWCART solutions pose a significant problem 
from an optimization standpoint since they indicate a 
convex (and possibly multi-modal) design space.  
While the ill-posed condition is corrected by QNMDIF 
through a simple change of sign, the convexity often 
implies a more fundamental problem.  Negative second 
derivatives can occur for the following two reasons.  
First, that the design problem is poorly formulated (i.e. 
that it is truly multi-modal).  Second, the negative val-
ues can arise from inaccurate calculations of the finite 
difference gradients themselves.  In the problem at 
hand, the objective function is a combination of mini-
mizing the drag-to-lift ratio and trim.  Both of these 
functions are usually concave with respect to vehicle 
shape and hence it is highly improbable that second 
derivatives with respect to several design variables 
would all have negative signs.  A more likely cause for 
the negative second derivatives is in the finite differ-
ence calculations for the FLOWCART cases.  There are 
two possibilities.  First, the fact that there is no easy 
way to use a “smooth” mesh movement strategy when 
calculating gradients for a Cartesian mesh can lead to 
problems with volume mesh points appearing and dis-
appearing during re-meshing for the gradients.  Second, 
the level of convergence of the FLOWCART solutions 
may not have been sufficient for either the initial solu-
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tion or for the subsequent perturbed solution to render 
accurate gradients.  More detailed studies will need to 
be performed to determine the actual cause. 

In spite of the differences in derivative computations 
with AIRPLANE and FLOWCART, QNMDIF pro-
ceeds without difficulty for both codes.  The optimiza-
tions after one complete design iteration with the two 
codes yielded very similar results.  The values of the 
design variables and the percentage reduction (gain) of 
the objective function after one design iteration are 
compared in Fig. 24.  The fact that both methods were 
able to make similar refinements after one iteration 
implies a success when there was plenty of room for 
improvement.  A better test for an optimization method 
occurs when improvements are very difficult to obtain 
and only very accurate gradients can reveal the correct 
direction to proceed. 
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Fig. 24.  RLV Design Variables. 

For further evaluation of FLOWCART-based optimiza-
tion, a simplified four-design-variable single-point 
(Mach 1.2, α=10°) design problem was set up for the 
CTV configuration.  The design variables were wing 
twist (variable 1) from the root to tip and the camber at 
the wing break lofted to the tip and the side of body.  
The camber modification used three design variables 
located at the 30, 50, and 70 percent chord locations 
(variables 2, 3, and 4).  The identical design problem 
was run with AIRPLANE for comparison purposes.  
The gradient and second derivative computations for 
the two codes are shown in Figs. 25 and 26.  The for-
ward and backward gradients computed with AIR-
PLANE are more consistent than those computed via 
FLOWCART.  However, FLOWCART’s second de-
rivative computations have improved compared with 
the computations for the RLV design, with 3 of the 4 
second derivatives now positive.  This improvement 
may be due to a finer mesh with increased refinement 
near the surfaces of the configuration, that was gener-
ated using a new feature in the Cartesian mesh genera-
tor that refines near the surface, based on the size of the 
surface triangulation used for AIRPLANE.  The results 
after three design iterations are shown in Fig. 27.  
FLOWCART and AIRPLANE show similar design 

variable values and comparable design improvements.  
Hence, this problem offers a second and better founded 
demonstration that FLOWCART is quite capable of 
gradient-based numerical optimization. 
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The two comparisons shown were for aerospace vehi-
cles with bluff fuselage bases that produce unsteady 
separated flow.  The application of an Euler code to 
such a viscous-dominated problem is questionable, and 
convergence is difficult to achieve.  However, it is evi-
dent from the computations that the numerical dissipa-
tion used to stabilize the convergence for Euler compu-
tations can simulate, to a limited extent, the effects of 
viscosity.  It is recognized that this is non-physical, but 
Navier-Stokes based optimization is much too costly. 
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AIRPLANE was able to achieve convergence of ap-
proximately 5 orders reduction when multigridding was 
employed.  While the upwind scheme in FLOWCART 
produces crisp shock resolution, the minmod limiter 
used with it fluctuates in near-constant portions of the 
flow field preventing deep convergence of the residual 
norms.29  However, FLOWCART’s force and moment 
coefficients do rapidly stabilize.  These facts considered 
alone would still yield a questionable result, but the 
agreement with the converged AIRPLANE solutions 
helps to affirm the FLOWCART solutions.  The lack of 
residual convergence with FLOWCART and the use of 
different grids with each new design variable are 
thought to be the primary reasons for the slightly poorer 
gradient computations compared with AIRPLANE.  If 
the flow phenomena were without strong shocks or 
separation, FLOWCART would likely produce im-
proved gradients. 

CONCLUDING REMARKS 
Two optimization tools were developed using AIR-
PLANE and FLOWCART, and both were successful in 
making design improvements.  These tools were em-
ployed on aerospace vehicles with difficult flow phys-
ics, but they are also well suited for any type of aircraft. 

AIRPLANE proved to be extremely robust and did not 
fail during the optimizations shown in this report and 
several other designs not reported herein.  FLOW-
CART, however, required periodic modification of the 
input variables in order to proceed.  Although one can 
automate the hand manipulations of the input file, a 
robust code will probably prove to be the more efficient 
approach. 

Tools were developed to make these optimization tech-
niques computationally efficient.  This includes the 
development of a method to perturb the surfaces of 
wing and body type components (used by AIRPLANE 
and FLOWCART) and volume mesh movement 
schemes (used by AIRPLANE).  The mesh movement 
techniques were fairly successful.  They were effective 
approximately 85% of the time.  The gradients were 
better when the meshes were deformed rather than re-
generated, and, when successful, the methods reduced 
the grid generation wall time by 71 percent when 16 
CPUs were used. 

A multigrid capability was added to the flow solver 
within AIRPLANE and was evaluated for a range of 
Mach numbers on a full component transport and CTV 
configuration.  The multigrid option significantly re-
duced the computational requirements to achieve con-
vergence.  Typical speedup factors of 3 to 5 were ob-
served. 

The multigrid studies suggest that the size of the 
coarser grids should be reduced by factors of 8 to 20 

between successive grids for increased speed up, but 
coarsening the meshes too rapidly can compromise the 
robustness of the code. 

OBSERVATIONS / RECOMMENDATIONS  
FOR METHOD IMPROVEMENTS 

Central difference gradient computations are expensive.  
An adjoint method could be employed for these compu-
tations in the future to reduce the number of computa-
tions to the equivalent of two flow solutions for any 
number of design variables (provided it is parallelized 
and uses multigridding). 

Constraints implemented through the use of penalty 
terms added to the objective function create rapid 
changes in the design space and cause the method to 
take many search steps to find a direction for an im-
provement.  QNMDIF should be replaced by a con-
strained gradient method such as NPSOL30 in the fu-
ture. 

The FLOWCART-based optimization method allows 
for the component intersections to be changed during 
the course of optimization.  The AIRPLANE-based 
method, however, needs an enhanced mesh movement 
or deformation method to improve the surface triangu-
lation quality in the vicinity of new intersections, with 
properly formed tetrahedra near the intersected surfaces 
automatically generated. 
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