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This paper presents an adjoint method for the optimal control of unsteady flows. The
goal is to develop the continuous and discrete unsteady adjoint equations and their cor-
responding boundary conditions for the time accurate method. First, this paper presents
the complete formulation of the time dependent optimal design problem. Second, we
present the time accurate unsteady continuous and discrete adjoint equations. Third,
we present results that demonstrate the application of the theory to a two-dimensional
oscillating airfoil. The results are compared to a multipoint approach to illustrate the
added benefit of performing full unsteady optimization.

Introduction

In the past decade, aerodynamic shape optimiza-
tion has been the focus of attention due largely to
advanced algorithms that have allowed researchers to
calculate gradients cheaply and efficiently. The ma-
jority of work in this area have been focused on the
design of aerospace vehicles in a steady flow envi-
ronment. Investigators have applied these advanced
design algorithms, particularly the adjoint method, to
a vast number of problems, ranging from the design
of two-dimensional airfoils to full aircraft configura-
tions to decrease drag, increase range, and reduce sonic
boom. These problems have been tackled using many
different numerical schemes on both structured and
unstructured grids. The reference sections in the fol-
lowing papers by Nadarajah et. al.1,2 contains a list
of papers by various different authors on the subject
of aerodynamic shape optimization. This list by no
means is comprehensive but should provide a reader
who is interested in this research area a list of current
efforts.

Unlike fixed wing aircrafts, helicopter rotors and
turbomachinery blades are constantly subjected to un-
steady loads. Therefore, optimal control of unsteady
flows is essential to improving the performance of he-
licopter rotors and turbomachinery by reducing the
unsteady effects that contribute towards flutter, buf-
feting, poor gust and acoustic response, and dynamic
stall.

∗Graduate Student, Student Member AIAA
†Thomas V. Jones Professor of Engineering, Stanford Uni-

versity, AIAA Fellow
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Helicopter Rotors. The flight envelope of a he-
licopter rotor is set by the compressibilities effects
experienced by the advancing rotor blade and the re-
treating blade dynamic stall. As the helicopter forward
flight speed is increased, the freestream velocity ob-
served in the reference frame of the advancing blade is
that of the sum of the helicopter forward flight speed
and the speed of the advancing blade. At high cruise
speeds, the freestream Mach number observed by the
advancing blade reaches levels where local supersonic
zones on the surface of the rotor blade are present.
These regions usually terminate with a shock wave
which causes a sudden increase in wave drag. During
the retreating phase, the blade incidence approaches
the stall angle, thus causing separation to occur on
the upper surface of the blade which leads to a loss of
lift.

At the 38th Cierva Memorial Lecture, Wilby3 indi-
cated that during the retreating blade stall it is the
dramatic change in pitching moment more than the
loss of lift that imposes a greater constraint on the
design of the rotor blades. The change in pitching mo-
ment causes a large oscillatory load on the blade pitch
control mechanism which reduces its fatigue life, thus
increasing the operating cost of the helicopter. Over
the years, researchers in the field of rotorcraft aero-
dynamics have developed ingenious methods to solve
these problems. Their efforts have been focused on de-
veloping blade profiles that have a high maximum lift
coefficient which allows the retreating blade to avoid
stall incidence, low wave drag during the advancing
phase, and low pitching moment to reduce blade twist
and control loads. The introduction of the swept tip
to reduce the wave drag and reflex camber towards

1 of 13

American Institute of Aeronautics and Astronautics Paper 2002-5436



the rear portion of the upper surface to increase neg-
ative loading thus reducing the pitching moment are
just some of the technologies introduced over the last
twenty years.
Turbomachinery. The flow through a turbomachine
is highly nonlinear due to variation of the hub-to-tip
distance along the blade row, blade-to-blade interfer-
ence, and interactions between the rotors and stators.
The presence of sources that generate nonlinear flow
within the turbomachine have an unfavorable effect on
the flutter characteristics of the blades. Researchers
have developed blade profiles with good response to
incoming gust and acoustic disturbances.

Diverse methods have been employed in the de-
sign of rotorcraft and turbomachinery blades. The
following are a selected number of papers on this
topic. Ghayour et. al.5 solved the unsteady tran-
sonic small disturbance equation and its continuous
adjoint equation to perform an inverse design at Mach
0.6. Aerodynamic shape optimization of rotor airfoils
in an unsteady viscous flow was approached by Yee
et. al.6 using a response surface methodology. Here
the authors used an upwind-biased-factorized implicit
numerical scheme to solve the RANS equations with a
Baldwin-Lomax turbulence model. A response surface
methodology was then employed to optimize the rotor
blade. The objective function was a sum of the L/D
at three different azimuth angles and was later rede-
fined to include unsteady aerodynamic effects. Florea
et. al.7 modeled a cascade of turbomachinery blades
using the steady and time-linearized Euler equations.
The gradients were then computed using the discrete
adjoint approach. Both the flow and adjoint equa-
tions were solved using a finite-volume Lax-Wendroff
scheme. Both aeroelastic and aeroacoustic objective
functions were used to improve the aeroelastic stabil-
ity and acoustic response of the airfoil.

Traditionally, a multipoint approach has been used
for the optimization of blade profiles in an unsteady
flow environment. This approach only requires a small
extension of a researcher’s steady flow design code in
order to redesign a blade or airfoil profile. A typi-
cal multipoint design method requires the following
three steps: First, steady flow solutions are computed
for a various number of cases by varying freestream
conditions. Second, the gradients for each case is com-
puted using either a classical finite-difference method
or using an adjoint approach. Third, the gradients are
weighted and the blade profile is redesigned to satisfy
the design objective.

In this paper, we develop a framework to perform
sensitivity analysis in a nonlinear unsteady flow envi-
ronment and to further modify the shape of the object
to achieve the objective of the design using a full un-
steady optimization method based on control theory.
Optimal control of time dependent trajectories is gen-
erally complicated by the need to solve the adjoint

equation in reverse time from a final boundary condi-
tion using information from the trajectory solution,
which in turn depends on the control derived from
the adjoint solution. In this work, we extend the ad-
joint method to unsteady periodic flows using a time
accurate approach. The time accurate unsteady ad-
joint equations are based on Jameson’s cell-centered
multigrid-driven fully-implicit scheme with upwind-
biased blended first and third order artificial dissipa-
tion fluxes.4

The goal of this research is to develop both the
time-accurate continuous and discrete adjoint equa-
tions and use them in the redesign of the RAE 2822
and VR-7 rotor airfoils undergoing a pitching oscilla-
tion to achieve lower time-averaged drag while keeping
the time-averaged lift constant. This technique is com-
pared to a multipoint and steady adjoint approach to
gauge the effectiveness of the method.

Governing Equations
In order to allow for geometric shape changes it is

convenient to use a body fitted coordinate system, so
that the computational domain is fixed. This requires
the formulation of the Euler equations in a trans-
formed coordinate system. The Cartesian coordinates
and velocity components are denoted by x, y, and u,
v. For a control volume Ω with a moving boundary
∂Ω and moving with Cartesian velocity components
xt and yt, the equations of motion of the fluid can be
written in integral form as

d

dt

∫ ∫

Ω

wdxdy +
∮

∂Ω

(fdy − gdx) = 0, (1)

where the state vector w, inviscid flux vector f and g
are described respectively by

w =





ρ
ρu
ρv
ρE





, f =





ρ (u− xt)
ρu (u− xt) + p

ρv (u− xt)
ρE (u− xt) + pu





,

g =





ρ (v − yt)
ρu (v − yt)

ρv (v − yt) + p
ρE (v − yt) + pv





. (2)

In these definitions, ρ is the density and E is the total
energy. The pressure is determined by the equation of
state

p = (γ − 1) ρ

{
E − 1

2
(uiui)

}
.

For discussion of real applications using a discretiza-
tion on a body conforming structured mesh, it is also
useful to consider a transformation to the computa-
tional coordinates (ξ1,ξ2) defined by the metrics

Kij =
[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =
[

∂ξi

∂xj

]
.
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The Euler equations can then be written in computa-
tional space as

∂ (Jw)
∂t

+
∂Fi

∂ξi
= 0 in D, (3)

where the inviscid flux contributions are now defined
with respect to the computational cell faces by Fi =
Sijfj and the quantity Sij = JK−1

ij represents the
projection of the ξi cell face along the xj axis.

When equation (3) is formulated for each computa-
tional cell, a system of first-order ordinary differential
equations is obtained. To eliminate odd-even decou-
pling of the solution and overshoots before and after
shock waves, the conservative and viscous fluxes are
added to a diffusion flux. The artificial dissipation
scheme used in this research is a blended first and third
order flux, first introduced by Jameson, Schmidt, and
Turkel.9 The artificial dissipation scheme is defined as

Di+ 1
2 ,j = ε2i+ 1

2 ,j(wi+1,j − wi,j)

− ε4i+ 1
2 ,j(wi+2,j − 3wi+1,j + 3wi,j − wi−1,j). (4)

The first term in equation (4) is a first order scalar
diffusion term, where ε2

i+ 1
2 ,j

is scaled by the normal-
ized second difference of the pressure and serves to
damp oscillations around shock waves. ε4

i+ 1
2 ,j

is the
coefficient for the third derivative of the artificial dis-
sipation flux. The coefficient is scaled so that it is zero
at regions of large gradients, such as shock waves and
eliminates odd-even decoupling elsewhere.

General Formulation of the
Time-Dependent

Optimal Design Problem
Optimal control of time dependent trajectories is

generally complicated by the need to solve the adjoint
equation in reverse time from a final boundary condi-
tion using data from the trajectory solution, which in
turn depends on the control derived from the adjoint
solution.

Introduce the cost function

I =
∫ tf

0

L(w, f)dt +M(w(tf )),

where the function L depends on the flow solution w,
and the shape function f and the function M depends
on the time dependent flow solution. Assume that
the following equation defines the time-dependent flow
solution

∂w

∂t
+ R(w, f) = 0,

where R represents a residue containing the convec-
tive and dissipative fluxes. A change in f results in a

change

δI =
∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt +

∂MT

∂w
δw(tf ),

(5)
in the cost function. The variation in the flow solution
is

∂

∂t
δw +

∂R

∂w
δw +

∂R

∂f
δf = 0. (6)

Next, introduce a Lagrange multiplier ψ to the time-
dependent flow equation, integrate it over time and
subtract it from the variation of the cost function to
arrive at the following equation.

δI =
∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt +

∂MT

∂w
δw(tf )

−
∫ tf

0

ψT

(
∂

∂t
δw +

∂R

∂w
δw +

∂R

∂f
δf

)
dt. (7)

By integrating the term
∫ tf

0
ψT ∂

∂tδwdt by parts, yields

δI =
∫ tf

0

(
∂LT

∂w
+

∂ψT

∂t
− ψT ∂R

∂w

)
δwdt

+
(

∂MT

∂w
− ψT (tf )

)
δw(tf )

+
∫ tf

0

(
∂LT

∂f
− ψT ∂R

∂f

)
δfdt.

Choose ψ to satisfy the adjoint equation

∂ψ

∂t
=

(
∂R

∂w

)T

ψ −
(

∂L
∂w

)

with the terminal boundary condition

ψ(tf ) =
∂M
∂w

.

Then
δI = GT δf,

where

GT =
∫ tf

0

(
∂LT

∂f
− ψT ∂R

∂f

)
dt.

The sensitivity derivatives are determined by the so-
lution of the adjoint equation in reverse time from the
terminal boundary condition and the time-dependent
solution of the flow equation. These sensitivity deriva-
tives are then used to get a direction of improvement
and steps are taken until convergence is achieved.

The computational costs of unsteady optimization
problems are directly proportional to the desired num-
ber of time steps. The unsteady flow calculation can
be obtained either by the use of implicit time-stepping
schemes or a non-linear frequency domain approach.
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Derivation of the Time Accurate
Continuous Unsteady Adjoint

Equations for the Euler Equations
To control the surface pressure by varying the airfoil

shape, it is convenient to retain a fixed computational
domain. Variations in the shape then result in corre-
sponding variations in the mapping derivatives defined
by K. The cost function for drag minimization is

I =
∫ tf

0

Cd dt =
∫ tf

0

Ca cosα + Cn sin α dt

=
1

1
2γP∞M2∞c̄

∫ tf

0

∫

B
p

(
∂y

∂ξ
cosα− ∂x

∂ξ
sinα

)
dξdt

where Ca and Cn are the axial and normal force coeffi-
cients respectively. The design problem is now treated
as a control problem where the control function is the
airfoil shape, which is chosen to minimize I subject to
the constraints defined by the flow equations. A varia-
tion in the shape causes a variation δp in the pressure
and consequently a variation in the cost function

δI =
1

1
2γP∞M2∞c̄

∫ tf

0

∫

B
δp

[
∂y

∂ξ
cos α− ∂x

∂ξ
sin α

]

+p

[
δ

(
∂y

∂ξ

)
cos α− δ

(
∂x

∂ξ

)
sin α

]
dξdt (8)

Since p depends on w through the equation of state,
the variation δp is determined from the variation δw.
Define the time-dependent flow equation as

∂w

∂t
+

∂Fk

∂ξk
= 0.

Define the Euler Jacobian matrices as

Ak =
∂fk

∂w
, Ck = SklAl.

Then the variation in the flow solution can be written
as

∂

∂t
δw +

∂

∂ξk
δFk = 0,

where
δFk = Ckδw + δSklfl.

Multiplying by a co-state vector ψ, also known as La-
grange Multiplier, and integrating over the domain
and time produces
∫ tf

0

∫

D
ψT

[
∂

∂t
δw +

∂

∂ξk
(Ckδw + δSklfl)

]
dDdt = 0.

Separate the equation into two terms and switch the
integrals for the first term to yield

∫

D

∫ tf

0

ψT ∂

∂t
δwdtdD

+
∫ tf

0

∫

D
ψT ∂

∂ξk
(Ckδw + δSklfl) dDdt = 0.

If ψ is differentiable, then the equation can be inte-
grated by parts to give

∫

D

([
ψT δw

]tf

0
−

∫ tf

0

∂ψT

∂t
δwdt

)
dD

+
∫ tf

0

[∫

B
nkψT (Ckδw + δSklfl) dB

−
∫

D

∂ψT

∂ξk
(Ckδw + δSklfl) dD

]
dt = 0.

Rearrange the terms in the equationZ
D

h
ψT (tf )δw(tf )− ψT (0)δw(0)

i
dD

−
Z tf

0

Z
D

∂ψT

∂t
δw +

∂ψT

∂ξk
CkδwdDdt

+

Z tf

0

Z
B

nkψT δFkdB +

Z tf

0

�Z
B

nkψT δSklfldB

−
Z
D

∂ψT

∂ξk
δSklfldD

�
dt = 0.

Since the left hand expression equals zero, it may be
subtracted from the variation in the cost function (8)
to give

δI =
1

1
2
γP∞M2∞c̄

Z tf

0

Z
BW

δp

�
∂y

∂ξ
cos α− ∂x

∂ξ
sin α

�
+p

�
δ

�
∂y

∂ξ

�
cos α− δ

�
∂x

∂ξ

�
sin α

�
dξdt

−
Z
D

h
ψT (tf )δw(tf )− ψT (0)δw(0)

i
dD

+

Z tf

0

Z
D

∂ψT

∂t
δw +

∂ψT

∂ξk
CkδwdDdt

−
Z tf

0

Z
B

nkψT δFkdB −
Z tf

0

�Z
B

nkψT δSklfldB

+

Z
D

∂ψT

∂ξk
δSklfldD

�
dt. (9)

Now, since ψ is an arbitrary differentiable function, it
may be chosen in such a way that δI no longer depends
explicitly on the variation of the state vector δw. The
gradient of the cost function can then be evaluated
directly from the metric variations without having to
re-compute the variation δw resulting from the pertur-
bation of each design variable. The variation δw can
be eliminated from (9) to produce a differential adjoint
system governing ψ

∂ψ

∂t
+ CT

k

∂ψ

∂ξk
= 0 in D. (10)

At the outer boundary incoming characteristics for ψ
correspond to outgoing characteristics for δw. Conse-
quently we can choose boundary conditions for ψ such
that

nkψT Ckδw = 0.

If the coordinate transformation is such that δS is
negligible in the far field, then the only remaining
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boundary terms is

−
∫

BW

ψT δF2dξ1.

Thus, by letting ψ satisfy the boundary condition,

ψjnj =
1

1
2γP∞M2∞c̄

[
∂y

∂ξ
cos α− ∂x

∂ξ
sin α

]
on BW

(11)
where nj are the components of the surface normal.
Since the initial condition for the Lagrange multipliers
are set to zero, then

ψT (0)δw(0) = 0.

Since the cost function used for this problem is not
dependent upon tf , then

ψT (tf )δw(tf ) = 0.

Equation (9) finally reduces to the following

δI =
1

1
2
γP∞M2∞c̄

Z tf

0

Z
BW

p

�
δ

�
∂y

∂ξ

�
cos α

−δ

�
∂x

∂ξ

�
sin α

�
dξdt−

Z tf

0

�Z
B

nkψT δSklfldB

−
Z
D

∂ψT

∂ξk
δSklfldD

�
dt. (12)

Derivation of the Time Accurate
Discrete Unsteady Adjoint Equations

for the Euler Equations
The unsteady discrete adjoint equation is obtained

by applying control theory directly to the set of un-
steady discrete field equations. The resulting equa-
tion depends on the type of scheme used to solve
the flow equations. This paper uses a cell-centered
multigrid-driven fully-implicit scheme with upwind-
biased blended first and third order fluxes as the arti-
ficial dissipation scheme.

To obtain a fully-implicit algorithm, approximate
(3) as

d

dt

[
wn+1

i,j V n+1
i,j

]
+ R(wn+1

i,j ) = 0. (13)

The time derivative term can be approximated by a
kth-order implicit backward difference formula (BDF )
such as,

d

dt
=

1
∆t

k∑
q=1

1
q

[
∆−]q

, (14)

where
∆− = wn+1

i,j − wn
i,j .

A second order expansion of equation (14) will result
to the following equation

3
2∆t

[
wn+1

i,j V n+1
i,j

]− 2
∆t

[
wn

i,jV
n
i,j

]

+
1

2∆t

[
wn−1

i,j V n−1
i,j

]
+ R(wn+1

i,j ) = 0. (15)

Equation (15) represents an implicit set of coupled
ordinary differential equations and can be solved at
each time step using the explicit multistage modified
Runge-Kutta scheme. We define a new modified resid-
ual R∗(wi,j) as

R∗(wi,j) =
3

2∆t

[
wn+1

i,j V n+1
i,j

]− 2
∆t

[
wn

i,jV
n
i,j

]

+
1

2∆t

[
wn−1

i,j V n−1
i,j

]
+ R(wn+1

i,j ). (16)

The modified residual is then marched to steady-state
in a fictitious time, t∗ as follows

dwi,j

dt∗
+ R∗(wi,j) = 0.

Take a variation of equation (16) with respect to the
state vector, w and shape function, f (only terms that
are multiplied to δw are shown)

δR∗
n+1

i,j (w) =
3

2∆t

[
δwn+1

i,j V n+1
i,j

]− 2
∆t

[
δwn

i,jV
n
i,j

]

+
1

2∆t

[
δwn−1

i,j V n−1
i,j

]
+ δRn+1

i,j (w). (17)

Multiply the above equation with a Lagrange multi-
plier and integrate over the domain and time to yield

tf∑
t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) = · · ·+ ψT n+1

i,j δR∗
n+1

i,j (w)

+ψT n+2

i,j δR∗
n+2

i,j (w) + ψT n+3

i,j δR∗
n+3

i,j (w) + · · ·

Substitute equation (17) into the above equation to
yield (only n + 1 terms are shown)

tf∑
t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) =

· · ·+ ψT n+1

i,j

[
3

2∆t
V n+1δwn+1

i,j + δRn+1
i,j

]

+ψT n+2

i,j

[
− 2

∆t
V n+1δwn+1

i,j (w)
]

+ψT n+3

i,j

[
1

2∆t
V n+1δwn+1

i,j (w)
]

+ · · ·

Rearrange the terms in the equation to produce the
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discrete time accurate unsteady adjoint equation

tf∑
t=0

∑

Ω

ψT
i,jδR

∗
i,j(w) =

· · ·+ [
3

2∆t
V n+1ψT n+1

i,j − 2
∆t

V n+1ψT n+2

i,j

+
1

2∆t
V n+1ψT n+3

i,j + ψT n+1

i,j δRn+1
i,j ]δwn+1

i,j (w)

+ · · · (18)

Next we introduce the discrete cost function for the
time average drag minimization problem as

Ic =

tfX
t=0

Cd ∆t =

tfX
t=0

(Ca cos α + Cn sin α)∆t

=
1

1
2
γP∞M2∞c̄

tfX
t=0

X
Bw

pi,W

�
∆yi

∆si
cos α

−∆xi

∆si
sin α

�
∆si∆t,

where ∆si is the cell arc length and ∆pi,W is the wall
pressure. A variation in the cost function will result
to a variation, ∆p, in the pressure and a variation, ∆y
and ∆x, in the geometry. The variation of the cost
function for drag minimization can be written as

δIc =
1

1
2
γP∞M2∞c̄

tfX
t=0

"X
Bw

�
∆yi

∆si
cos α

−∆xi

∆si
sin α

�
∂p

∂w
δwi,W ∆si +

X
BW

(pi,W − p∞)

[cos α δ (∆yi)− sin α δ (∆xi)]]∆t. (19)

The time-dependent discrete Euler equations can now
be introduced into δI as a constraint to produce

δI = δIc −
tf∑

t=0

∑

Ω

ψT
i,jδR

∗
i,j(w).

Substitute equation (18) and (19) into the above ex-
pression, which can then be rearranged into two main
categories; first, terms that are multiplied by the vari-
ation of the state vector, δw, and second, terms that
are multiplied to the variation of the shape function,
δf .

The time-dependent discrete adjoint equation can
now be defined as such

∂ψn+1
i,j

∂τ
−
�

3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j

+
1

2∆t
ψT n+3

i,j

�
V n+1 − ψT n+1

i,j δwRn+1
i,j = 0. (20)

At cell i, 2 the time-dependent discrete adjoint equa-

tion is as follows,

∂ψn+1
i,2

∂τ
−
�

3

2∆t
ψT n+1

i,j − 2

∆t
ψT n+2

i,j

+
1

2∆t
ψT n+3

i,j

�
V n+1 − 1

2

h
AT n+1

i− 1
2 ,2

�
ψn+1

i,2 − ψn+1
i−1,2

�
+AT n+1

i+ 1
2 ,2

�
ψn+1

i+1,2 − ψn+1
i,2

�
+BT n+1

i, 5
2

�
ψn+1

i,3 − ψn+1
i,2

�− Φ
i
, (21)

where Φ is the source term for drag minimization,

Φ = ∆yξψ
n+1
2i,2

−∆xξψ
n+1
3i,2

+

�
∆yi

∆si
BCX − ∆xi

∆si
BCY

�
∂p

∂w
∆si∆t. (22)

where BCX = BCD cosα, BCY = BCD sin α,
BCD = 1

1
2 γP∞M2∞c̄

. All the terms in equation (21)
except for the source term are scaled as the square of
the ∆x. Therefore, as the mesh width is reduced, the
terms in the source term if divided by ∆si must ap-
proach zero as the solution reaches a steady state. One
then recovers the continuous adjoint boundary condi-
tion as stated in equation (11). A full discretization
of the equation would involve discretizing every term
that is a function of the state vector. If a first order ar-
tificial dissipation equation is used, then the discrete
adjoint equations are completely independent of the
costate variables in the cells below the wall. However,
if we use the blended first and third order equations,
then these values are required.

Optimization Procedure

The search procedure used in this work is a simple
descent method in which small steps are taken in the
negative gradient direction. Let F represent the design
variable, and G the gradient. An improvement can
then be made with a shape change

δF = −λG.

The gradient G can be replaced by a smoothed value
G in the descent process. This ensures that each new
shape in the optimization sequence remains smooth
and acts as a preconditioner which allows the use of
much larger steps. To apply smoothing in the ξ1 direc-
tion, the smoothed gradient G may be calculated from
a discrete approximation to

G − ∂

∂ξ1
ε

∂

∂ξ1
G = G,

where ε is the smoothing parameter. If the modifica-
tion is applied on the surface ξ2 = constant, then the
first order change in the cost function is
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δI = −
∫ ∫

GδFdξ1

= −λ

∫ ∫ (
G − ∂

∂ξ1
ε

∂

∂ξ1
G
)
Gdξ1

= −λ

∫ ∫ (
G2

+ ε

(
∂G
∂ξ1

)2
)

dξ1

< 0,

assuring an improvement if λ is sufficiently small and
positive. The smoothing leads to a large reduction
in the number of design iterations needed for conver-
gence. An assessment of alternative search methods
for a model problem is given by Jameson and Vass-
berg.10

Design Process
In this section, we describe the design pro-

cess for the full unsteady design (unsteady-flow
unsteady-adjoint), partial unsteady design (unsteady-
flow steady-adjoint), time-averaged-flow steady ad-
joint, and multipoint approaches.

Full Unsteady Design
(Unsteady-Flow Unsteady-Adjoint)

The following steps detail the procedures for the full
unsteady continuous and discrete based design opti-
mization problem:

1. Unsteady Flow Calculation. All numerical
simulations were computed for an inviscid flow us-
ing a fully implicit second order backward differ-
ence formula, a five stage modified Runge-Kutta
time stepping scheme was employed at each time
instance using a blended first and third order
artificial dissipation scheme. A 5-level W-cycle
multigrid and residual averaging were used to ac-
celerate the convergence. Problems considered
in this work involved the RAE 2822 and VR-7
airfoils undergoing a forced pitching oscillation
about the quarter-chord. The angle of incidence
is given by

α(t) = αo + αm sin(ωt),

where αo = 0o, αm = 1.01o. In order to compute
the entire unsteady flow solution, α(t) is divided
into 24 discrete points or time instances. The fully
implicit scheme described above is then employed
to solve for the unsteady flow solution at each
time instance. Generally, it requires five periods
before a limit cycle is achieved. Here, a period
refers to one full oscillation. During the last pe-
riod, the flow solution at each time instance is
saved in memory. 15 multigrid cycles were used

for each time instance. If 24 time instances are
used for each cycle and five cycles are used to
achieve the limit cycle, then a total of 1800 multi-
grid cycles are required to obtain the unsteady
solution.

2. Perturb αo to maintain time average lift co-
efficient. In order to maintain the time average
lift coefficient, the mean angle of attack, αo, is
perturbed. However, αo, is only modified every
three periods, since it requires at least three peri-
ods for the global coefficients such as time average
lift and drag to converge. A total of 15 periods
are needed instead of 5 to achieve the desired time
average lift coefficient. This multiplies the total
cost by three times.

3. Unsteady Adjoint Calculation. The unsteady
adjoint equation, either the discrete or continu-
ous version, requires integration in reverse time.
The same numerical scheme employed to solve
the unsteady flow is used here as well with minor
adjustments in the code to allow integration in re-
verse time. Only three periods were needed before
the limit cycle is achieved. 15 multigrid cycles are
used for each time instance, which translates to a
total of 1080 cycles to achieve a limit cycle for the
adjoint equation.

4. Calculate Gradient. The gradient is an integral
over time. During the last period of the unsteady
adjoint solver, the gradient at each time instance
is computed and added to the previous one. At
the end of the last period, the complete gradient
is available. The gradient is then smoothed using
an implicit smoothing technique described in the
previous section.

5. Modify Airfoil Shape. The airfoil shape is then
modified in the direction of improvement using a
simple descent method.

6. Update Grid. The internal grid is modified
based on perturbations on the surface of the air-
foil.

7. Repeat Design Process. The entire design
process is repeated until the objective function
converges. The problems in this work typically re-
quired between nine to twenty five design cycles.
Each design cycle required 1800 multigrid cycles
to compute the flow solution and 1080 cycles for
the adjoint solution.

Partial Unsteady Design
(Unsteady-Flow Steady-Adjoint)

The design process for the partial unsteady design
optimization problem follows that of the full unsteady
optimization described above except for two differ-
ences. First, in step 3, instead of an unsteady adjoint
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computation using the fully implicit scheme, only a
steady adjoint computation is performed for all 24 time
instances which is equivalent to one period of the oscil-
lation instead of three periods used in the full unsteady
optimization case. At each time instance to compute
the adjoint solution, the respective unsteady flow solu-
tion is used to compute the Euler Jacobian matrices.
This corresponds to a factor of three computational
savings for each design cycle. Thus only 360 multigrid
cycles are required. Second, the gradient is no longer a
time average of the gradients from each time instance,
but rather an average of the gradients from all the time
instance.

Time-Averaged-Flow Steady-Adjoint Design

The design process for the time-averaged-flow
steady design follows that of the partial unsteady de-
sign procedure described above, except for the follow-
ing two important points. Here, after the flow cycle is
complete (limit cycle is achieved), the time-averaged-
flow solution is computed. Then a single steady adjoint
computation is performed using the time-averaged-
flow solution at the mean angle of attack position, only
requiring 15 multigrid cycles. The magnitude of the
steady adjoint residuals reduces by 3 orders of magni-
tude in 15 multigrid cycles. Based on previous work by
Nadarajah et. al.,1 only a reduction of three orders of
magnitude in the adjoint solution is required to obtain
accurate gradient values for the Euler equations. The
gradient is calculated based upon the time-averaged-
flow solution and the steady adjoint solution.

Multipoint Design

In the multipoint design approach, the unsteady
flow and adjoint solvers are replaced with a steady
flow and adjoint solver for each time instance. The
gradient is an average of the gradients from each time
instance. Since only one period is required for both the
flow and adjoint solvers, then the total computational
cost is 720 multigrid cycles.

Method Euler Adjoint Cost
Multipoint 360 360 1

Time-Averaged 1800 15 2.5
Partial 1800 360 3
Full 1800 1080 4

Table 1 Comparison of Computational Cost
(Multigrid Cycles) Between Four Design Ap-
proaches.

Table 1 illustrates a cost comparison between
the various design approaches. “Time-Averaged”
refers to the time-averaged-flow steady adjoint de-
sign approach, “Partial” refers to the unsteady-flow
steady-adjoint, and “Full” refers to the unsteady-flow
unsteady-adjoint. Here the middle two columns con-
tain the total number of multigrid cycles used to com-
pute the Euler and adjoint equations. The numbers

in the last column signify the ratio of cost of one
method with respect to the Multipoint approach. Us-
ing the full unsteady design approach requires four
times the computational cost as doing the multipoint
approach. The difference in cost between one steady
Runge-Kutta iteration and one unsteady Runge-Kutta
iteration was not factored into the computing cost for
each design approach, since the difference is minimal
requiring only the addition of the time derivatives of
the flow variables for the implicit time stepping for the
unsteady algorithm.

Results
The following subsections present results of the

time-averaged drag minimization problem for a two-
dimensional airfoil undergoing a periodic pitching mo-
tion. The first subsection contains a code and grid
validation study. The second subsection is dedicated
to the redesign of the RAE 2822 airfoil to reduce the
time-averaged drag coefficient while maintaining the
time-averaged lift coefficient. The third section con-
tains results of the time-averaged drag minimization of
a VR-7 advanced rotorcraft airfoil. A comparison of a
multipoint design, time-averaged flow steady-adjoint,
partial unsteady, and a full unsteady design is explored
in the last subsection.

Code and Grid Validation

Six computational grids are used in the grid valida-
tion study. Table 2 provides a list of the six different
grids. The lens-mesh grids were generated using a hy-
perbolic grid generator. Figure 1 illustrates the full
193x33 mesh and a close up view of the NACA 64A010.
There are 129 points on the surface of the airfoil.

Grid Dimensions
Coarse 1 193x33
Coarse 2 193x65
Medium 1 257x33
Medium 2 257x65

Fine 1 321x33
Fine 2 321x65

Table 2 Euler Lens-Mesh Descriptions

Euler solutions were then computed for each grid
and the lift coefficient versus angle of attack was com-
pared with the experimental NACA 64A010 CT68

data. Here the computations were performed at a
freestream Mach number, M∞ = 0.78, at a mean an-
gle of attack, αo = 0o, and at a reduced frequency,
ωr = 0.202. Five cycles of computation were required
to allow the time-averaged lift and drag coefficients to
converge. Figure 2 illustrates the hysteresis loop for all
six grids and the CT6 experimental results. The re-
sults were relatively independent of the grid size and
reproduced the experimental results with sufficient ac-
curacy.
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Fig. 1 Lens-Mesh 192x32: NACA 64A010
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Fig. 2 Comparison of Lift Coefficient versus Angle
of Attack for Various Lens-Mesh Grids and Exper-
imental Results on a NACA 64A010 CT6 Case.

Since the primary objective of this paper is to for-
mulate the unsteady discrete and continuous inviscid
adjoint equations and prove their usefulness, numerical
simulations and redesign computations in the upcom-
ing subsections will only use the “Coarse 1” grid with
193x33 grid points, since its solutions are within ac-
ceptable accuracy.

In figure 3 we show the convergence history for the
steady adjoint, unsteady continuous adjoint, and un-
steady discrete adjoint equations. A cell-centered five
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Fig. 3 Convergence History of the Steady, Un-
steady Continuous, and Unsteady Discrete Adjoint
Equations. 193x33 Lens-Mesh. RAE 2822 Airfoil,
M∞ = 0.78, ωr = 0.202, αo = 0o

level W-cycle multigrid-driven fully-implicit scheme
with upwind-biased blended first and third order fluxes
as the artificial dissipation scheme were used for the
unsteady continuous and discrete adjoint equations.
An explicit multistage Runge-Kutta scheme was used
to solve the equation at each time step. The continu-
ous and discrete unsteady adjoint equations have the
same convergence rate. The equations were solved for
a RAE 2822 airfoil at Mach 0.78, αo = 0o, and at a
reduced frequency, ωr = 0.202 on a 193x33 lens-mesh.

RAE 2822: Time-Averaged Drag Minimization
with Fixed Time-Averaged Lift Coefficient

Figure 4 illustrates the initial and final geometry
for the RAE 2822 airfoil. The solid line represents
the initial airfoil geometry and the dashed-line illus-
trates the redesigned airfoil. A distinctive feature of
the new airfoil is in the drastic reduction of the up-
per surface curvature. A reduced curvature leads to
a weaker shock and thus a lower wave drag, however,
it also leads to a reduction in airfoil camber, result-
ing to a loss in lift. This effect is desirable for an
advancing helicopter rotor blade since it operates at
approximately zero lift but undesirable during the re-
treating phase, since the reduction in camber would
reduce the clmax and thus reduce the flight envelope,
placing a limit on the forward flight speed.

In order to maintain the time-averaged lift coeffi-
cient, TAcl, the mean angle of attack, αo, is perturbed
to a new value. The impact of this decision resulted to
a need to compute more cycles to allow the TAcl and
TAcd to converge. In this work, αo was perturbed ev-
ery three cycles. This allowed the TAcl to converge to
a new value before the angle of attack was perturbed
any further. A total of 15 complete flow oscillation
cycles were used for each design cycle. In figure 5
we show the initial and final lift coefficient hysteresis
loops. The results show that to maintain the time-
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Fig. 4 Initial and Final Geometry for a RAE 2822
Airfoil at M∞ = 0.78, ωr = 0.202, αo = 0o

averaged lift coefficient, the mean angle of attack of
the new airfoil increased by approximately 1.5 degrees.
Figure 6 illustrates the convergence rate of the objec-
tive function: TAcd. The TAcd reduces by 53% from
132 drag counts to 62 drag counts within 11 design
cycles. The maximum drag, however, reduces by only
25% from 229 drag counts to 172 drag counts.

Figures 7(a-d) illustrate the upper and lower surface
instantaneous pressure coefficients for the initial and
final design. In figures 7(a-b), a comparison of the
initial instantaneous pressure distribution versus the
final at 0o phase shows an almost complete reduction
of the wave drag. The strong shock on the suction
side of the airfoil is weakened at all other phases of
the oscillation.

Figures 8(a-b) show the pressure contour for the ini-
tial and final airfoil at 0o. The sonic line represented by
a dashed line is over-plotted on each figure. It is clearly
visible that the strong shock on the upper surface of
the initial geometry has been almost completely elim-
inated. However, a supersonic zone still exists. Here
the air velocity is accelerated to a supersonic speed
and gradually recovers to the freestream pressure at
the trailing edge without a shockwave.

VR-7: Time-Averaged Drag Minimization with
Fixed Time-Averaged Lift Coefficient

The VR-7 rotor profile is part of a family of ad-
vanced rotor airfoils designed by Leo Dadone11 at Boe-
ing. The VR-7 (t/c=0.12) and the VR-8 (t/c=0.08)
were designed for the rotors on the Heavy lift Heli-
copter (HLH)- in 1971. The VR-7 profile is used up to
the 85% span location of the blade and VR-8 is used
at the tip. According to Dadone, the blade profile be-
tween the 85% and 99% span locations were obtained
by interpolating between the VR-7 and VR-8. The
airfoil was designed to have a very low pitching mo-
ment coefficient at zero angle of attack to maintain the
oscillatory load level of the control system and high
maximum lift coefficient.
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Fig. 5 Initial and Final Lift Coefficient Versus
Angle of Attack for a RAE 2822 Airfoil at M∞ =
0.78, ωr = 0.202, αo = 0o
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Fig. 6 Convergence of the Maximum and Time-
Averaged Drag Coefficients for the RAE 2822 Air-
foil at M∞ = 0.78, ωr = 0.202, αo = 0o

Figure 9 illustrates the initial and final geometry for
the VR-7 airfoil. The solid line represents the initial
airfoil geometry and the dashed-line illustrates the re-
designed airfoil. Similar to the redesigned RAE 2822,
the upper surface curvature of the VR-7 advanced he-
licopter rotor has reduced as well. Figure 10 illustrates
the convergence rate of the objective function: TAcd.
The TAcd reduces by 22% from 309 drag counts to 240
drag counts within 25 design cycles.

Multipoint Versus Unsteady Optimization

Often a multipoint design approach has been the
method of choice for optimization of airfoils in an
unsteady flow environment due to its lower compu-
tational and memory cost. In this subsection of the
paper, we make the argument that even if a multi-
point design approach is cheaper, it cannot replace a
full unsteady optimization. The following results will
show that there are benefits to unsteady optimization.

In order to compare the multipoint design approach
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Fig. 7 Convergence of the Maximum and Time-
Averaged Drag Coefficients for the RAE 2822 a
M∞ = 0.78, ωr = 0.202, αo = 0o (-¦-): Initial Pressure,
(−�−): Final Pressure

to the full unsteady optimization, several unsteady de-
sign cases were tested for various reduced frequencies.
It is expected that at very low reduced frequencies, the
flow characteristics are very similar to that of steady
state computations. Full unsteady design cases were
computed for reduced frequencies ranging from 0.050
to 0.450 at a Mach number, M∞ = 0.78. The time
average lift coefficient for all reduced frequencies were
fixed to the same value of TAcl = 0.51.

Next, the time-averaged-flow steady-adjoint and the
partial unsteady design approaches were used to op-
timize the RAE 2822 airfoil at the flow conditions
described above. Optimizations were only computed
at a reduced frequency of 0.450.

Figure 11 illustrates a comparison of the airfoil ge-
ometries between the initial airfoil, airfoils designed at
various reduced frequencies, and airfoil designed using
the multipoint approach. The airfoils were designed
at a Mach number, M∞ = 0.78, at a mean angle of
attack, αo = 0o, and an angle of attack deviation of
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±1.01o. We show in figure 11 that the airfoil designed
using the multipoint approach is almost identical to
the one designed using a full unsteady optimization
approach at a reduced frequency of ωr = 0.050. Fig-
ure 12 further supports this fact with an identical
(within the numerical accuracy of the code) final time-
averaged drag coefficient of 80 drag counts. Airfoils
designed using the time-averaged-flow steady-adjoint
and the partial unsteady design approaches are not
shown in figure 11 since they are almost identical to
the airfoil designed using the full unsteady optimiza-
tion approach at a reduced frequency of 0.450.

The difference in the final airfoil geometry between
designs performed at various reduced frequencies are
very small except in areas on the upper surface where
a greater reduction in the curvature is seen for higher
reduced frequencies. Table 3 contains a comparison
of the initial and final time-averaged drag coefficients
for the various design approaches performed at various
reduced frequencies. The design computations for the
full unsteady optimization were executed at reduced
frequencies: 0.050, 0.100, 0.150, 0.202, 0.250, 0.300,
0.350, 0.400, and 0.450. The convergence of the ob-
jective function (time-averaged drag) for design cases
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7(a) Initial Airfoil: Phase = 0o

7(b) Final Design: Phase = 0o

Fig. 8 Pressure Contour Plot for RAE 2822 Air-
foil. Grid - 192 x 32, M∞ = 0.78, ωr = 0.202, Fixed
Cl = 0.534

with reduced frequencies higher than 0.400 resulted to
the same answer. Therefore the three unsteady cases
showcased in table 3 and figures 11 and 12 represent
the lower limit, middle, and upper limit of the reduced
frequency range. This simple example shows that a full
unsteady optimization has a large benefit.

Case IniTAcd
FinalTAcd

Reduction
Full Unst.0.050 139 80 42%
Full Unst.0.202 132 62 53%
Full Unst.0.450 132 57 56%

Partial Unst.0.450 132 58 56%
TA-Flow Steady0.450 132 58 56%

Multipoint 146 82 43%

Table 3 Initial and Final Time-Averaged Drag
Coefficient for Various Design Approaches

Since the design computation calculated at a re-
duced frequency of 0.450 using the full unsteady opti-
mization approach produced the airfoil with the low-
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Fig. 9 Initial and Final Geometry for a VR-7 Air-
foil at M∞ = 0.75, ωr = 0.202, αo = 0o
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Fig. 10 Convergence of the Maximum and Time-
Averaged Drag Coefficients for the VR-7 at M∞ =
0.75, ωr = 0.202, αo = 0o

est time-averaged drag coefficient, we felt that this
would be the best case to be compared with the time-
averaged-flow steady adjoint and partial unsteady de-
sign approaches. Figure 12 illustrates that the history
of the time-averaged drag coefficient is almost identi-
cal between the three design approaches. The results
vary by only at most two drag counts at each design
cycle. In figure 13 the gradients computed using the
full continuous and discrete unsteady adjoint methods
are compared to gradients computed using the time-
averaged-flow steady adjoint and partial unsteady ap-
proaches. These gradients were computed after the
first design cycle. There is an identical match be-
tween the full continuous and discrete unsteady adjoint
methods. The time-averaged-flow steady adjoint gra-
dient agree very well with the full and partial unsteady
adjoint gradients. The sharp peak at grid point 115 il-
lustrates the large gradient values close to the location
of the shock wave. At this grid location, the partial
unsteady and time-averaged-flow steady adjoint gradi-
ents have better agreement.
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Conclusion
This paper presents a complete formulation of the

continuous and discrete unsteady inviscid adjoint ap-
proaches to automatic aerodynamic design. A 57%
reduction in the time-averaged drag coefficient was
achieved for the RAE 2822 airfoil at a reduced fre-
quency of 0.450 while maintaining the time-averaged
lift coefficient. The results also show that there are
large benefits to modeling the unsteady flow. A
comparison of the gradients produced by the time-
averaged-flow steady adjoint, partial unsteady, and full
unsteady adjoint illustrate that the gradients are not
sensitive to the method by which the adjoint equa-
tions are modeled for the pitching airfoil problem used
in this work. The framework has been established to
extend this method to viscous dominated flows where
secondary flow effects are present.
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Fig. 11 A Comparison of Final Airfoil Geome-
tries Between the Initial Airfoil, Airfoils Designed
at Various Reduced Frequencies, and Airfoil De-
signed using the Multipoint Approach. M∞ = 0.78,
αo = 0o, Fixed Cl = 0.51
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Fig. 12 Convergence History of the Time-
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αo = 0o, Fixed Cl = 0.51
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