
NOT ALL RIVALS LOOK ALIKE: ESTIMATING AN EQUILIBRIUM
MODEL OF THE RELEASE DATE TIMING GAME

LIRAN EINAV∗

I develop a new empirical model for discrete games and apply it to study the release
date timing game played by distributors of movies. The results suggest that release
dates of movies are too clustered around big holiday weekends and that box office rev-
enues would increase if distributors shifted some holiday releases by one or two weeks.
The proposed game structure could be applied more broadly to situations where compe-
tition is on dimensions other than price. It relies on sequential moves with asymmetric
information, making the model particularly attractive for studying (common) situations
where player asymmetries are important. (JEL C13, C51, L13, L15, L82)

. . .a very serious game of strategy is at
work–a cross between chess and chicken–
which studio distribution chiefs play year
round, but with increasing intensity during
the summer and holiday release period.
(New York Times, December 6, 1999)

Hubris. Hubris. If you only think about
your own business, you think, “I’ve got
a good story department, I’ve got a good
marketing department, we’re going to go
out and do this.” And you don’t think that
everybody else is thinking the same way.
In a given weekend in a year you’ll have
five movies open, and there’s certainly
not enough people to go around. (Joe
Roth, chairman of Walt Disney Studios,
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answering a question about the large
number of major movies opening within
days of each other; Los Angeles Times,
December 31, 1996)

I. INTRODUCTION

The number of Americans who go to the
movies varies dramatically over the course of
the year, and sometimes more than doubles
within a period of two weeks. At the same time,
the first week accounts for almost 40% of the
box office revenues of the average movie. The
combination of these two facts makes the tim-
ing of launching a new movie a major focus
of attention for distributors of movies. With
virtually no subsequent price competition, the
movie’s release date is one of the main short-
run vehicles by which studios compete with each
other.

In this paper, I develop and estimate a model
of discrete games, which allows me to analyze
this release date timing game. Most empirical
industry studies focus on price and quantity
competition, taking other product characteris-
tics as given; in many industries, however,
prices play a very small role, and competition
is channeled through other product attributes.
The entertainment industry is a prime example;
competition among movies, television programs,
or Broadway shows is on nonmonetary product
attributes, such as content, advertising, and time.
Therefore, understanding competition in such
industries requires a model that endogenizes
some of these product attributes, especially those
that can be changed in the short run. This paper
provides a framework in which release decisions
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can be endogenized and nonprice competition
can be analyzed.

The absence of price competition is useful
because it allows the focus of the analysis to
be on the timing dimension without relying
on assumptions about the nature of the postre-
lease price competition.1 Together with the fre-
quent timing decisions associated with different
movies, this makes the motion picture industry
quite attractive for empirical analysis of the tim-
ing game. This industry, however, is not the only
example in which timing decisions play a cen-
tral role. Similar timing considerations are also
important in the release decisions of books, com-
pact disks, and other new products, as well as in
the scheduling decisions of major events, televi-
sion programs, flight schedules, and promotional
sales.2

When taking on a new project, distributors of
movies typically plan for a Friday release, which
falls within a relatively short window of time
carefully chosen to match the type of the movie.
This makes the choice of the release date a very
discrete one. The exact Friday within the sea-
son is generally determined by a strategic timing
game played among distributors. Before each
release season, distributors scramble to release
their movies on big holiday weekends, when
demand is high. When doing so, each distributor
tries to release on the attractive holiday weekend
and at the same time to deter competitors from
doing the same. The extent to which distribu-
tors are successful in doing so largely depends
on the quality of the movies at their disposal,
and on the way they can compete with movies
released by other studios. Thus, modeling this
timing game must account for the asymmetries
among movies, and for the variation in these
asymmetries across release seasons.

Specifically, I develop and estimate a sequen-
tial-move game with private information; I
assume that the observed release date decisions
are the equilibrium outcome of such a game. The
empirical analysis relies on data from the U.S.

1. The fact that ticket prices hardly vary across seasons
and movies is taken as given throughout this paper. This is
an interesting puzzle, which is discussed in more detail in
Orbach and Einav (2007).

2. There are only a few papers that analyze competition
in time. They mostly use reduced-form statistics to assess the
equilibrium outcome (Borenstein and Netz 1999; Chisholm
1999; Corts 2001; Simonsohn 2008). Goettler and Shachar
(2001) construct a strategic scheduling game between tele-
vision networks, but do not use it for estimation. Sweeting
(2008), who models the timing of radio advertising, is a
notable exception.

motion picture industry between 1985 and 1999.
I take the season in which a movie is released
as given, and focus the analysis on the strategic
decision of the specific release date within the
season. To specify payoffs, and in particular to
assess the heterogeneous substitution effect in
demand between movies, I rely on the estimates
of the demand for movies obtained in a compan-
ion paper (Einav 2007). In that paper, I modeled
demand for movies as a function of movie qual-
ity, decay in the demand for a movie, and sea-
sonal underlying demand for movies. The main
focus of the analysis in the current study is
on evaluating the extent to which distributors
of movies over- or underestimate this underly-
ing demand vis-à-vis the substitution effect from
competing movies. I find that the release pattern
implies that underlying demand for movies is
much more seasonal than is estimated by the
demand system. That is, the results suggest that
the release dates of movies are too clustered
on holiday weekends and that distributors could
increase theatrical revenues by shifting holiday
release dates by one or two weeks. Different
possible explanations, such as uncertainty and
conservatism, are discussed.

Beyond this specific application, the game
structure I develop is an important contribution
of this paper because it is likely applicable more
generally. The model builds on ideas from the
existing literature on discrete games, but com-
bines these ideas together in a new way, thereby
providing certain attractive properties.3 The
model is a sequential-move game with asym-
metric information. Under certain restrictions on
the private information, one can construct a rel-
atively simple pseudo-backward induction algo-
rithm to solve for the unique perfect Bayesian
equilibrium of the game. For any payoff struc-
ture, the sequential structure of the game leads
to a unique probability distribution over all
possible outcomes, thus allowing for a sim-
ple maximum likelihood estimation. The private
information assumption facilitates evaluation of
the likelihood function by avoiding the difficul-
ties (due to complex regions of integration) that
would arise with complete information.

An attractive property of the proposed model
is its ability to accommodate an unrestricted
payoff structure. In particular, the model and its

3. See Section II for more details. See also Reiss
(1996), Einav and Nevo (2006), and Draganska et al. (2008)
for related reviews and discussions of existing models of
discrete games.
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estimation could accommodate player identities
and asymmetries in substitution patterns. Sym-
metry assumptions, which are crucial for many
existing empirical models of discrete games, are
not necessary. Such symmetry restrictions often
seem implausible; in a wide range of industries,
decision makers care not about the number of
competitors they face but also about competitor
identities. All else equal, a software developer is
more likely to enter a market in which another
small software company operates rather than a
market in which Microsoft participates. Simi-
larly, a movie distributor would rather release
his movie during the same week as a low-
budget movie release than during the same week
as the Star Wars release. In accordance with
the above observations, studying differentiated
product markets and the varying degrees of sub-
stitution among products has proven important
in demand estimation.4 The model I propose
allows for the incorporation of players’ identities
into models of discrete games and could facil-
itate research that combines entry and location
games with empirical demand models; thus far,
these two strands of the literature have evolved
quite independently of each other.

The rest of the paper is organized as fol-
lows. Section II presents the model, its prop-
erties, and its estimation; it also describes its
relationship to the existing literature of discrete
games and illustrates the differences. Section III
describes the industry and the data, and Section
IV presents the empirical specification and the
results. Section V concludes.

II. THE MODEL

A. The empirical model

Let the set of players in market m be i =
1, 2, . . . , Nm and the discrete (finite) action
space for player i be Am

i . Given the actions
of all players (for simplicity of notation, the
m subscripts are suppressed), a ∈ A1 × A2 ×
· · · × AN , payoffs for player i are given by

πi (a; X, β, η) = π̂i (a; X, β) + εi
ai

,(1)

where β is a vector of parameters and εi
ai

is an i.i.d (across actions and players) draw
from a type I extreme value distribution with

4. See, among many others, Berry, Levinsohn, and Pakes
(1995) and Nevo (2001).

a precision parameter η.5 The vector of εi
ai

’s
is assumed to be private information of player
i. The private information can be thought of
as nonstrategic considerations that may make
a certain player more likely to choose a cer-
tain action, regardless of the actions of the other
players. It could also be thought of as optimiza-
tion errors. The magnitude of the estimated η
provides an indication for the explanatory power
of the model. This is because the variance of
the unexplained portion of the payoffs, εi

ai
, is

decreasing in η, thus η provides a measure of
the explanatory power of the deterministic part
of the payoffs.6 The higher η is the more we
can explain the observed decisions by the esti-
mated payoffs rather than by the random error.
An insignificant estimate of η implies that the
model for the payoffs has no statistically signif-
icant explanatory power.7

This specification leads to simple logit prob-
abilities. Conditional on the other players’ deci-
sions, a−i , movie i chooses action ai with the
following probability:

Pr(ai |a−i ) = (exp(ηπ̂i (a; X, β)))

/

⎛
⎝ ∑

a′
i
∈Ai

exp(ηπ̂i (a
′
i , a−i; X, β))

⎞
⎠ .(2)

The game is played sequentially with each
player moving exactly once according to a pre-
specified order, which is known to the players
but may be unknown to the econometrician. The
solution concept is a perfect Bayesian equilib-
rium. Note that the payoffs of each player i
depend only on the action taken by the other
players, but not on the realizations of their
ε
j
aj

’s (j �= i). Therefore, each player’s strategy
depends only on the actions of players who
moved previously, but not on their exact draws

5. This distribution has a cdf F(x) = exp(− exp(−ηx)),
mean γ/η (where γ = 0.577 is the Euler’s constant), and
variance π2/6η2. As η goes to 0, the variance goes to
infinity, and as η goes to infinity, the variance goes to 0.

6. To empirically identify η, one must pin down the level
of π̂ through any other assumption. For example, if π̂ = Xβ,
it is easy to see that η cannot be separately identified from
β. In this paper, η is identified because external data is used
to estimate π̂ and pin down its level. More generally, doing
so requires some external information that would pin down
the level of one of the other parameters of the model.

7. McKelvey and Palfrey (1998) provide the more
general properties of such games, and use it to analyze
experimental data. This literature uses the term quantal
response equilibria to describe such games.
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of ε′s. This assumption greatly simplifies equi-
librium analysis because it implies that from the
player’s perspective, opponent types are irrele-
vant when opponent actions are known. Con-
sequently, given the prespecified order of play,
the game can be solved backwards in a simple
way.

In what follows, I outline the simple algo-
rithm that is used to solve the model. In the
rest of the paper, I refer to this algorithm as
pseudo-backward induction. Given N players,
let the order of play be given by a permutation
o ∈ PN , such that o(m) = j implies that player
j is the mth player to move. Let prev(j) = {k :
o−1(k) < o−1(j)} denote the set of players who
play before player j. I solve the game backwards.
The last player to move, o(N), conditions on the
other players’ decisions, a−o(N). Therefore, we
can use Equation (2) to see that ao(N) is chosen
with probability

Pr(ao(N)|a−o(N))

= (exp(ηπ̂o(N)(ao(N), a−o(N); β)))

/

⎛
⎜⎝ ∑

a′
o(N)

∈Ao(N)

exp(ηπ̂o(N)(a
′
o(N), a−o(N); β))

⎞
⎟⎠ .

(3)

Going backwards, we can update the contin-
uation values for all other players by integrating
out over player o(N)’s decision probabilities,
namely,

π̂N−1
i (a−o(N); β) =

∑
ao(N)∈Ao(N)

Pr(ao(N)|a−o(N))

π̂i (ao(N), a−o(N); β) ∀i ∈ prev(o(N)),(4)

and

π
(N−1)
i (a−o(N); β, η) = π̂

(N−1)
i (a−o(N); β)

+ εi
ai

∀i ∈ prev(o(N)).(5)

The key is that the εi
ai

’s are invariant to
a−i , they depend only on ai , so they can be
taken out of the sum. These modified payoffs
would directly enter the decision of player
o(N − 1). They are also updated for the rest
of the players because we use these modified
payoffs below as part of the iterative procedure.
In particular, we can use Equation (2) again, but
with respect to the modified payoffs, which are
given by Equation (4). This procedure can be

done iteratively up to the player who moves first,
with each iteration being the following:

Pr(aj |aprev(j)) = (exp(ηπ̂
o−1(j)

j (aj |aprev(j)))

/

⎛
⎜⎝ ∑

a′
j ∈Aj

exp(ηπ̂
o−1(j)

j (a′
j |ap(j))

⎞
⎟⎠,(6)

and

π̂
(o−1(j)−1)

i (aprev(j); β) =
∑

aj ∈As

Pr(aj |aprev(j))

π̂
(o−1(j))

i (aj , aprev(j); β) ∀i ∈ prev(j).(7)

Thus, in the end of the procedure we obtain
a probabilistic equilibrium play for each player,
and hence a strictly positive probability measure
over each potential outcome of the game. In
particular, given an order o, the likelihood of
observing an outcome a is given by

Pr(a|o) =
N∏

j=1

Pr(aj |aprev(j), o).(8)

Given a probability measure over all possi-
ble permutations (orders of play), the uncondi-
tional likelihood of observing an outcome a is
given by

f (a) =
∑
o∈PN

Pr(o) Pr(a|o)

=
∑
o∈PN

⎡
⎣Pr(o)

N∏
j=1

Pr(aj |aprev(j), o)

⎤
⎦ .(9)

If a natural order of play exists and is
observed, one can use this order and think about
o as being observable. Alternatively, one can
assume a uniform distribution over all permuta-
tions, i.e., Pr(o) = 1/N !∀o ∈ PN . Finally, when
the data are rich enough or when there are
enough restrictions on the payoff structure, one
can estimate the probabilities of different per-
mutations. Although this is not implemented in
the application below, a simple yet general way
to specify the probability measure over the order
permutations is to assign a commitment measure
for each player, given by μj = Wjδ + ζj , where
ζj is distributed i.i.d extreme value, Wj is a vec-
tor of observed characteristics of player j which
affect his commitment power, and δ is a vector
of parameters that can be estimated. The order
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of moves is then dictated by the commitment
measure μj . This implies that the probability of
an order o is given by

Pr(o) =
N∏

j=1

(exp(Wjδ))

/ ∑
k /∈ prev(o(j))

exp(Wkδ).

(10)

Given M distinct and independent markets
and a specification for π̂i (a; X, β), the model
can be estimated using maximum likelihood.

Finally, it is important to note what would
be altered in the model if we considered a per-
fect information game, that is, a game of the
same structure in which all ε

j
aj

’s are common
knowledge. The key difference, for the econo-
metrician, is that the observed decision of, say,
the player who moves last provides information
about that player’s ε

j
aj

’s. In the perfect infor-
mation case, unlike in the derivation above, the
other players know these ε

j
aj

’s and hence such
information must be taken into account by the
econometrician when assigning probabilities to
the other players’ decisions at earlier points of
the game. Thus, these decisions would have to
be analyzed in light of a truncated extreme value
distribution, for which we do not have closed-
form solutions. To address this in a useful way,
we will need to employ simulation estimators,
which will solve for the subgame perfect equi-
librium for each set of simulated vectors of
ε
j
aj

’s.8 This complication is the reason why the
imperfect information case is computationally
more attractive.

B. Relationship to the Literature

Existence and uniqueness are typically the
two properties of equilibrium we analyze. Empir-
ically, we generally assume that the data are
generated by an equilibrium behavior, thus
eliminating any existence problem. Multiplic-
ity, however, remains a major issue. In order
to understand the estimation problems associ-
ated with multiplicity of equilibria, let us denote
the empirical model by y(Xi, ε, β) ⊂ Y , that is,
a mapping from the model primitives, namely,
observables X, unobservables ε, and parameters
β, into the model predicted outcome y(Xi, ε, β),
which is a subset of all potential outcomes Y .

8. The appendix of Berry (1992) conceptually describes
such a simulation estimator. With player asymmetries, how-
ever, the procedure described there would be computation-
ally more intensive.

If y(Xi, ε, β) is a singleton for all Xi’s, β’s,
and ε’s (i.e., equilibrium is always unique)
then estimation is straightforward: one can pro-
ceed with, say, maximum likelihood estimation,
with the likelihood of the observed outcome,
yi , given by Pr[ε ∈ {ε|yi = y(X, ε, β)}|X, β]. If,
however, y(Xi, ε, β) is nonunique then such a
likelihood-based estimation procedure cannot be
carried out unless we extend the model to have
an additional assumption about the probabil-
ity measure over the set of possible outcomes,
y(Xi, ε, β). Several comments are in place: (1)
in general, theory tells us nothing about these
equilibrium selection probabilities; (2) to be
specified correctly, one has to account for all
possible equilibria, for any given (Xi, ε, β); (3)
sometimes we may tell a story why one equi-
librium is more likely than another, and this
could be thought of as an extension of the model,
which essentially provides uniqueness.

An approach taken by several authors (Berry
1992; Bresnahan and Reiss 1990) and more
recently generalized by Davis (2006b) is to set
up a model that does not provide uniqueness,
but provides the econometrician with a coarser
partition of the empirical model, which satis-
fies uniqueness. For example, in the context of
entry models, these authors show that while,
given (Xi, ε, β), the model may have multi-
plicity of equilibria, all such equilibria share a
common feature, which is the number of enter-
ing firms. Thus, the econometrician can condi-
tion on the number of entering firms, but not
on their identities, and then apply likelihood-
based (or other) estimation techniques. This is
a coarser partition of Y in the sense that dif-
ferent observations are treated the same. While
this approach has proven useful, it has two main
limitations. First, the approach is not efficient in
the sense that it treats different observables in
the same way and hence does not use all the
information provided by the data.9 Second, a
more important limitation is that strong sym-
metry assumptions must be imposed to get a
unique prediction in models with more than two
players. For example, in entry models, firms’
payoffs are assumed to be invariant to permuta-
tions of the entry decisions made by their oppo-
nents. These assumptions seem quite unrealistic
for a wide set of applications in which entrants
are not drawn at random but are endogenously

9. Indeed, Tamer (2003) proposes a more efficient esti-
mator, which exploits the additional information provided
by the data.
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drawn from a well-defined population of het-
erogeneous firms. Therefore, for many research
questions, these models may prove unsatisfac-
tory and may alter the economic implications
of the results. Mazzeo (2002) relaxes this sym-
metry assumption by introducing different types
of products, and conditioning the analysis on the
number of entering firms of each type. The main
restriction still remains: all potential entrants are
ex-ante identical, and profits of a player are
invariant to a permutation of his opponents’ type
choices. Moreover, extending Mazzeo’s model
to more than two or three types is computation-
ally infeasible. Thus, the main two limitations
remain largely unaddressed.

Two recent alternative approaches to deal
with multiple equilibria have been developed.
First, several papers (Andrews, Berry, and Jia
2007; Beresteanu, Molchanov, and Molinari
2008; Ciliberto and Tamer 2008) show that in
the presence of multiplicity of equilibria, one
can place bounds on the parameters of interest
rather than obtain point estimates for them.
The potential of these methods has yet to
be fully realized, especially when there exists
important variation in observable characteris-
tics across observations. A second approach
(Aguirregabiria and Mira 2007; Bajari, Benkard,
and Levin 2007; Pakes, Ostrovsky, and Berry
2007) uses a two-step estimation procedure
to get around the multiplicity problem. This
approach assumes that the game has a reduced
form, thereby avoiding the multiplicity prob-
lem. It relies heavily on accurate (nonparamet-
ric, ideally) estimation of the policy functions,
which are then used to back out the structural
parameters. While useful in many settings, this
approach requires either large data sets or a
small set of state variables. Many of the typical
data sets and applications in industrial organiza-
tion (for which the current paper is an example)
do not satisfy either of these requirements.

Finally, a somewhat more structural approach
is to change the structure of the game in such
a way that equilibrium would be unique.10

Bresnahan and Reiss (1990) and Berry (1992)
suggest ways to do this by imposing a sequen-
tial structure on the game, which yields a
generically unique subgame perfect equilibrium.

10. Within this class, I also consider imposing a pre-
defined probability distribution over the different equilibria,
as in, for example, Bajari, Hong, and Ryan (2008). We can
just think of an additional latent variable (the outcome of
the “public randomization device”), conditional on which
equilibrium is unique.

This full information version, however, becomes
computationally unattractive as we relax sym-
metry assumptions and increase the dimension-
ality of the game. Seim (2006) enriches the game
structure by moving to games with asymmet-
ric information. This makes the strategy of each
player simpler from the econometrician’s point
of view because it now depends only on the
firm-specific unobserved variables rather than on
the whole set of unobservables in the market.
Indeed, Seim (2006) is able to find a unique
Bayesian Nash equilibrium and use it for esti-
mation. Several limitations remain. First and
foremost, the equilibria in such games are not
necessarily unique.11 Second, the search for the
equilibrium strategies must involve an intensive
numerical search for a fixed point, thus making
computational complexity increase quite rapidly
with the dimension of the problem. Third, just as
in Mazzeo (2002), the same symmetry assump-
tions discussed above are still present: all oppo-
nents are ex-ante identical.

The model developed in the previous section
is therefore in the spirit of Seim (2006), but with
a sequential structure, as in certain specifica-
tions of Bresnahan and Reiss (1990) and Berry
(1992). The (standard) assumptions on the pri-
vate information structure guarantee uniqueness
of equilibrium and imply that the equilibrium
can be found using a pseudo-backward induction
algorithm, thus alleviating some of the compu-
tational burden present in other models. There-
fore, it incorporates different existing ideas into
a game structure that guarantees uniqueness, is
not restricted by symmetry assumptions, and
is computationally attractive. In entry games,
for example, such structure should be particu-
larly attractive for situations in which additional
information on postentry values is available
(e.g., Berry and Waldfogel 1999, Orhun 2005,
Ellickson and Misra 2007, or Watson, 2009).
Such information would typically make sym-
metry assumptions internally inconsistent, and it
would provide valuable insight on the structure
of postentry values, which can be easily incor-
porated into the game structure just outlined.

11. Seim (2006) numerically shows that there is a unique
symmetric equilibrium for her particular model and data.
More generally, however, there are no assumptions about
the model that can guarantee uniqueness. Moreover, once
rivals are allowed to be asymmetric, we would not be able to
focus on symmetric equilibria, thereby the scope of finding
multiplicity of equilibria would be even greater.
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C. A Simple Illustration

Here I use a simple two-player entry game to
illustrate the way the model works and how its
predictions compare with those of other models
used in the literature. The key (conceptual and
computational) advantages for using this model
only show up when we extend the game to
include more actions and a greater number
of (potentially asymmetric) players. Thus, this
illustration is aimed to provide intuition about
the mechanism and prediction of the model but
not to highlight the computational advantages.

The example consists of a simple entry game.
Each of the two players has to decide whether to
enter the market or not. If player i = 1, 2 stays
out, he obtains payoffs of 0. If he enters, he pays
(sunk) entry costs of εi and collects payoffs of μ

if his opponent stays out, and μ − � otherwise

(with μ > � > 0). For simplicity, assume also
that ε1 and ε2 are both drawn independently from
a uniform distribution over [0, 1].

We will consider different assumptions on the
order of play and on the information structure.
In all of these cases, we assume that the ε’s
are unknown to the econometrician, and that μ
and Delta are the estimable parameters of inter-
est. Thus, I am interested in comparing how the
different assumptions give rise to different prob-
ability distributions over outcomes. There are
two types of information structures: a full infor-
mation game, in which both ε’s are known to the
players, and an asymmetric information case in
which each player only knows his own ε. Players
either move simultaneously or sequentially.

Figure 1 shows the different cases. The upper
left panel shows the full information simultane-
ous game, which is analyzed in Bresnahan and

FIGURE 1
Equilibrium Prediction under Various Modeling Assumptions
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Notes: This figure shows the predicted outcomes of different game structures in a simple symmetric two-player entry
game. For further discussion, see Section IIC.
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Reiss (1990) and in Berry (1992). The square in
the middle is the area that gives rise to multiplic-
ity of equilibria. As pointed out in these papers,
once one allows sequential structure, equilib-
rium is unique. For any point at the “multiplicity
region,” the player who moves first is the only
player who enters in equilibrium. The sequence
can be determined outside the model, so that the
whole “multiplicity region” is allocated to one
outcome, or, as suggested in Berry (1992) and in
Mazzeo (2002), one can assume that the higher
profit player moves first. The latter case is shown
in the bottom left panel of Figure 1: within the
multiplicity region only player 1 enters to the
left of the 45◦ line, and only player 2 enters to
the right of the line.

Consider now the case in which entry cost is
private information. In the simultaneous-move
case, as in Seim (2006), equilibrium follows a
cutoff point strategy for each player; if ε∗

i is
player i’s cutoff point, his strategy is to enter if
and only if εi < ε∗

ι . The Bayesian Nash equilib-
rium in this simple example is given by the solu-
tion to the following two equations: ε∗

1 = μ −
F(ε∗

2)� and ε∗
2 = μ − F(ε∗

1)� where F(·) is the
cdf of ε. Once we impose the uniform distribu-
tion we obtain a unique equilibrium, in which
the symmetric cutoff point is ε∗

sim = μ/(1 + �).
The distribution over outcomes is depicted in
the upper right panel of Figure 1.

Finally, the case of sequential moves with
asymmetric information, which is the model
used in this paper, is shown at the bottom right
panel of the figure. It shows the distribution of
outcomes when player 1 is the first mover (the
case for player 2 being the leader is symmet-
ric). Under the assumptions, the second mover
just follows his full information strategy, condi-
tional on the action played by player 1 (the first
mover). Player 1 foresees this and uses a cutoff
point strategy for entry, which is the solution to
ε∗

1 = μ − F(μ − �)�. With uniform distribu-
tion we obtain ε∗

seq = μ − (μ − �)�. It is easy
to see that ε∗

seq > ε∗
sim; knowing that his action

will be observed by player 2, player 1 can use
it to be more aggressive in equilibrium.

Several comments are in place. First, in the
full information case, moving first is advanta-
geous (at least in this simple two-player entry
game). In contrast, once information is asym-
metric, there are cases in which moving first is
a disadvantage. Consider, for example, a case
in which ε1 and ε2 are just below μ. In such
cases, the second mover will be the one enter-
ing the market and making positive profits. This

is because the asymmetric information creates
a trade-off: the first mover has a commitment
power, but he also faces uncertainty. The second
mover, in contrast, has no information problem:
once his opponent has already moved, know-
ing his opponent’s entry cost has no additional
value. Second, as a consequence of the sequen-
tial moves, the likelihood of ex-post regret is
much lower when compared to the simultane-
ous move case. Ex-post regret is experienced
whenever a player would have liked to reverse
his own action, once his opponent’s action has
been revealed. In Figure 1, regret is experienced
in all areas in which the black and white rect-
angles on the right differ from those on the left.
It is easy to see that, in most cases, these areas
are much smaller in the sequential-move case.
This is just a direct consequence of the previous
argument: with sequential moves, only the first
mover can experience regret, while the second
mover effectively has no information problem.
This also illustrates why I view the sequential
game with asymmetric information as somewhat
in between the two versions—with complete
and incomplete information—of simultaneous
move games. In particular, this is true once we
randomize over the identity of the player who
moves first.

D. Remarks

Regret. Empirical models with asymmetric infor-
mation are vulnerable to the regret critique. The
argument is that the asymmetric information
may give rise to outcomes which would not
be sustainable in the long run, as the players
would like to change their previous actions. In
the entry game illustrated above, for example,
this happens when ε2 is sufficiently high and
ε1 is just below μ. In both versions of asym-
metric information, none of the players enter in
equilibrium. Once player 1 finds out, however,
that player 2 does not enter, player 1 would
have liked to reverse his action and enter the
market. The sequential move structure partially
addresses this critique. As mentioned, the play-
ers who move late are less prone to information
problems and hence less likely to experience
regret. Thus, in general, the likelihood of regret
is smaller under the sequential structure.

More importantly, the regret critique is more
relevant for entry games than for other loca-
tion choice games. If one interprets a choice as
sinking a location-specific cost, then the regret
argument has no bite. While, ex-post, a player
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would have liked to change his action, he has
already sunk his choice-specific cost, so revers-
ing it is costly. The entry story is a somewhat
unique example in which a regret critique is
more valid: it is more difficult (although possi-
ble) to think of irreversibilities associated with
the choice of staying out of a market. For other
sets of potential actions, irreversibility is much
more plausible. In particular, this is the case in
the application used in this paper; if choosing a
particular release date for a movie implies sink-
ing date-specific costs (e.g., printing posters or
buying television advertising slots just before
the release date), then the regret critique is less
relevant.

Computation. Given the parameters of the model,
there are two separate computational burdens.
The first is to compute the entries in the pay-
off matrix, namely, to compute the postentry
payoffs for each player, for any potential equi-
librium outcome. If each of the N players has
K actions to choose from, one needs to com-
pute NKN numbers (and repeat it for any value
of the parameters). This may be computation-
ally intensive if the parametric form of payoffs
is both fully flexible and has a nontrivial func-
tional form. Such computational issues do not
arise in the existing literature, where symmetry
assumptions imply much smaller sets of dif-
ferent entries. In the extreme symmetric case,
where firms are identical, all we need is to com-
pute N different numbers. Thus, it is important
to emphasize that such a computational limita-
tion, which arises from relaxing the symmetry
assumption (and will be binding in the present
application), is unrelated to the specific game
structure that is being estimated.

Given the payoff matrix, the second compu-
tational burden is to compute the distribution
over potential equilibrium outcomes implied by
the model. To address this issue, the empiri-
cal model proposed here may be quite useful
compared to others proposed in the literature
(e.g., Seim 2006). The pseudo-backward induc-
tion algorithm is computationally linear in the
number of players for any given order of play.
Thus, one need not rely on numerical search
routines, the computation time of which is typ-
ically hard to bound. There are, of course, N !
different orders of play to check, but this still
gives the econometrician a clear bound on the
computation time. In addition, if solving the
model for all different orders of play is the com-
putational bottleneck in a given application, it

is quite easy to set up a simulated likelihood
estimator, which will simulate a smaller num-
ber of order permutations, and will solve the
model only for this smaller subset of games.
Finally, as described below, one can impose
other restrictions on the order of play that may
be computationally more attractive.

The Order of Moves. Clearly, once the model
is of sequential structure, the order of moves
is important. As already mentioned, however,
it is somewhat less important once asymmetric
information is present: in such a case moving
first is not always an advantage. Moreover, I
conjecture that in a large set of applications
the qualitative results regarding the economic
parameters of interest would not be very sensi-
tive to the specific assumptions about the order
of play. This is, at least, what I find in the current
application.12

There are several different types of assump-
tions one could make about the order of play.
First, by imposing more symmetry assumptions
across players one needs to check less permuta-
tions because different orders of play would give
rise to the same distribution of outcomes. For
example, in the case of symmetric firms, there
is only one order to check for. Second, one can
either assume a uniform random order across
different permutations of players, so each order
is chosen with probability 1/N !, or alternatively
use a parametric family of distributions over per-
mutations, one of which was proposed in the
end of Section IIA. I do not attempt the latter
in the present application; the identification of
such parameters is more likely to be possible
if we either put more structure on payoffs, or
if we find variables which affect “commitment
power” but do not enter the payoff function.13

Finally, in many applications, one can use exter-
nal information and impose it on the order of
play. For example, the historical order of entry
as in Toivanen and Waterson (2005), or the
sequence of initial release date announcements
in the current context, often allows the data
to provide a natural order. Ordering moves by
the size or quality of the players is also a rea-
sonable assumption (Quint and Einav 2005). In
general, once players are asymmetric, we gain

12. This is also related to Mazzeo (2002), who finds that
different assumptions on the game structure had a very small
effect on his result.

13. This would be an exclusion restriction. For a similar
argument in a similar setup, see Bajari, Hong, and Ryan
(2008).
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FIGURE 2
Distribution of Movie’s Box Office Revenues over Its Life Cycle
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Notes: The “no weights” series calculates weekly percentages for each film separately, and then applies simple averages
of these percentages over all movies. The “revenue weights” series calculates a weighted average, where the weights are
proportional to the total box office revenues of each movie. This figure shows the distribution of total box office revenues
over the movie’s life cycle. The bars stand for the week-by-week share, while the lines stand for the cumulative share as of
the end of the corresponding week. It can be seen that most of the revenues are concentrated in the first few weeks, with the
first week accounting, on average, for almost 40% of the eventual box office revenues, and the first four weeks accounting
for about 80% of them. Once I weight the averages by the gross box office revenues of the different films (white bars and
dashed line), the distribution is less skewed and has a wider tail, suggesting that revenues of bigger movies decay slower.

more player-specific information and hence can
use this information to determine the order of
play in a more natural way.

III. INDUSTRY AND DATA

The distributors of motion pictures are those
in charge of taking the movie from the end of
the production stage to the theaters. This is done
typically by the distribution arm of the major
studios, as described in more detail in Einav
(2002) and in the references therein. One of
the main strategic decisions made by distribu-
tors is the movie release date. The two impor-
tant considerations factored into this decision
are the strong seasonal effects in the demand
for movies and the competition that will be
encountered throughout the movie’s run. Typi-
cally, movies with higher expected revenues are
released on higher demand weekends, so there is
a trade-off between the seasonal and the com-
petition effects. The importance of the release
date is greatly magnified by the fact that the
performance during the first week accounts for
a sizeable amount of the overall performance of
the movie. On average, box office revenues in

the first week account for almost 40% of the
total domestic revenues (Figure 2).14 An addi-
tional reason for the importance of the release
date choice is the view that high revenues in
the first week create information and network
effects which increase revenues in subsequent
weeks.15

Figure 3 presents the strong seasonality in the
industry, plotting weekly average industry rev-
enues (normalized by ticket prices and the size
of the U.S. population). Major holidays such
as Memorial Day, Fourth of July, Thanksgiv-
ing, Christmas, and New Year’s are historically
associated with strong box office performance.
Consistent with this revenue pattern, the con-
ventional wisdom is that box office revenues are
strong throughout the summer season and during
the Christmas winter holiday period. The period
following Labor Day up to mid-November is

14. Furthermore, about 70% of the weekly revenues are
collected in the weekend.

15. To quote from Lukk (1997): “In this business, if you
are not the number one film the week you are open, you
usually are never the number one.” See also Moretti (2007)
and Moul (2007).
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FIGURE 3
Seasonal Effects in Total Admissions
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Notes: This figure shows the seasonality in total industry sales. The vertical axis (“industry share”) is the industry’s
weekly revenues, normalized by average ticket price and by the U.S. population. Thus, it can be thought of as the per capita
number of movies seen each week (an industry share of, say, 0.1 implies that 1 of every 10 people in the United States
goes to the movies in the corresponding week). The figure shows the industry shares, averaged over the 1985–1999 sample
period. The figure clearly demonstrates the perceived seasonal effects in the industry. The year has two strong periods, the
long summer period (Memorial Day to Labor Day) and the Christmas Winter holiday period. The Spring and the Fall are
typically considered very weak periods for the industry, and the drop after Thanksgiving is generally seen as a “shopping
period.” The dashed lines stand for deviations of two standard errors. The number of weekly dummies is 56 to account for
the timing variation in U.S. holidays across the years (see Einav 2007 for details).

considered to be very weak, as is the period from
the beginning of March to mid-May.

The identity of the competing movies is the
second consideration taken into account when
setting the release date. Distributors are wary of
releasing a movie in close proximity to another
movie with which competition will be strong.
Furthermore, even once release dates are set,
distributors often change them in response to
new information concerning release dates of
similar movies chosen by other distributors (see
in more detail later on). Another strategy prac-
ticed by distributors is to announce their movie’s
release data early with the hope that preemp-
tive action will deter other distributors from
choosing the announced date. This practice is
especially common with movies that are widely
expected to be successful.

I use two distinct data sets for this paper.
The first contains detailed information about all
movies domestically released between 1985 and
1999 and is described in detail in the compan-
ion paper (Einav 2007). There I use these data to

obtain demand estimates. Some of the estimates
from the demand system are used in the cur-
rent paper as an input into the empirical model
proposed above. To motivate the applicability
of the empirical model described above to the
release date decision, I collected a second data
set. This is a unique data set regarding the prere-
lease information about scheduled release dates,
describing the dynamic process that leads to the
eventual schedule. The source of the data is the
“Feature Release Schedule,” which is published
monthly by Exhibitor Relations Inc.

In the beginning of each month, the publi-
cation lists the updated release schedule of all
movies that are in the making but have not been
released as of yet. Typically, movies are first
listed about 12–18 months before their sched-
uled release. At this stage, many of the movies
are in the process of casting or are in early
stages of production. Thus, when first enter-
ing the monthly report, movies are generally
not assigned to a specific release date. Rather,
they are given a more general release season,
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such as “Summer 2002,” “Christmas 2002,”
or just as “coming.” As the scheduled release
approaches, the release date becomes more spe-
cific, for example, “Late Summer 2002” or
“Early July 2002,” converging eventually to a
specific date.16

The data cover roughly all the titles that were
eventually released between 1985 and 1999, a
total of 3,363 titles. To get an idea of what the
data look like, let me use Bruce Willis’s Die
Hard: With a Vengeance (aka Die Hard 3 ) as
an example. It was first listed as “May 1995”
in the September 1994 issue of the publication.
In December 1994, the schedule became more
specific—May 12, 1995—but a month later it
was pushed back by two weeks, to May 26,
1995 (Memorial Day). In February 1995, the
movie’s release was moved again, to May 19,
1995, which was the eventual release date. The
sequence of announcements for the 1999 release
of Star Wars: The Phantom Menace was less
eventful; it was first listed as “May 1999” in
the issue of May 1998. In the September 1998
issue, the announcement became more specific,
May 21, 1999, and remained the same until its
actual release.17

A major characteristic of the data is the fre-
quent changes in the release schedule of certain
movies. This is somewhat surprising, given the
costs associated with changing a release date.
Such costs are incurred for several reasons, such
as committed advertising slots, the implicit costs
of reoptimizing the advertising campaign, repu-
tational costs, etc. The costs become higher as
the changes in release date are done closer to the
scheduled release. While some of these changes
are the result of unforeseen production delays,18

most of these changes are made for strategic
reasons, and may provide some indication of
unobserved characteristics of the movie, such
as quality and commitment power. Supporting
this idea, industry practitioners and the popular
media describe the scheduling game as a war of
attrition.

16. Agency issues provide an additional incentive for
early announcements of release dates. The director typically
edits the film until the very last day before the release, so
the announced release date is used to set a final deadline to
the production process.

17. In fact, in the April 1999 issue, the May 21
(Friday) announcement was changed to May 19 (Wednes-
day). However, as will be discussed later, I tabulate dates
at the weekly level, making these two dates effectively
identical.

18. See Einav and Ravid (2007) for analysis of such
schedule changes.

Across all movies and announcements, more
than 20% of the monthly announcements are
changes in relation to the most recent announce-
ment of the same film. Moreover, more than
60% of the movies changed their release dates at
least once. Figure 4 provides the distribution of
the magnitude (in weeks) of these changes. The
distribution of these changes is roughly sym-
metric, and the majority of changes shift the
release date by a small number of weeks; 75%
of the observed changes do not shift the release
date by more than a month. Both the symme-
try of the distribution and its shape indicate that
it is unlikely that the majority of changes are
made for exogenous nonstrategic reasons, such
as production delays. The likelihood of a movie
changing its release date is not significantly cor-
related with the movie’s size, measured by its
production cost. However, movies with higher
box office quality (as estimated in Einav 2007)
are significantly less likely to change release
dates. One interpretation of this is that movies’
estimated quality is originally highly correlated
with their production cost, but as the shape of
the finished product becomes clearer, films that
turn out to be potential disappointments shift
away from their previously announced release
dates.

This pattern of frequent small switches seems
consistent with the idea that movies, in general,
are produced with a target season in mind, while
the “fine-tuned” choice of the precise release
date within the season is subject to more strate-
gic consideration. Because over 75% of the
movies are released on Fridays, and an addi-
tional 20% on Wednesdays, it seems natural
to think of the release decision as a discrete
choice among a small number of alternatives.
Such a pattern lends itself nicely to the empir-
ical model described in the previous section:
at the end of the production stage each movie
is scheduled to release during a specific sea-
son, while the exact release week is the out-
come of a strategic timing game played against
all other movies released during the same
season.

While the true timing game is probably best
approximated by a repeated announcement game
with increasing switching costs (see Caruana
and Einav 2008 for a formal analysis of such
games), using such games for estimation is
computationally infeasible. Therefore, the once-
and-for-all sequential-move game, as proposed
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FIGURE 4
Distribution of the Magnitude of Switches in Announced Release Dates

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

ta
il

-1
7

-1
5

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 ta

il

Magnitude of Switch (Weeks)

78.37%

Notes: This figure is based on 1,897 movies, covering movies that were eventually released nationwide between 1985
and 1999. The figure shows the distribution of the magnitude of switches of announced release dates. A switch is a change in
the announced release date compared to the most recent announcement of the same movie (which is generally made a month
before). The distribution is taken over all movies and announcements, and tabulates the difference (in weeks) between the
new announcement and the previous one. A difference of 0 implies no change. A positive difference implies a shift forward of
the release date, and a negative difference implies making the release date earlier than announced before. This figure provides
two main insights. First, the distribution is roughly symmetric (with a somewhat fatter tail in the positive part, for obvious
reasons). Second, the majority of the changes shift the release date by a small number of weeks. These two observations
suggest that these changes are done mainly for strategic reasons, and not because of exogenous factors, such as production
delays. Note that the bar at 0 is out of scale, and accounts for 78% of the announcements.

in Section II, may be viewed as a reasonable
alternative.19

IV. SPECIFICATION AND RESULTS

A. Overview

In the companion paper (Einav 2007), I esti-
mate demand for motion pictures, where the
weekly demand for a movie is driven by three
components: the quality of the movie, the decay
in quality since the movie’s release, and the
underlying seasonal pattern. Using a simple
nested logit specification (with one nest for all
movies, and a second nest for the outside good),
the weekly market share of movie j during week

19. One can think about the once-and-for-all assumption
as if switching costs are insignificant early on, but become
very high at a certain point in time. The order of moves
assumed for the sequential game is just the ordering of the
points in time at which these jumps in the switching costs
occur.

t is given by

sjt = (Dσ
t + Dt)

−1 exp((θj − λ(t − rj )

+ τt + ξjt)/(1 − σ)),(11)

where θj is the movie quality,20 rj is the
release date (in weeks) of movie j, τt is the
underlying level of demand in week t, ξjt is
a disturbance term which reflects the deviation
from the common decay pattern, Dt is given by

Dt =
∑
k∈Jt

exp((θk − λ(t − rk)

+ τt + ξkt)/(1 − σ)),(12)

and Jt is the set of movies in theaters during
week t. An important finding of Einav (2007)
is that the estimates for underlying seasonality

20. One should think of quality as reflecting attractive-
ness or “box office appeal,” which is not necessarily related
to cinematographic quality.
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FIGURE 5
Seasonal Effects in Underlying Demand
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Notes: This figure plots the estimated coefficients on the weekly dummy variables from estimating the nested logit movie
demand model of Einav (2007). There are two major differences compared to the seasonal pattern of industry revenues
(Figure 3). First, the seasonal variation is smaller, suggesting that about one-third of the seasonal variation is explained by
variation in quality. Second, the seasonal pattern is slightly different, with, for example, the end of the summer looking
relatively much better than industry revenues indicate. The dashed lines stand for deviations of two standard errors. The
estimated decay coefficient λ is −0.22 (with a standard error of 0.014) and the estimated substitution coefficient σ is 0.524
(0.030). The number of observations is 16,103 (1,956 movies). The number of weekly dummies is 56 to account for the
timing variation in U.S. holidays across the years (see Einav 2007 for details).

are somewhat different from the conventional
wisdom, as reflected by Figure 3. I reproduce
these estimates for underlying seasonality in
Figure 5.

Simple analysis may suggest that, taking the
estimates for underlying seasonality as given,
distributors do not make their release deci-
sions according to these estimates. The seasonal
release pattern is described in Figure 6, showing
that many of the top movies are released on a
few big holiday weekends. The current applica-
tion complements these findings by addressing
two key issues. First, it examines the within-
season variation in the release pattern, address-
ing a concern that the choice of a season may
be driven by other omitted factors.21 Second, it
accounts for strategic effects by using the empir-
ical model developed in this paper.

21. For example, many movies may release early in
the summer in an attempt to leave enough time to make
the high-demand video and DVD season around Christmas.
Certain movies may also cater to a specific target audience,
and characteristics of moviegoers change across seasons. All
these factors are less relevant when considering the choice
of a specific week within a given season.

The estimation strategy is to take the demand
estimates of movie quality and decay pattern as
given, and to estimate the underlying demand
parameters from the game, that is, from the
observed release pattern. The focus on the
underlying demand is for several reasons. First,
the other parameters of the demand system are
less controversial, and hence make it a less inter-
esting exercise. Second, the estimates of under-
lying seasonality from the demand system are
more sensitive to the identification assumption
employed in Einav (2007), that the unobserv-
able component of the decay is independent of
the choice of release date. Therefore, it may be
useful to search for alternative sources of infor-
mation about these parameters. Finally, a simple
inspection of the results from the demand esti-
mation suggests that distributors have a different
seasonal pattern in mind when deciding about
release dates compared to the seasonal pattern
estimated. This calls for a more formal treat-
ment, which would establish and quantify this
pattern more analytically.

More generally, one may think about this
application in the context of standard demand
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FIGURE 6
Seasonal Effects in New Releases
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Notes: This figure plots the estimated release effect, which is defined as the contribution of new movies to the competition
effect (see Einav 2007 for more details). It is then averaged over the 15 years of the data. The dashed lines stand for two
standard errors from the average (ignoring the implicit standard error that comes from coefficient uncertainty). The number
of weekly dummies is 56 to account for the timing variation in U.S. holidays across the years (see Einav 2007 for details).

estimation. One strategy is to estimate a demand
system combined with assumptions on the game
played among firms. This approach is efficient,
provided that the assumptions regarding firms’
behavior are correct. It provides inconsistent
estimates, however, if these assumptions are
incorrect. This approach does not allow us to
test for the optimality of firm behavior, as it
is assumed. A second strategy is to estimate
demand parameters from demand data alone,
and then use these estimates to test the optimal-
ity of firms’ behavior. This is the approach taken
in this paper for two main reasons. First, it is
computationally not feasible to estimate movie-
specific qualities as parameters of the timing
game; these qualities enter nonlinearly, requiring
a numerical search procedure over many param-
eters. Second, the underlying demand parame-
ters obtained from the demand system are quite
different from industry wisdom, questioning the
plausibility of pooling demand- and supply-side
moments. Instead, I find it more informative to
obtain these set of estimates separately and com-
pare them.

Consequently, the seasonal estimates result-
ing from estimating the timing game should be

thought of as the perceived underlying demand,
that is, the underlying demand that rational-
izes the observed release pattern. The interesting
exercise is to compare these estimates to those
derived from the demand system. As it turns
out, these two sets of estimates of underlying
demand are quite different. While I view this
as some indication for bounded rationality of
distributors (see later), it is perfectly consistent
with the reverse interpretation: if one believes
that the timing game is specified correctly and
that distributors are fully rational, then the dif-
ferent patterns call into question the validity of
the identification assumption used to obtain the
demand estimates.

B. Specification

The general setup for the estimation is as
follows. I choose several time windows (“sea-
sons”) within the year and take the set of
movies that were released within the speci-
fied season as given. I then analyze the choice
of the week within the season during which
the movie is released. The motivation for this
assumption comes from the prerelease timing
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data described in Section III. Distributors decide
far in advance that a certain movie is scheduled
for around, say, Memorial Day, but only later
decide about the specific date on which it is
released. Moreover, most changes of previously
announced release dates do not shift the date by
much.

The empirical model developed in Section II
provides the framework for analysis. For the
model to be taken to the data, I still need to spec-
ify the particular functions and the model param-
eters. In doing so, I am guided by two main
considerations. First, the computational burden
dictates a restricted choice of K (the number
of weeks included in each season) and N (the
number of strategic players), and a relatively
small number of parameters. This is done by
setting the length of each season to 5 weeks
(K = 5), a choice which is guided by the switch-
ing behavior described in Figure 4. I let N be
equal to 2–6, depending on the specification
and the number of parameters estimated. I also
estimate only a small number of parameters.
As mentioned, the second important consider-
ation for specifying the functional forms is my
attempt to evaluate the timing decisions made
by distributors.

I assume that each season represents an
independent timing game. In each season, each
of the N players (those that eventually released
their movie during that season) chooses one of K
weeks (that lie within the season) during which
his movie is released. Movies are generally
released on Fridays, consistent with analyzing
the timing decision at the weekly level. To
further reduce the dimensionality problem, I
choose to model only the best N movies within
the season as strategic players. The quality
measure of each movie is given by the point
estimate of the movie fixed-effect estimated in
Einav (2007). I assume that these movies play
against each other, conditioning on the observed
release dates of all other movies.22

22. A reasonable approach would be to assume that the
order of moves is dictated by the ordering of the movie
qualities, the biggest movie playing first. This implies that
the smallest movies condition their decisions on the release
dates of the bigger ones, but not vice versa (which is what
I do in this paper). Given the computational restrictions,
such an approach would rely on the decisions of the small,
less strategic, players. For these movies, it is not clear that
we need the “high-powered” structural game for estimation.
Rather, given that they have no real strategic effect, we can
estimate each movie’s decision separately.

Given that all movies remain in the mar-
ket for longer than one week, not only do
the “active” players (top quality movies) con-
dition on the release pattern of the lower quality
movies within the season, but they also condi-
tion on the release pattern of all movies in adja-
cent seasons. While conditioning on the release
dates of movies from the preceding season is
sensible, it is questionable whether it is valid
to assume that movies can condition on the
release dates of movies in the subsequent sea-
son. I justify this assumption by the fast decay
of box office revenues, which implies that the
effect of movies that are released more than
one week apart is relatively small, and hence
has little effect on strategic considerations. I use
these other movies and their observed release
dates to calculate the counterfactual box office
revenues.

For estimation, I choose four annual release
seasons, which are all centered around a dom-
inant release date. These are Presidents’ Day,
Memorial Day, Fourth of July, and Thanks-
giving.23 Each season includes the dominant
week, and 2 weeks before and after, adding up
to 5 weeks in each season (i.e.,K = 5, as spec-
ified earlier). Thus, I use a total of 60 seasons
(four seasons over 15 years), on which the esti-
mates are based. The number of movies in each
season is between 6 and 17 with a mean of
11.2 and standard deviation of 2.34, but movie
quality is very skewed. For example, the esti-
mated quality of the top three movies accounts
for 44–91% (with a mean of 66%), as a fraction
of the total quality of all movies in the season.
Thus, restricting attention to only the top movies
accounts for the majority of the industry box
office revenues in the season in which they are
released.

As explained in the previous section, I
keep the nested logit specification, which was
the basis for the demand analysis in Einav
(2007), and use the point estimates from the
demand system, but free up some parameters.
Specifically, I assume that the known portion of

23. Christmas, a highly popular release date, is not used
for the analysis for two reasons. First, the timing of many
Christmas releases is driven by Academy Award eligibility
requirements rather than by strategic motives. Second, unlike
the other seasons, Christmas is not characterized by a single
popular release date; the entire second half of December is
popular among moviegoers.
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TABLE 1
Estimation Results, Pooling All Seasons

A. Assuming better movie moves first

Number of strategic
movies (N ) 3 4 5 3 4 5

η 1.13 (0.66) 1.14 (0.63) 1.12 (0.60) 1.18 (0.68) 1.20 (0.64) 1.18 (0.61)
α 1.72 (2.42) 2.12 (2.23) 2.03 (2.17)
Log likelihood −283.3 −378.0 −472.9 −283.3 −377.9 −472.8

B. Assuming random (uniform) order of moves

Number of strategic
movies (N ) 3 4 5 3 4 5

η 0.28 (1.13) 0.31 (1.18) 0.70 (1.38) 1.58 (1.24) 1.86 (1.38) 2.82 (1.70)
α 23.51 (16.52) 21.37 (14.40) 23.24 (16.31)
Log likelihood −284.8 −379.8 −474.7 −284.0 −378.9 −473.3

Notes: The table presents the results from a set of specifications of the timing game. Panel A takes the order of moves
as given, with the better movie moving first, while Panel B assumes a uniform distribution over all order permutations.
Standard errors in parentheses. For comparison, note that the log likelihood of a fully random release date choice (i.e., η = 0)
is 60 · ln(5−N).

distributors’ profits takes the following form:

π̂j (rj , r−j ; γ) =
rj +H∑
t=rj

ŝjt(rj , r−j ; α, σ)

=
rj +H∑
t=rj

(D̂σ
t + D̂t )

−1

exp((θj−λ(t−rj )+ατt )/(1−σ)),(13)

[Equation amended after online publication date
September 29, 2009.]
where

D̂t =
∑

k∈Jt (rj ,r−j )

exp((θk − λ(t − rk)

+ ατt)/(1 − σ)),(14)

and θj is the estimated quality of the movie,
λ is the estimated decay parameter, rj is the
(endogenous) movie’s release decision, and τt

is the estimated underlying demand. H is the
length of the period that is taken into account by
distributors when making their release decision.
The choice of H is guided by computational lim-
itations, so I choose H = 2, thereby restricting
distributors to base their decisions on the first
three weeks after the release. Jt (rj , r−j ) is the
set of movies that play on week t, which depends
on the observed release dates of the nonstrategic
movies as well as on the (endogenous) release

decisions, rj and r−j , of the strategic movies
which are being modeled.

That is, I use Equation (11) with small mod-
ifications. First, I assume that distributors make
their decisions under the assumption that ξj t =
0 for any j and t.24 Second, while all the param-
eters in the profit function are taken as given
(based on the demand estimates), I introduce a
new parameter, α. In the nested logit demand
system, this parameter is restricted to be 1.
Freeing it up allows distributors to overweight
(α > 1) or underweight (α < 1) the estimated
underlying demand.

Finally, an additional parameter to be esti-
mated in all specifications is η, the precision of
the logit error term as described in Section II.
It does not show up in Equation (13) because it
affects π = π̂ + ε only through the error term,
but not through π̂. The results reported below
also use different assumptions regarding the
order of moves (see Section II).

C. Results

Table 1 present the estimation results for dif-
ferent choices of N, the number of strategic
movies. Panel A presents results that are based

24. One could think of imputing ξj t from the demand
system, and assuming that the ξj t ’s are related to the movie-
specific decay pattern. Doing so changes the results very
little. This is because the variation of ξj t ’s is very small
and hence has little effect on the strategic considerations.
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on an order of moves (of the sequential game)
where the better movie moves first, while panel
B present results where I allow a uniform dis-
tribution over all orders (permutations of the N
players). Although the qualitative results (dis-
cussed below) are similar across both panels,
the random order leads to somewhat less sta-
ble results and lower statistical significance of
the coefficients, so I focus my discussion on the
results of panel A, which constitutes my pre-
ferred specification.

Overall, the results are quite stable across dif-
ferent choices of N. In all specifications, the
estimate of η is positive and significant at a
10% confidence level. Recall that η is the pre-
cision of the error term. Alternatively, one can
also think of η as the parameter on the deter-
ministic component of payoffs. An insignificant
η would imply that the release date decisions
appear random with respect to the modeled pay-
offs, and a negative η would imply that the
modeled payoffs are negatively associated with
the release date decision. Therefore, the positive
and (marginally) significant estimate of η sug-
gests that the model for payoffs, together with
the estimated demand parameters, is indeed use-
ful in explaining the release date decisions.

Perhaps more interesting is the estimate of α.
Across all specification, the point estimates of α
are consistently above 1, which is the implied
value of the nested logit demand system.25

This suggests that movie distributors overweight
underlying seasonality (relative to competition
from other movies) when they make their release
date decision. In other words, to best rationalize
the observed release date decision, the estimated
underlying demand estimates need to be about
doubled; that is, the spike of underlying demand
in, say, Memorial Day weekend needs to be
twice as large to rationalize the clustering of hit
movies released on that weekend.

Thus, the results taken together suggest that
although distributors tend to respond to under-
lying demand and to competition from other
movies, as implied by the demand model, they
appear to be too clustered in holiday weekends.
To make this statement more precise, and to
provide more interpretable figures, I construct

25. None of the estimates of α is significantly different
from 1 (or from 0) at reasonable confidence levels. This may
not be surprising given the small number of independent
seasons (60) used for estimation, which makes standard
errors large. However, given the fairly stable estimate of
α across choices of N, interpreting and discussing the point
estimates may not be unreasonable.

a measure for clustering. In a given season, for
a given choice of N, I define the clustering mea-
sure as the average fraction of quality released
on the holiday weekend. Let θi

m be the quality
of movie i, which is released in season m, so the
average clustering measure across M markets is
given by

clustering = 1

M

m=M∑
m=1

( ∑
ri is holiday

θi
m

)/(∑
i

θi
m

)
.

(15)

This is the actual clustering measure. I con-
struct the corresponding counterfactual by using
the expected clustering measure, where the
expectation is taken over the idiosyncratic noise
in the empirical model, and over the distribution
of the permutations of order of play. One should
note that the clustering measure is between 0 and
1, and that with K = 5, a random assignment
of movies into release dates yields a clustering
measure of K−1 = 0.2.

Across all seasons and years, the average
clustering measure ranges from 0.35 to 0.37
(across choices of N ) compared to the random
assignment measure of 0.2. Computing expected
clustering measures using the point estimates
from the various specifications of Table 1 that
impose a value of α = 1, I obtain measures
that range from 0.16 to 0.25. That is, the
nested logit demand model implies a much
more even distribution of movie quality within
a season, requiring overweighting of underlying
seasonality to rationalize the much higher actual
clustering observed in the data.

Table 2 presents some results when each
release season is estimated separately. I am hes-
itant to experiment much with various specifi-
cations because each such specification relies
on only 15 independent seasons. Table 2 is still
instructive in showing that pooling together all
seasons may hide important heterogeneity. Specif-
ically, the results presented in Table 2 show that
the model does a pretty good job in explain-
ing release date decisions in the summer (i.e.,
around Memorial Day and Fourth of July),
while the release date decisions around Thanks-
giving, and even more so around Presidents’
Day, are hardly associated with expected prof-
its, as modeled and estimated by the demand
system.

D. Discussion

The main conclusion from the empirical anal-
ysis of this paper is that distributors seem
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TABLE 2
Estimation Results, by Season

Number of strategic
movies (N ) 2 3 4 5 6

Presidents’ Day
η 0.00 (0.01) 0.08 (1.41) 0.07 (1.36) 0.00 (0.0) 0.00 (0.01)
Log likelihood −45.1 −67.6 −90.1 −112.7 −135.2

Memorial Day
η 2.20 (1.25) 2.08 (1.18) 1.79 (1.19) 1.90 (1.16) 1.98 (1.19)
Log likelihood −46.6 −70.8 −95.3 −119.1 −143.2

Fourth of July
η 0.00 (0.04) 1.87 (1.80) 1.94 (1.66) 2.34 (1.46) 1.74 (1.40)
Log likelihood −48.3 −71.8 −95.7 −119.1 −143.9

Thanksgiving
η 0.23 (1.41) 0.49 (1.17) 0.83 (1.05) 0.56 (1.04) 0.55 (0.97)
Log likelihood −48.3 −72.3 −96.2 −120.6 −144.7

Notes: The table presents the results from a set of specifications of the timing game, separately by season. All results take
the order of moves as given, with the better movie moving first (as in panel A of Table 1). Standard errors in parentheses. For
comparison, note that the log likelihood of a fully random release date choice (i.e., η = 0) is 15· ln(5−N). Note that almost
no estimate is statistically significant at reasonable confidence levels. This is mainly due to the small number of observations
once each season is allowed to have its own parameters.

to cluster their release dates more than they
should. While the spirit of the results is some-
what similar to the conclusions drawn in Einav
(2007), the results in the current paper are
largely driven by different variation in the data.
Einav (2007) uses cross-seasonal variation and
“price-taking” assumptions, while here I use
within-season variation and allow for strate-
gic effects. Thus, at least a priori, there was
no reason to assume that the two analyses
would yield similar qualitative results. The fact
that they do, therefore, strengthens these con-
clusions. In what follows, I propose several
explanations that may help understand these
findings.

The first line of interpretations is consistent
with the assumptions of optimizing behavior by
studios. There are several industry features, not
incorporated in my model, that could cause more
movie clustering around high-demand weekends
than predicted by the model. First, uncertainty
may play an important role. While a complete
information equilibrium may have the movies
spreading out over the different weeks, uncer-
tainty may result in more movies being released
on the better weeks. This over-clustering may
prove inefficient ex-post, but may be optimal
ex-ante. To gain intuition for why this may be
the case, consider a two-by-two game in which
the ex-post profits are given by

Holiday Non-Holiday
Holiday 100, 0 100, 40
Non-Holiday 40, 100 10, 0

where the motivating story is that the market
size is 100 and 40 in the holiday and non-holiday
weeks, respectively. Movie 1 (the row player)
always obtains the whole market, independently
of competition, while movie 2 makes positive
revenues only if movie 1 is not present. The
equilibrium of this model is for movie 1 to
release on the holiday weekend, and for movie
2 to release on the non-holiday weekend, that
is, no clustering. Consider now an extreme
uncertainty, in which both movies are identical
ex-ante, and with probability 0.5 each movie
wins the whole market if the two compete head-
to-head. The new (ex-ante) payoff matrix would
be as follows:

Holiday Non-Holiday
Holiday 50, 50 100, 40
Non-Holiday 40, 100 10, 20

yielding a unique Nash equilibrium in which
both movies are released on the holiday weekend,
that is, clustering. Trying to allow uncertainty in
the empirical model is conceptually possible but
computationally very intensive.
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One can also rationalize the overclustering
result by having the true value of a holiday
release being greater than what we think it is.
For example, this may be due to repeated game
effects (Chisholm 1999), which may change the
static “value” of releasing on a certain week.
If a distributor who releases a movie on, say,
the Fourth of July is more likely to capture the
same week in future years, a Fourth of July
release may be more attractive than it is esti-
mated to be. Alternatively, if there are nonmon-
etary benefits (e.g., prestige) to the distributor
(or to the director and the actors) from releas-
ing on holiday weekends, this may also generate
overclustering effects.26 Third, as is well known,
the nested logit specification used to obtain the
demand estimates assumes that all movies are
equally good substitutes of each other, propor-
tional to their market shares. If the top movies
every season are of different genres, the rev-
enues of these movies may be less affected by
clustering with other movies.

A very different line of explanation is a
behavioral one. Movie distributors could be
overconfident as to the relative quality of their
movie (Camerer and Lovallo 1999) or could
simply err in their assessment of the underlying
demand in the industry. After all, the “learning
from experience” argument, according to which
economic agents cannot err for a long period,
may not work in the motion picture industry.
To learn from experience, distributors have to
first obtain enough experience and then be able
to use it properly. In particular, the informa-
tion about the seasonal pattern comes only once
a year, and the high uncertainty about movie
quality makes inference difficult regarding the
separation between the underlying demand and
the movie quality effects. With each movie hav-
ing its own identity, a controlled experiment
of releasing the same (or very similar) movie
in different dates is not feasible. For decades,
the industry has followed the same release pat-
tern, according to which big hits are released on
big weekends. Thus, there are no natural exper-
iments that make it easy to distinguish between
higher movie quality and higher underlying
demand. Any deviation from the “predicted”
seasonal pattern (for example, successful movies
in October) is typically interpreted by industry
observers as an extremely good movie in the

26. Consistent with this idea is the sentence I often heard
while interviewing industry executives: “Economics? This
industry is not about economics; it is all about egos. . . .”

wrong season rather than as a decent movie
in a mediocre season. In other words, there
is very little bad feedback after a bad release
decision.

Even if distributors are fully rational, conser-
vatism may lead them to stick to the traditional
release pattern. This conservatism may be mag-
nified if we think of the institutional context
and the potential agency costs in the indus-
try. Top directors and actors do not want to
see their films fail because of a poor market-
ing decision. Thus, considering the traditional
release pattern in the industry, they frequently
lobby for a traditionally good choice of release
dates. Distributors are likely to be conservative
and satisfy these requests, rather than risk their
jobs, reputation, and future business. By stick-
ing to the traditional release pattern they can
be adequately evaluated by the market.27 This
is not the only example where the motion pic-
ture industry seems to be conservative and to
follow tradition. Other examples include the cur-
rent uniform ticket pricing policy in the industry
(Orbach and Einav 2007), the use of stars in the
industry (Ravid 1999), or the massive capacity
expansion that took place in the 1990s and has
recently led many of the largest chains of movie
theaters to file for bankruptcy (Davis 2006a).

Finally, it should be noted that in recent years
distributors started to experiment more with less
traditional release decisions. After relative suc-
cessful early May openings of Gladiator and
The Mummy Returns in 2000 and 2001, the dis-
tributors of Spiderman —an anticipated block-
buster much before its actual release—decided
to release it on May 3, 2002. Ten years earlier
such a move would have been unheard of.

V. CONCLUSIONS

This paper develops a new empirical model
of discrete games to study the release date tim-
ing game played by movie distributors. The
timing game is formulated as a sequential
game with private information, with distributors
choosing among a small set of release week-
ends. The main empirical finding is that movie
distributors overcluster their release dates, with
too many good movies released on big holiday
weekends. As a whole, the results complement
and strengthen similar (though weaker) conclu-
sions found in Einav (2007).

27. This is in the spirit of “you cannot be fired for buying
IBM.” For a formal treatment, see Zweibel (1995).
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In analyzing the timing game, the assumption
is that by the time the release date is chosen,
many of the characteristics of the movie and
of competing movies are already set, generating
heterogeneity among competitors. This provides
each player with a payoff-relevant identity.
Accounting for this feature using existing mod-
els of discrete games is difficult. This paper
therefore proposes a new estimable game struc-
ture that tries to relax this limitation. The model
specifies a sequential game structure with asym-
metric information. The game has a unique equi-
librium that can be solved using a simple algo-
rithm. This allows estimating a game even in the
absence of symmetry restrictions on the payoff
structure.

This last feature is crucial for a large set of
applications. In particular, such flexibility would
be a necessary property of an empirical model
of discrete games that attempts to model loca-
tion choice together with a state-of-the-art model
of price-setting behavior. As the demand litera-
ture in industrial organization keeps going in the
direction of more flexible substitution patterns,
one has to use product choice models that allow
for a more flexible functional form for payoffs.
Combining these two literatures is an impor-
tant direction for future research. The empirical
model proposed in this paper is a way that may
facilitate such work.
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