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For several reasons, reducing automobile-based gasoline consumption is a major US public 
policy issue. Gasoline use generates environmental externalities. In 2004, approximately 22 per-
cent of US emissions of carbon dioxide—the principal anthropogenically sourced “greenhouse 
gas” contributing to global climate change—derived from gasoline use. Other environmental 
externalities from gasoline combustion include the impacts from emissions of several “local” air 
pollutants such as carbon monoxide, nitrogen oxides, and volatile organic compounds. Reduced 
gasoline use could lead to improved air quality and associated benefits to health.1, 2 In addition, 
gasoline consumption accounts for 44 percent of the US demand for crude oil, and the nation’s 
dependence on crude oil makes the United States vulnerable to changes in world oil prices ema-
nating from disruptions in the world oil market. Some analyses claim that this vulnerability is not 
accounted for in individual consumption decisions and thus represents another externality from 

1 Ian W. H. Parry and Kenneth A. Small (2005) and the National Research Council (2002) examine the various 
externalities from gasoline use and offer estimates of the overall marginal damages. The former study estimates the 
overall external cost from US gasoline consumption (including effects relating to local pollution, climate change, con-
gestion, and accidents) to be about 75 cents per gallon in year-2000 dollars. This suggests that US taxes on gasoline are 
below the efficiency-maximizing level, since the federal tax plus average state tax totals 41 cents.

2 The extent of the health improvement from improved air quality depends on both the reduction in gasoline use 
and possible changes in pollution per gallon of gasoline used. Air districts currently in compliance with air pollution 
regulations under the 1990 Clean Air Act amendments might well respond to reductions in gasoline use by relaxing 
“tailpipe” emissions requirements, that is, on the allowable emissions per unit of fuel combusted. This would offset the 
air-quality and health improvements from reduced gasoline consumption.
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gasoline consumption.3 The various externalities provide a potential rationale for public policy 
oriented toward gasoline consumption.

Recently, analysts and policymakers have called for new or more stringent policies to curb 
gasoline consumption. The US Senate recently passed a bill that would raise corporate average 
fuel economy (CAFE) standards for passenger vehicles for the first time since 1985. The stan-
dards would be increased from the current 27.5 miles per gallon to 35 miles per gallon by 2020. 
The 2005 Energy Bill includes tax credits for households purchasing relatively fuel-efficient 
vehicles such as hybrid cars. The California State Assembly recently enacted AB 1493, which 
mandates carbon dioxide emissions that would require significant improvements in automobile 
fuel economy. Other proposals include subsidies to retirements of older (gas-guzzling) vehicles 
and increments to the federal gasoline tax.4

This paper examines the gas tax option, employing an econometrically based multimarket 
simulation model to evaluate the policy’s efficiency and distributional implications. We investi-
gate the impacts of increased US gasoline taxes on fuel consumption, relating these impacts to 
changes in fleet composition (shifts to higher mileage automobiles) and vehicle miles traveled 
(VMT). We also evaluate the economy-wide costs of higher gasoline taxes, and explore how the 
costs are distributed across households that differ by income, region of residence, race, and other 
characteristics. We consider how the distribution of impacts depends on the ways revenues from 
the tax are returned to the private sector.

Some prior studies have examined the impact of gasoline taxes by estimating the demand for 
gasoline as a function of gasoline price and household income. For example, Jerry A. Hausman 
and Whitney K. Newey (1995) use household-level data on gasoline consumption to estimate 
deadweight loss from gasoline taxes, while Sarah E. West and Roberton C. Williams III (2004, 
2005) use such data to assess the distributional impacts of gasoline taxes and the optimal gaso-
line tax.

Other studies infer the demand for gasoline from automobile choice and utilization models. 
For example, James Berkovec (1985), Fred L. Mannering and Clifford Winston (1985), Kenneth 
E. Train (1986), and West (2004) estimate the household’s discrete automobile purchase decision 
and its continuous choice of VMT. Following Jeffrey A. Dubin and Daniel L. McFadden (1984), 
these authors account for the connections between these two choices, although the cross-equa-
tion restrictions implied by a unified structural model of behavior are not imposed.

A third set of studies focuses on supply-side phenomena—in particular, the impacts of policies 
on new car production and the composition of the automobile fleet, and the associated effect on 
gasoline consumption. In contrast with the previously mentioned studies, this third set consid-
ers explicitly the imperfectly competitive nature of the new car market and the pricing behavior 
of new car producers. For example, Steven T. Berry, James Levinsohn, and Ariel Pakes (1995); 
Pinelopi K. Goldberg (1998); and David H. Austin and Terry M. Dinan (2005) develop models 
of new car market that combine supply decisions by imperfectly competitive producers with dis-
crete demand choices by households. The latter two studies explore impacts of automobile poli-
cies on the new car market. Goldberg (1998) and Andrew M. Kleit (2004) analyze tighter CAFE 
standards; Austin and Dinan (2005) examine CAFE standards and a gasoline tax increase.

The present study differs from earlier work in several ways. First, in contrast with nearly all 
prior work,5 this analysis considers supply and equilibrium not only in the new car market, but in 

3 See, for example, National Research Council (2002).
4 The general public appears to be growing increasingly supportive of stronger measures to curb gasoline use. A 

February 2006 New York Times/CBS News Poll found that a majority of Americans would support a higher gasoline 
tax if it reduced global warming or made the United States less dependent on foreign oil.

5 One exception is Berkovec (1985), who develops a model with interactions among these markets. His model 
assumes pure competition among auto producers, however.
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the used car and scrap markets as well. The wider scope helps provide a more complete picture 
of the impact of a gasoline tax. In addition, addressing the equilibrium in all three car markets 
enables us to capture important dynamic effects. Higher gasoline taxes are likely to cause an 
increase in the share of relatively fuel-efficient cars among new cars sold. The extent to which the 
fuel-efficiency of the overall (new and used car) fleet improves will depend on the rate at which 
the newer, more efficient cars replace older cars. This depends on the relative size of the stocks 
of new and used cars and the rate at which older cars are taken out of operation (scrapped). By 
considering the new, used, and scrapped car markets, the model is able to consider the dynamics 
of changes in fleet composition and related short- and long-run impacts on gasoline consump-
tion. As in Goldberg (1995), Berry, Levinsohn, and Pakes (1995), Amil K. Petrin (2002), and 
Austin and Dinan (2005), we consider the imperfectly competitive nature of the new car market. 
In contrast with these studies, however, we connect this market to the used and scrap markets. 
This allows us to consider how policies affect the entire fleet of cars and associated demands for 
gasoline.

A second major difference from earlier work is the model’s ability to capture distributional 
effects. The model considers over 20,000 households that differ in terms of income, family size, 
employment status (working or retired), region of residence, and ethnic background. This enables 
us to trace distributional impacts in several important dimensions. All household demands 
stem from a consistent, utility maximization framework, enabling us to measure distributional 
impacts in terms of theoretically sound welfare indexes. Prior studies have examined distribu-
tional effects by focusing on how gasoline expenditure shares differ across income groups.6 In 
contrast, the present model considers not only the expenditure-side impacts but also the ways that 
the government’s disposition of gas tax revenue influences the distribution of policy impacts.

Finally, the model differs in its econometric approach to estimating consumer demand for 
automobiles, VMT, and gasoline. Berkovec (1986), Mannering and Winston (1986), Goldberg 
(1998), and West (2004) account for the connections between the automobile purchase and use 
(VMT) decisions by employing sequential, two-step estimators. Their approach accounts for 
correlations between the discrete and continuous choice margins but ignores the cross-equation 
restrictions implied by a unified behavior model. In contrast, we adopt a full-information, one-
step structural approach that simultaneously estimates these choice dimensions within a utility-
theoretic framework that permits us to recover sound welfare estimates.7 In addition, we assume 
that all parameters entering preferences vary randomly across households. Random coefficients 
allow us to account for correlations in the unobservable factors influencing a household’s dis-
crete car choice and continuous VMT demand, while simultaneously allowing for more plausible 
substitution patterns among automobiles (McFadden and Train 2000; David S. Bunch, David 
Brownstone, and Thomas F. Golub 1996).

The rest of the paper is organized as follows. Section I describes the equilibrium simulation 
model. Section II outlines the model’s data sources, with emphasis on the data employed to esti-
mate household demands for vehicles and travel. Section III presents our approach for estimating 

6 See James M. Poterba (1989, 1991) for expenditure-based estimates of the incidence of gasoline taxes. 
7 A difficulty with welfare measurement from two-step estimators is that each step yields a different set of estimates 

for the same parameters. Each set may have different welfare implications for the same policy. One-step estimators 
generate a single set of parameter estimates and therefore avoid this difficulty. To our knowledge, the only other auto-
mobile study to incorporate a one-step procedure is that of Ye Feng, Don Fullerton, and Li Gan (2005). Other studies 
have estimated the demand for automobiles separately from the demand for gasoline and VMT. Berry, Levinsohn, 
and Pakes (2004) and Petrin (2003) focus on the demand for automobiles; Hausman and Newey (1995), Richard L. 
Schmalensee and Thomas M. Stoker (1999), and West and Williams (2005) concentrate on the demand for gasoline. 
Austin and Dinan (2005) obtain demand functions for cars by calibrating the parameters of their simulation model to 
be consistent with internal estimates by General Motors. 
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households’ automobile purchase and driving decisions. Section IV presents and interprets results 
from simulations of a range of gasoline tax policies. Section V offers conclusions.

I.  Model Structure

A. Overview

The economic agents in the model are households, producers of new cars, used car suppliers, 
and scrap firms. The model considers the car-ownership and VMT decisions of 20,429 house-
holds. The ownership and VMT decisions are made simultaneously in accordance with utility 
maximization.

The model distinguishes cars according to age, class, and manufacturer. Table 1 displays the 
different car categories, which imply 350 distinct cars of which 284 appear in our dataset and 
simulation.8

The used car market equates the supply of used cars remaining after scrapping with the demand 
for ownership of those cars. Producers of new cars decide on new car prices in accordance with 
Bertrand (price) competition. These producers consider households’ demand functions in deter-
mining optimal pricing. Price markups reflect the various price elasticities of demand for cars as 
well as the regulatory constraints posed by existing CAFE standards.

The model solves for a sequence of market equilibria at one-year intervals. Car vintages are 
updated each year, so that last year’s new cars become one-year-old cars, last year’s one-year-old 
cars become two-year-old cars, etc. Once a car is scrapped, it cannot reenter the used car market. 
Characteristics of given models of new cars change through time, as described in Section IV. In 
particular, producers change the fuel economy of new models in a manner consistent with profit  
maximization.

B. Household Demands

Households obtain utility from car ownership and use, as well as from consumption of other 
commodities. The utility from driving depends on characteristics of the automobile as well as 
VMT. Each household has exogenous income; most households also are endowed with cars. If a 
household has a car endowment, it chooses whether to hold or relinquish (sell or scrap) that car; 

8 The number of distinct cars increases over time as some unique new models become old and enter the used car fleet. 

Table 1—Included Car Types

Classes Age categories Manufacturers

Compact New cars Ford
Luxury compact 1–2 years old Chrysler
Midsize 3–6 years old General Motors
Fullsize 7–11 years old Honda
Luxury mid/fullsize 12–18 years old Toyota
Small SUV Other Asian
Large SUV European
Small truck
Large truck
Minivan
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if it relinquishes the car it also decides whether to purchase a different car (new or used). If a 
household does not have a car endowment, it chooses whether to purchase a car.

If household i owns car j, its utility can be expressed by

(1)	 Uij = Uij(zj, Mi, xi),

where zj is a vector of characteristics of car j, and Mi and xi, respectively, refer to household i’s 
vehicle miles traveled and its consumption of the outside (or Hicksian composite) good. The 
household’s utility conditional on choosing car j can be expressed through the following indirect 
utility function:

(2)	 Vij = V′ij + μi εij

with

(3)	 V′ij = V′ij ( yi − rij, ​p​ij​ 
M​, pix, zj, zi, zij ),

where

yi	  = 	 income to household i,

rij 	  = 	 rental price of car j to household i,

​p​ij​ 
M​	  = 	 per-mile operating cost,

pix	  = 	 price of the outside good, x,

zi	  = 	 vector of characteristics of household i,

zij	  = 	 vector of characteristics of household i, interacted with characteristics of car j.

Household income yi is devoted toward purchasing a car (or cars9), car operation, and the pur-
chase of the outside good. We treat car purchases as rentals, so that payments are spread over 
many years. The household budget constraint can then be written as:

(4)	 yi = rij + ​p​ij​ 
M​ Mi + pix  xi.

If a household owns a vehicle, the stream of rental income from that vehicle is included in its 
income. A household that chooses to retain its existing car effectively makes a rental payment 
equal to its implicit rental income from that car. Income also includes the household’s share of 
profits to new car producers, government transfers, and capital gains or losses resulting from 
changes in automobile prices.10 The government transfer component of income includes revenue 
from the gasoline tax and adjusts as policy changes.

9 In Section III we discuss how we allow for multiple car ownership.
10 If a household is endowed with one vehicle of type j entering the period, its gain is computed as: (rj′ − rj) (1 − θj) + 

1/2 (rj′ − rj) (θj − θj′), where rj and rj′, respectively, denote the rental price of car j in the reference and policy-change 
cases, and θj and θj′ represent the probability of the car’s being scrapped in the two cases. The first term represents the 
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The operating cost ​p​ij​ 
M​ includes the fuel cost (including gasoline taxes), as well as maintenance 

and variable insurance costs. The rental price rij accounts for depreciation, registration fees, and 
fixed insurance costs. As indicated in expression (2) above, indirect utility includes the random 
component µi  εij, where ε has a type I extreme-value distribution (following the econometric 
model) and µ is a scale parameter. We assume the household chooses the vehicle (or vehicles) 
yielding the highest conditional utility, given V′ and the random error. The probability that a 
given car j maximizes utility for household i is

(5)	 exp a ​ V′ij
 __ μi
 ​ b / ​∑ 

k

  ​ 
 

  ​ exp a ​ V′ik ___ μi
 ​b​.

The indirect utility function Vij can be differentiated following Roy’s identity to yield the 
optimal choice of miles traveled, Mij, conditional on the purchase of car j. Aggregate automobile 
and VMT demand are the sum of these micro decisions. In specifying aggregate demand for 
automobiles, we treat each individual in our sample as a representative of a subpopulation of like 
individuals and sum up the probabilities. Similarly for aggregate VMT demand, we sum up each 
individual’s probability-weighted VMT demand for each car.

C. Supply of New Cars

Each of the seven producers in the model sets prices for its fleet of automobiles to maximize 
profits, given the prices set by its competitors and subject to fleet fuel economy constraints. Thus, 
we assume Bertrand competition. Producers face less than perfectly elastic demands for their cars: 
that is, two new cars of the same class can sell at different prices if produced by different firms.

The producer problem accounts for the presence of CAFE standards. These standards require 
that each manufacturer’s fleet-wide average fuel economy be above a certain level in each of two 
general categories of cars: “light trucks” and “passenger cars.” The classes in the passenger car 
category are nonluxury compact, nonluxury midsize, nonluxury fullsize, luxury compact, and 
luxury midsize/fullsize. Those in the light truck category are small truck, large truck, small 
SUV, large SUV/van, and minivan.11

In the following, the subscript k refers to the cars made by a particular manufacturer. The 
boldface vector p includes prices of the cars made by all seven manufacturers.12 T and C denote 
the sets of cars (for a given manufacturer) in the light truck and passenger car categories, respec-
tively; ​

_
 e ​T and ​

_
 e ​C refer to the efficiency requirements for light trucks and passenger cars; and ek 

is the fuel economy of car k. A given producer chooses a vector of prices, pk, and a vector of 
individual-model fuel economies, ek, to maximize profit:

(6)	​  max    
{ pk, ek }

​ ​∑ 
k

  ​ 
 

  ​ (  pk − ck(ek ))​ qk(  p, e)

gain in the value of the car owned, while the second is an adjustment to the gain that accounts for the change in the 
probability that the car is scrapped.

11 We remove a small (fixed) fraction of the largest vehicles from CAFE in order to incorporate the fact that the very 
largest trucks and SUVs are exempt from CAFE standards.

12 The purchase price is the same as the present value of rental prices over the life of the car.
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subject to:

	​ 

 ​∑ 
k∈C

​ 
 

  ​ qk​

 _____ 
 ​∑ 
 k∈C

​ 
 

  ​​ 
 qk __ ek

 ​ ​
 ​  ≥  ​_ e ​C  and ​ 

​∑ 
 k∈T

​ 
 

  ​ qk​

 _____ 
 ​∑ 
 k∈T

​ 
 

  ​​ 
 qk __ ek

 ​ ​
 ​  ≥  ​_ e ​T  ,

where pk and ck refer to the purchase price and marginal cost, respectively, of a particular car and 
qk is the demand as a function of all prices.13 For any given model k, marginal cost is a function 
of ek, the chosen level of fuel economy for that car. Each producer’s solution to (6) determines 
the quantities of vehicles sold in each class. Producers can alter fuel economy and the mix of 
vehicles, but cannot introduce new vehicle classes, exit existing vehicle classes, or alter attributes 
like weight and horsepower that determine class.

The solution to (6) requires a demand function (which is given within the model by the sum of 
individual demands from (5)) and a cost function. To identify the cost function parameters, we 
employ data on automobile markups, prices, and quantities sold, along with our estimated house-
hold demand elasticities for different automobiles. The relationship between production cost and 
fuel economy is taken from engineering estimates of the incremental costs of fuel economy from 
the National Research Council (2002). These relationships pose the technological and cost con-
straints under which producers in the model choose optimal levels of fuel economy. (Details are 
provided in the Appendix, available online at http://www.aeaweb.org/articles.php?doi=10.1257/
aer.99.3.667.)

We must solve the constrained optimization problem for all of the firms simultaneously, since 
the residual demand curve faced by a given firm depends on the prices set by the others. The 
solution method is discussed in Section IE below.

D. Used Car and Scrap Markets

The Used Car Market.—In the model, “used car” refers to all cars that are neither new nor 
scrapped. The available supply of used cars of a particular vintage (i.e., model year) is the total 
stock of that vintage operating in the previous year less those that are scrapped. The total sup-
ply of all used cars in the current period is the aggregate supply from the previous period net of 
the vehicles scrapped, plus an increment to the supply representing the cars that were new in the 
previous period. Let ℓ refer to a given manufacturer and class of vehicle. For each manufacture-
class category ℓ, the quantity of used cars evolves according to

(7)	​ q​ℓ, t+1​ 
U
  ​ = (1 − θℓ)​q​ℓ, t​ 

U
 ​ + ​q​ℓ, t​ 

N
 ​,

where ​q​ℓ, t​ 
U
 ​ and ​q​ℓ, t​ 

N
 ​ refer to the quantity of used and new cars of the manufacturer-class combina-

tion ℓ available in year t, and θℓ represents the average probability that used cars of type ℓ are 
scrapped. This scrap rate will depend on the car’s expected resale value if kept in operation. We 
discuss the specification of θℓ in the next section.

Each used car type, or age-manufacturer-class combination, has a different rental price. The 
model determines the set of rental prices that clears the used car market, that is, that causes every 

13 Our treatment ignores some complexities of the CAFE regulations. The actual regulations allow for intertemporal 
banking and borrowing: the standard can be exceeded in one year if the firm overcomplies in another. In addition, some 
manufacturers can, and do, elect to pay a fine rather than meet the standards, and others are not in fact constrained by 
the standards. Work in progress (Mark R. Jacobsen 2006) addresses these issues. 
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car to be sold. Household demands for used cars come from household demands computed as in 
(5). Since the demand for a given used car will depend on the rental prices of all used cars (and 
on new car prices), all used car rental prices need to be solved simultaneously.

The Scrap Market.—We assume that households will scrap a car when the scrap value exceeds 
the resale value. However, each car (age-manufacturer-class combination) in our model actually 
represents a group of cars of varying quality and value, some of which may fall under the cutoff 
for scrapping even if the average car in the group does not. To allow for scrapping of some cars 
of a given type, we assign a scrap probability to each car. The scrap decision depends on pj, the 
purchase price or resale value of a used car. Today’s purchase price is the discounted sum of 
future rental prices, adjusted for the possibility that a car will be scrapped (and earning no rental 
price) before reaching each progressively older age. The household has myopic expectations: it 
assumes that future rental values will be the same as the current-period rental values of older 
vintages of the same vehicle type. Changes in the gasoline tax affect scrap decisions through 
their effects on purchase prices.14 When this value changes as a result of a change in the gasoline 
tax, so does the probability of scrap.

In terms of the resale value for each used car, the scrap probability θj is modeled simply as

(8)	 θj = bj ​( pj )​ ​η​j​​,

where bj is a scale parameter used for calibration and ηj is the elasticity controlling the change in 
scrap probability as the price of the car changes. Scrap rates increase with car age and are cali-
brated to 0.05, 0.06, 0.09, and 0.20 for the four categories of used cars. These values are derived 
from the distribution of car age in the data (see online Appendix for details).

E. Solution Method

To solve the model, we must obtain the full vector of new and used car rental prices for a par-
ticular year that satisfies the following conditions: (i) every available (not scrapped) used car has 
a buyer (or retainer), and (ii) for every new car producer, the first-order conditions for constrained 
profit maximization are satisfied.15 Note that the second requirement is a function of all prices, 
not just new car prices. We determine overall demands for a given car by aggregating across 
households their probability-weighted demands for that car.

The solution method embeds the used car problem within the broader problem of solving for 
both used and new car prices. Specifically, we solve for the used car prices that satisfy require-
ment (i), conditional on a set of posited prices for the new cars. We then adjust the new car prices 
in an attempt to meet condition (ii), and solve again for used car prices that meet requirement 
(i) conditional on the adjusted new car prices. We repeat this procedure until conditions (i) and 
(ii) are met within a desired level of accuracy.16

14 Here it is relevant that we are simulating a permanent and constant change to the gasoline tax. If the policy 
involved government committing to a path of varying gasoline taxes in the future, for example, a more complex model-
ing of expected future prices might be called for.

15 Note that the calibration procedure is embedded in a baseline simulation, before the introduction of an increment 
to the gasoline tax. The values of calibrated parameters (determining new car supply and costs, and used car scrap 
rates) are then saved and introduced into the policy simulation, solved as described in this section.

16 The oligopolistic structure of the new car market involves both multiple products and multiple producers. Under 
these conditions, theory leaves open the possibility of nonuniqueness. We have tested for nonuniqueness by random-
izing starting values over a uniform distribution, and in these experiments the model has always converged to one 
solution. 
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The government’s revenue from gasoline taxes is returned to households according to the 
various “recycling” methods described in Section IV. Government revenues and transfers are 
mutually dependent: the level of transfers affects household demands and government revenues, 
while the level of revenues determines the transfer level consistent with the government’s bud-
get constraint. Thus, solving the model also requires that we determine the equilibrium level 
of government revenue and transfers. The overall solution is a set of prices for each car that 
simultaneously clears all markets, and an aggregate transfer level that equals the government’s 
revenues from the gasoline tax. To solve the multidimensional system we use Broyden’s method, 
a derivative-based quasi-Newton search algorithm.

II.  Data

Our dataset has two main components: (i) a random sample of US households’ automobile 
ownership choices from the 2001 National Household Travel Survey (NHTS), and (ii) new and 
used automobile price and nonprice characteristics from Wards Automotive Yearbook, The 
National Automobile Dealer’s Association (NADA) Used Car Guide, and the Department of 
Energy (DOE) fueleconomy.org Web site. By merging these two types of information, we obtain 
an unusually rich dataset, one that allows us to consider household choices among a wide range 
of new and used cars and that permits us to distinguish households along many important dimen-
sions. In the Appendix, we offer details on how we merged the datasets and constructed needed 
variables.

A. The NHTS Sample

The 2001 NHTS consists of 26,038 households living in urban and rural areas of the United 
States. With the help of Department of Transportation (DOT) staff, we obtained the confidential 
NHTS data files containing relevant data for our analysis. For each household, we have informa-
tion on income, automobile holdings (by make, model, and year), and vehicle miles traveled. In 
addition, we have data on the household’s demographic characteristics (including household size, 
composition, gender, education, and employment status) and geographical identifiers (including 
the state, metropolitan statistical area, and zip code of residence).

After cleaning the data, our final sample consists of 20,429 households from the original 
26,038. Table 2 presents major demographic statistics of our final sample.

B. The Automobile Sample

The 1983–2002 Wards Automobile Yearbook provided most of the car and truck characteris-
tics used in our analysis. Automobile characteristics include horsepower, weight, length, height, 
width, wheelbase, and city and highway miles per gallon (MPG) by make, model, and year for 
all cars and trucks sold during this period. We obtained information on car and truck prices 
from the NADA monthly Used Car Guide. We used price information from the April 2001 
and 2002 editions of the guide, which we obtained in electronic format. Each edition contained 
the manufacturer’s suggested retail price and current resale price (a weighted average of recent 
transaction prices) for all new and used cars and trucks dating back to 1983. As indicated in 
the Appendix, we calculated depreciation based on changes in prices for a given car over the 
2001–2002 period.

Combining information from the Wards and NADA datasets yielded a vector of prices and 
various automobile characteristics for roughly 4,500 automobiles distinguished by manufacturer, 
model, and year. We aggregated these data into the seven manufacturer categories, ten class 
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categories, and five age categories in Table 1. We used a weighted geometric mean formula to 
aggregate price and nonprice characteristics within each make, class, and age category, where 
the weights were proportional to the holdings frequencies in the NHTS.

Table 3 displays statistics on miles per gallon, horsepower, and rental price from our data. The 
data show significant MPG differences across classes and age categories. A new compact, for 
example, is 1.48 times more efficient than a large SUV. The newest compacts yield 1.47 more 
miles per gallon than those in the oldest age category. In contrast, the newest midsize and large 
SUVs are less fuel-efficient than the older models. As for horsepower, most of the increases 
apply to compacts and full size cars. Average horsepower of compacts increased 60 percent, 
and average horsepower of full size cars rose 75 percent. Differences in rental price are most  

Table 2—Sample Demographic Statistics from the 2001 NHTS—20,429 Observations

Variable Mean (SD)
Household size 2.490 (1.34)
   Number of adults ≥ 18 years old 1.861 (0.69)
   Number of adults ≥ 65 years old 0.380 (0.67)
   Number of children ≤ 2 years old 0.096 (0.32)
   Number of children 3–6 years old 0.136 (0.41)
   Number of children 7–11 years old 0.185 (0.49)
   Number of children 12–17 years old 0.211 (0.54)
   Number of workers 1.272 (0.95)
   Number of females 1.033 (0.52)
Average age among adults (≥ 18) 49.560 (16.8)
Household income (2001 $s) 56,621 (43,276)

Household breakdown Percentage

1 male adult, no children, not retired 5.71
1 female adult, no children, not retired 7.88
1 adult, no children, retired 10.30
2+ adults w/ average age ≤ 35, no children, not retired 7.10
2+ adults w/ average age > 35 and ≤ 50, no children, not retired 8.43
2+ adults w/ average age > 50, no children, not retired 9.04
2+ adults w/ average age ≤ 67, no children, retired 9.29
2+ adults w/ average age > 67, no children, retired 8.47
1+ adults w/ youngest child < 3 years old 8.69
1+ adults w/ youngest child 3–6 years old 7.65
1+ adults w/ youngest child 7–11 years old 8.64
1+ adults w/ youngest child 12–17 years old 8.85
White household respondent a 85.60
Black household respondent 7.62
Hispanic household respondent 6.25
Asian household respondent 2.17
Adults with high school diplomas 89.40
Adults with four-year college degrees 30.50
Resident of MSA < 250k 7.62
Resident of MSA 250–500k 8.22
Resident of MSA 500k–1m 8.30
Resident of MSA 1–3m 22.20
Resident of MSA > 3m 32.50
Nonresident of MSA 21.10
Household income ≤ $25,000 22.80
Household income ≤ $50,000 and > $25,000 33.30
Household income ≤ $75,000 and > $50,000 19.80
Household income > $75,000 24.10

a The white, black, Hispanic, and Asian percentages sum to more than 100 percent because 
some respondents have multicultural backgrounds.
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substantial for new cars, due to the particularly rapid depreciation of new luxury vehicles. Older 
cars have much lower rental prices, and these prices are more similar across classes.

C. Calculation of Rental Prices and Per-Mile Operating Costs

Two important variables we must construct from our data are the automobile rental prices and 
per-mile operating costs (the “price per mile” variable in Section I) for all 284 autos. The under-
lying inputs to these prices and costs differ by region as well as automobile type. For household 
i owning car j, the rental price is given by

Table 3—Automobile Characteristics

 
Characteristic

 
Compact

Luxury  
compact

 
Midsize

 
Fullsize

Luxury  
mid/full

Small  
SUV

Large  
SUV/van

Trucks and 
minivans

 
Total

Miles per gallona

  All car ages 29.73 
(27.8, 35.6)

24.18 
(22.2, 26.9)

27.16 
(24.2, 31.0)

25.57 
(22.6, 30.5)

23.65 
(21.3, 25.0)

23.75 
(17.8, 27.0)

20.04 
(16.6, 26.8)

22.19 
(16.8, 27.7)

24.39 
(16.6, 35.6)

  Model years 
    2001–2002 30.29 

(28.0, 32.8)
24.47

(22.9, 26.9)
26.90 

(24.2, 30.5)
25.61 

(23.0, 28.0)
23.70 

(23.0, 24.2)
24.17 

(21.9, 26.4)
19.08 

(17.2, 22.5)
21.51 

(16.8, 25.9)
24.15 

(16.8, 32.8)
    1999–2000 30.32 

(28.1, 35.6)
24.45 

(23.1, 26.8)
27.29 

(25.1, 29.7)
25.79 

(22.6, 28.0)
23.86 

(23.0, 24.4)
23.80 

(19.8, 27.0)
18.21 

(16.7, 19.6)
22.07 

(18.8, 26.3)
24.18 

(16.7, 35.6)
    1995–1998 30.02 

(28.4, 32.1)
24.24 

(22.3, 26.4)
27.50 

(25.4, 29.8)
25.51 

(23.0, 27.8)
24.29 

(23.3, 25.0)
23.44 

(19.6, 26.3)
19.60 

(16.6, 23.7)
22.01 

(17.7, 27.2)
24.44 

(16.6, 32.1)
    1990–1994 29.21 

(27.8, 30.4)
23.81 

(22.2, 26.3)
26.74 

(25.2, 30.0)
25.37 

(23.5, 28.8)
22.91 

(21.3, 24.0)
22.67 

(17.8, 24.9)
20.90 

(17.2, 26.0)
21.80 

(17.6, 26.0)
24.08 

(17.2, 30.4)
    1983–1989 28.82 

(28.2, 29.4)
23.94 

(22.6, 26.1)
27.38 

(24.3, 31.0)
25.56 

(23.8, 30.5)
23.23 

(22.1, 24.3)
24.84 

(23.3, 26.3)
22.88 

(18.1, 26.8)
23.75 

(20.0, 27.7)
25.14 

(18.1, 31.0)
Horsepower/100
  All car ages 1.286 

(0.88, 1.78)
2.275 

(1.56, 3.63)
1.530 

(0.98, 1.96)
1.726 

(0.86, 2.21)
2.177 

(1.42, 2.81)
1.531 

(1.02, 1.95)
1.909 

(0.88, 2.59)
1.665 

(0.94, 2.79)
1.719 

(0.86, 3.63)
  Model years
    2001–2002 1.526 

(1.34, 1.78)
2.621 

(1.64, 3.63)
1.787 

(1.65, 1.96)
2.123 

(1.97, 2.21)
2.463 

(2.13, 2.81)
1.763 

(1.65, 1.95)
2.391 

(2.15, 2.59)
2.023 

(1.40, 2.79)
2.036 

(1.34, 3.63)
    1999–2000 1.454 

(1.23, 1.68)
2.488 

(1.70, 3.45)
1.682 

(1.58, 1.80)
1.917 

(1.50, 2.07)
2.376 
(2.10)

1.648 
(1.45, 1.88)

2.271 
(2.12, 2.52)

1.920 
(1.34, 2.63)

1.932 
(1.23, 3.45)

    1995–1998 1.342 
(1.09, 1.47)

2.414 
(1.75, 3.38)

1.597 
(1.47, 1.72)

1.835 
(1.41, 2.07)

2.237 
(2.01, 2.53)

1.554 
(1.35, 1.83)

2.024 
(1.86, 2.17)

1.633 
(1.09, 2.06)

1.773 
(1.09, 3.38)

    1990–1994 1.152 
(1.05, 1.24)

2.075 
(1.60, 2.54)

1.418 
(1.28, 1.54)

1.469 
(0.90, 1.74)

1.952 
(1.83, 2.11)

1.467 
(1.29, 1.59)

1.476 
(0.90, 1.77)

1.430 
(1.07, 1.78)

1.516 
(0.90, 2.54)

    1983–1989 0.955 
(0.88, 1.03)

1.777 
(1.56, 2.15)

1.166 
(0.98, 1.41)

1.212 
(0.86, 1.36)

1.637 
(1.42, 2.01)

1.164 
(1.02, 1.27)

1.244 
(0.88, 1.46)

1.243 
(0.94, 1.51)

1.270 
(0.86, 2.15)

Rental price/1000
  All car ages 2.570 

(0.38, 6.84)
5.959 

(0.55, 26.6)
2.749 

(0.38, 8.55)
3.029 

(0.39, 8.67)
5.680 

(0.45, 21.4)
3.141 

(0.42, 7.81)
4.289 

(0.43, 14.4)
3.149 

(0.26, 8.32)
3.681 

(0.26, 26.6)
  Model years
    2001–2002 5.798 

(5.14, 6.84)
15.94 

(7.23, 26.6)
6.528 

(5.65, 8.55)
7.463 

(6.84, 8.67)
14.45 

(11.8, 21.4)
6.823 

(6.12, 7.81)
10.27 

(7.92, 14.4)
6.750 

(4.78, 8.32)
8.792 

(4.78, 26.6)
    1999–2000 3.258 

(2.14, 4.24)
6.819 

(3.74, 12.6)
3.274 

(2.10, 4.72)
3.628 

(3.13, 4.52)
5.712 

(3.99, 8.69)
3.724 

(3.11, 4.35)
4.566 

(2.20, 7.69)
3.850 

(2.91, 5.24)
4.237 

(2.10, 12.6)
    1995–1998 2.320 

(1.62, 3.27)
4.506 

(2.59, 5.72)
2.420 

(1.68, 3.18)
2.521 

(2.06, 3.17)
3.823 

(2.54, 5.61)
2.884 

(2.20, 3.58)
3.638 

(2.53, 5.66)
2.842 

(1.94, 3.68)
3.051 

(1.62, 5.72)
    1990–1994 0.972 

(0.72, 1.29)
1.679 

(1.11, 2.34)
1.015 

(0.73, 1.33)
1.019 

(0.75, 1.26)
1.317 

(0.86, 1.79)
1.259 

(0.98, 1.74)
1.253 

(0.69, 2.04)
1.118 

(0.74, 1.51)
1.186 

(0.69, 2.34)
    1983–1989 0.503 

(0.38, 0.67)
0.850 

(0.55, 1.31)
0.509 

(0.38, 0.67)
0.491 

(0.39, 0.64)
0.714 

(0.45, 1.21)
0.589 

(0.42, 0.82)
0.676 

(0.43, 1.31)
0.514 

(0.26, 0.73)
0.585 

(0.26, 1.31)

Notes: Minimum and maximum values reported in parentheses. The categories small truck, large truck, and minivan 
have been aggregated in this table.

a Weighted harmonic mean of EPA test miles per gallon estimates.
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(9)	 ri j = Dj + 0.85​I​ij​ 
A​ + Fi j + R pj,

where

Dj	  = 	 depreciation in the real value of car j,

​I​ij​ 
A​	  = 	 household i’s annual insurance costs for car j,

Fi j	  = 	 household i’s automotive registration fees for car j, and

R	  = 	 real interest rate.

Thus, the one-year rental price of a car is the sum of depreciation, insurance, and registration 
costs, plus the forgone real return on the principal value of the car.17 For the real interest rate, R, 
we use a value of 3.89 percent, the 2001 average daily real rate on 30-year T-Bills. We include 
insurance costs in both the rental price (associated with the choice of car) and the per-mile oper-
ating cost (associated with VMT). Representatives from State Farm Insurance suggested to us 
that roughly 85 percent of auto insurance premiums are fixed and independent of VMT. Hence, 
85 percent of insurance costs appear in the rental price formula, while the remainder is allocated 
to operating costs.

The rental prices are included in the household utility function relative to the price of the out-
side good (cost of living) faced by each household. We incorporate a cost of living index for 363 
distinct regions that, together with differences in insurance and registration fees, reflects varia-
tion across households in the effective rental price of vehicles.18

The per-mile operating cost, ​p​ij​ 
M​, is expressed by:

(10)	​ p​ij​ 
M​ = ( ​p​i​ 

gas​/​MPG​j​ *​ ) + Nj + 0.15​I​ij​ 
M​,

where

​p​i​ 
gas​	  = 	 household i’s per gallon price of gasoline,

MPGj	 = 	 miles per gallon for car j,

Nj	  = 	 per-mile maintenance and repair costs for car j, and

​I​ij​ 
M​	  = 	 household i’s per-mile insurance costs for car j.

The price of gasoline (and therefore operating cost) varies among households based on differ-
ences across 363 distinct regions of residence. The average after-tax gasoline price faced by 
households in 2001 ranged from $1.19 (Albany, GA) to $1.86 per gallon (San Francisco).

17 If the household has purchased the car using a loan, this term can be equivalently interpreted as the interest pay-
ment on that loan.

18 Further details about the regional cost of living index are provided in the Appendix; it varies by a factor of 1.77 
across households.



VOL. 99 NO. 3 679Bento et al.: Impacts of Increased US Gasoline Taxes

III.  Estimation of Household Ownership and Utilization Decisions

A. The Econometric Model

Challenges.—Two overarching concerns influenced our approach to estimating household 
automobile demand. The first was our desire to integrate consistently the car ownership and uti-
lization decisions. Such integration is crucial for generating consistent estimates of welfare costs 
from gasoline taxes. The second concern arose from an important feature of the data: households 
frequently own more than one car. In the 2001 NHTS, 41.5 percent of households own zero or 
one car, another 43.6 percent own two cars, and the remaining 14.9 percent own three or more 
autos. This implies that many households have a potentially enormous number of auto bundles 
from which to choose. If, for example, there are J different cars and trucks and we consider only 
bundles consisting of no more than two cars, there are 1 + J + J(J + 1)/2 bundles that house-
holds can potentially choose. With our automobile dataset consisting of 284 composite cars and 
trucks, there are 40,755 distinct bundles that households might choose (and this large number 
ignores all bundles with three or more autos).19

As discussed in the introduction, nearly all past efforts to integrate automobile ownership 
and utilization decisions have relied on reduced-form, sequentially estimated models. Our struc-
tural approach estimates simultaneously the decisions on both margins. To account for different 
households owning different quantities of cars, we adopt a variation of Igal E. Hendel (1999) 
and Jean-Pierre H. Dubé’s (2004) repeated discrete-continuous framework. In the context of 
automobile choice, the framework assumes that a household’s ownership and utilization choices 
arise from separable choice occasions. On each choice occasion, the household makes a discrete 
choice of whether to own one of J automobiles. If an auto is chosen, the household conditionally 
decides how much to drive it during the year. To account for ownership of multiple automo-
biles, households have multiple choice occasions on which different automobile services may 
be demanded. Intuitively, different choice occasions in our framework correspond to different 
primary tasks or purposes for which households might demand automobile services (e.g., com-
muting to work, family travel, shopping excursions, or any combination thereof). We assume 
their number depends on the number of adults in a given household.20

Our approach to modeling automobile demand has advantages and drawbacks. Its main advan-
tages are that it consistently links ownership and utilization decisions and reduces the dimension 
of the households’ choice set on a given choice occasion to J + 1 alternatives (J autos and the 
no-auto alternative). The latter feature makes our approach econometrically tractable with our 
284 composite auto dataset. It also has the virtue of allowing for households to own several cars. 
A main drawback is that it does not allow for interaction effects among the fleet of autos held 
by households—for example, a four-person household’s utility from holding a second minivan 
being less than holding a single minivan. To account for such interactions, one would need to 
regard bundles of automobiles, rather than individual cars, as the objects of choice. As suggested 

19 Past transportation applications have addressed this dimensionality problem by randomly sampling from the 
full set of choice alternatives in estimation. As discussed in Train (1986), such an approach works only with restric-
tive fixed parameter logit and nested logit models. We cannot adopt this sampling approach in our model because, as 
described below, our model employs random coefficients to introduce correlations in the unobservables entering the 
discrete and continuous choice margins. Moreover, although the sampling approach solves the dimensionality problem 
in estimation, it does not solve the problem in a simulation model, where the full choice set would need to be employed 
to construct aggregate automobile demands.

20 There is some evidence in the nonmarket valuation literature that the specification of the number of choice occa-
sions, as long as it is larger than the chosen number of goods, does not have significant effects on estimated welfare 
measures (von Haefen, D. Matthew Massey, and Wiktor L. Adamowicz 2005). Moreover, we do not expect that it has 
much, if any, effect on the relative efficiency rankings of policies.
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above, however, such an approach would require substantially more aggregation of cars beyond 
what we have pursued.21 This would rule out significant product differentiation and thus severely 
limit our ability to account for the imperfectly competitive nature of the automobile industry. In 
addition, it would compel us to put a limit of two on the number of cars owned by any household, 
which would eliminate from our sample those households likely to be most affected by changes 
in gasoline taxes.

Specifics.—Our repeated discrete-continuous model of automobile demand works as follows. 
Household i (i = 1, … , N) is assumed to have a fixed number of choice occasions, Ti. We let Ti 
equal the number of adults in each household plus one.22 On choice occasion t, household i is 
assumed to have preferences for car j ( j = 1, … , J ) that can be represented by the following con-
ditional indirect utility function:

(11)	 Vi t j = V′i j + μi εi t j,

where

	 V′ij = ​ − 1 ___ λi
 ​  exp a− λi a​ 

 yi /Ti − rij 
 ________ pix

 ​ b b  −  ​ 1 ___ βij
 ​ exp aαij + βij ​ 

​p​ij​ 
M​
 ___ pix
 ​b + τij,

	 αij  =  ​​     α​​i​ T​​ z​ij​ 
α​,

	 βij  =  − exp(​​     β​​i​ 
T​​ z​ij​ β​ ),

	 λi  =  exp(​​     λ​​i​ 
T​ z i

λ),

	 τij  =  ​​     τ​​i​ T​​ z​ij​ τ​, and

	 μi  =  exp(​μ​i​ *​),

and where ( yi, rij, ​p​ij​ 
M​, pix ) are household i’s income, rental price for the jth auto, utilization 

(or VMT) price for the jth car, and the Hicksian composite commodity price, respectively; 
(​z​ij​ 

α​, ​z​ij​ 
β​, ​z​ij​ 

τ​ ) are alternative automobile characteristics (including make, age, and class dummies 
that control for unobserved attributes23) interacted with household demographics; ​z​i​ 

λ​ contains 
just household characteristics; (​     α​i, ​     β​i, ​     λ​i, ​     τ​i, ​μ​i​ *​) are parameters that vary randomly across house-
holds; and εi t j contains additional unobserved heterogeneity that varies randomly across house-
holds, automobiles, and choice occasions.24 If the household decides, instead, not to rent a car 
(i.e., automobile 0), its conditional indirect utility function is:

21 Feng, Fullerton, and Gan’s (2005) bundling approach aggregates all automobiles into one of two composites—
cars and trucks.

22 The 2001 NHTS indicates that 11.1 percent of households have more automobiles than the number of adults. For 
the 1.84 percent of households with more autos than the number of adults plus one, we set the number of choice occa-
sions equal to the number of held autos. 

23 Berry, Levinsohn, and Pakes (1995, 2004) use alternative specific constants for every automobile to control 
for unobserved characteristics. Given the highly nonlinear-in-parameters structure of our conditional indirect utility 
functions, we could not estimate a model with a full set of alternative specific constants, and instead adopted a more 
parsimonious specification with make, age, and class dummies as in Goldberg (1995).

24 The level of income in the budget constraint associated with each choice occasion is the household’s income 
divided by the number of choice occasions. This assures that overall spending is consistent with the household’s total 
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(12)	 Vit 0 = ​ − 1 ___ λi
 ​  exp a− λi a​ 

 yi /Ti  _____ pix
 ​ b b + ​φ​i​ T​​ z​i​ 

φ
​ + μi εit 0,

where ​z​i​ 
φ​ and φi are individual characteristics and parameters, respectively. The rational house-

hold is assumed to choose the alternative that maximizes its utility on each choice occasion. 
Assuming each εi t j ( j = 0, … , J ) can be treated as independent draws from the normalized type I 
extreme value distribution, the probability that individual i chooses alternative j on choice 
occasion t condition on the model’s structural parameters is

(13)	 Prit( j ) =  ​ 
exp(V′ij/μi)  ___________  

​∑ 
k

  ​ 
 

  ​ exp(V′ik /μi)​
 ​  .

Assuming the household chooses automobile j, Roy’s identity implies that the household’s 
conditional VMT demand is

(14)	 Mitj = exp aαij + βij a​ 
​p​ij​ M​

 ___ pix
 ​b + λi a​ 

 yi /Ti − rij 
 ________ pix

 ​ b b .

We assume the analyst imperfectly observes Mitj due to measurement error in our data.25, 26 The 
analyst observes ​ ˜ 

 
 M ​itj = Mitj + ηitj, where ηitj is an independent draw from the normal distribu-

tion with mean zero and standard deviation σi = exp(​σ​i​ *​).27 The likelihood of observing ​ ˜ 
 

 M ​itj 
conditional on the model parameters is

(15)	 l (​ ˜   M ​itj | j chosen, j ≠ 0) = ​  1 _______ 
(2π)1/2σi

 ​  exp a− ​ 1 __ 
2
 ​ ​a​ 

​ ˜ 
 

 M ​itj − Mitj
 ________ σi

 ​ b​ 
2

​ b .

Given our assumed structure, the full likelihood of household i’s automobile demand conditional 
on δ = (​     α​i, ​     β​i, ​     λ​i, ​     τ​i, φi, ​μ​i​ *​, ​σ​i​ *​) is then

(16)	 Li = ​∏ 
t=1

 ​ 
Ti

 ​ ​c ​∏ 
j=0

 ​ 
J

  ​Prit​ ( j )​ ​1​itj​ ​​​∏ 
j=1

 ​ 
J

  ​l​ (​ ˜   M ​itj | j chosen​)​ ​1​itj​​d ,

where 1itj is an indicator function equal to one if car j is chosen on individual i’s t th choice occa-
sion, and zero otherwise.

income. 
25 Because the 2001 NHTS elicited VMT in part by asking respondents to recall their past driving behavior, we 

believe it is appropriate to account explicitly for measurement error in reported VMT.
26 Our assumption that some disturbances capture preference heterogeneity while others pick up measurement error 

makes our model conceptually similar to the Gary Burtless and Hausman (1978) two-error discrete-continuous model 
that is frequently used in nonlinear budget constraint applications.

27 Following Dubin and McFadden (1984), past automobile applications assume some degree of correlation between 
ηitj and the type I extreme value errors in the discrete choice model. Similar to King (1980), we instead assume that 
these disturbances are independent, and introduce correlations between the discrete and continuous choices through 
random parameters as described below.



June 2009682 THE AMERICAN ECONOMIC REVIEW

B. Estimation Strategy

Past econometric efforts to model vehicle ownership and derived VMT demand decisions have 
used variations of Dubin and McFadden’s (1984) sequential estimation strategy that accounts 
for the induced selectivity bias in derived VMT demand with a Heckman-like (1979) correction 
factor. We employ a full-information estimation approach that accounts for correlations in the 
unobserved determinants of choice across discrete and continuous dimensions through random 
parameters (McFadden and Train 2000). Intuitively, random parameters allow unobserved varia-
tions in taste to influence automobile ownership decisions and VMT demand decisions. We allow 
all parameters, δ = (​     α​i, ​     β​i, ​     λ​i, ​     τ​i, φi, ​μ​i​ *​, ​σ​i​ *​), to be distributed multivariate normal with mean ​

_
 δ ​ and 

variance-covariance matrix Σδ. This approach is more general than earlier random coefficient 
discrete-continuous applications (e.g., Mervyn King 1980; Feng, Fullerton, and Gan 2005) that 
include only one random parameter. The more general specification offers a far richer degree of 
unobserved preference heterogeneity to influence households’ ownership and use decisions than 
previous applications.28

Given the nonlinear nature of our likelihood function, the large number of households and 
sites in our dataset, and the potentially large number of parameters on which we wish to draw 
inference, classical estimation procedures such as maximum simulated likelihood (Christian 
Gourieroux and A. Monfort 1996) would be exceptionally difficult, if not impossible, to imple-
ment. In light of these computational constraints, we adopt a Bayesian statistical perspective 
and employ a variation of Greg M. Allenby and Peter J. Lenk’s (1994) Gibbs sampler estimation 
procedure, which is less burdensome to implement in our application.29

The Bayesian framework assumes that the analyst has initial beliefs about the unknown 
parameters (​

_
 δ ​, Σδ) that can be summarized by a prior probability distribution, f  (​

_
 δ ​, Σδ). When 

the analyst observes a set of choices x, she combines this choice information with the assumed 
data-generating process to form the likelihood of x conditional on alternative values of (​

_
 δ ​, Σδ), 

L(x | ​
_
 δ ​, Σδ). The analyst then updates her prior beliefs about the distribution of (​

_
 δ ​, Σδ) to 

form a posterior distribution for (​
_
 δ ​, Σδ) conditional on the data, f  (​

_
 δ ​, Σδ | x). By Bayes’s rule, 

f  (​
_
 δ ​, Σδ | x) is proportional to the product of the prior distribution and likelihood, i.e., f  (​

_
 δ ​, Σδ | x)  

= f  (​
_
 δ ​, Σδ)L(x | ​

_
 δ ​, Σδ)/D, where D is a constant. In general, f  (​

_
 δ ​, Σδ | x) will not have an analyti-

cal solution, and thus it is difficult to derive inference about the moments and other relevant prop-
erties of (​

_
 δ ​, Σδ) conditional on the data. However, Bayesian econometricians have developed a 

number of Markov Chain Monte Carlo (MCMC) procedures to simulate random samples from 
f  (​

_
 δ ​, Σδ | x), and in the process draw inference about the posterior distribution of (​

_
 δ ​, Σδ).

Following Allenby and Lenk (1994), we specify diffuse priors for (​
_
 δ ​, Σδ) and use a Gibbs 

sampler with an adaptive Metropolis-Hastings component to simulate from f  (​
_
 δ ​, Σδ | x). By 

decomposing the parameter space into disjoint sets and iteratively simulating from each set con-
ditionally on the others, the Gibbs sampler generates simulations from the unconditional poste-
rior distribution after a sufficiently long burn-in. The implementation details of the algorithm are 
described in the Appendix.

28 For example, under our random coefficients specification, a household that is relatively insensitive to utilization 
costs and horsepower when purchasing a car will likewise be relatively insensitive to these factors when driving it.

29 Although the Bayesian paradigm implies a very different interpretation for the estimated parameters relative 
to classical approaches, the Bernstein–von Mises theorem suggests that the posterior mean of Bayesian parameter 
estimates, interpreted within the classical framework, are asymptotically equivalent to their classical maximum likeli-
hood counterparts. Following Train (2003), we interpret this result as suggesting that both approaches should generate 
qualitatively similar inference, and thus the analyst’s choice of which to use in practice can be driven by computational 
convenience.
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One further dimension of our estimation approach is worth noting. Because of the large 
number of households in our dataset (N = 20,429) and our desire to account for differences in 
automobile demand across different household types (e.g., single males, two-adult households 
with and without children, retired couples), we stratified the sample into 12 groups based on 
demographic characteristics and estimated separate models within each strata. In addition to 
decomposing a computationally burdensome estimation problem on a large data-set into a series 
of more manageable estimation problems on smaller datasets, stratification allows us to better 
account for observable and unobservable differences among households.

C. Empirical Results

For all 12 strata, we obtain precisely estimated posterior mean values for (​
_
 δ ​, Σδ).30 Many of 

the parameters that are common across the 12 strata vary in magnitude considerably, suggesting 
that there is significant preference heterogeneity across the different subpopulations. We also 
find that the diagonal elements of Σδ are generally large, suggesting considerable preference 
heterogeneity within each stratum as well. The latter preference heterogeneity and the highly 
nonlinear structure of our preference function mean that the estimated parameters do not have 
a simple economic interpretation. Thus, instead of focusing on the estimated parameters, we 
examine the various elasticities they imply. We display these elasticities in Table 4, broken down 
by household and automobile types. Our cross-section estimation implies that these should be 
interpreted as long-run elasticities.

The first column of Table 4 reports the elasticity of gasoline use with respect to gasoline price. 
In the “All” and “By household” panels, the elasticities allow for responses in both VMT and car 
choice (and associated fuel economy). In the “By auto” panel, the elasticities are conditional on 
car choice. Across all households and cars, we obtain a mean estimate of − 0.35. The estimated 
elasticities are larger for families with children and owners of trucks and SUVs. D. J. Graham 
and Stephen Glaister’s (2002) survey of past studies indicates long-run elasticities in the United 
States ranging from − 0.23 to − 0.80. Kenneth A. Small and Kurt Van Dender’s (2007) more 
recent state-level analysis produces a central estimate of − 0.33.

The second column of the table shows the elasticity of gasoline use with respect to income. 
On average, we find estimates of around 0.76. The elasticity is highest for families with children 
and owners of new vehicles. Graham and Glaister report long-run estimates in the range of 1.1 
to 1.3.31

The third column reports car ownership elasticities with respect to the own rental price. For 
new cars, rental price elasticities should track purchase price elasticities if rental and purchase 
prices vary proportionally. Our results imply mean rental price elasticities of − 0.88 for all vehi-
cles and − 1.97 for new vehicles only. Luxury cars, large SUVs, and large trucks, which have the 
highest rental prices, have the highest rental price elasticities among automobile classes.

Our estimated elasticities with respect to rental prices are smaller in absolute magnitude than 
those found in some studies, such as Berry, Levinsohn, and Pakes (1995), which obtained elas-
ticities ranging from − 3 to − 4.5. A plausible explanation is that the objects of choice in our 
study are not individual make-models but automobile composites (i.e., make-model combina-
tions aggregated by age, class, and make). This aggregation implies that we have only 59 new 

30 Parameter estimates for each of the 12 strata are reported in the Appendix. 
31 Although our estimated income elasticities are lower than in much of the previous literature, we note that our 

stratification of the sample allows parameters controlling income effects to vary among types of households, which 
may yield a more accurate estimation of income effects than in prior (mainly time-series) work.
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cars in our dataset, not the 200–300 cars typically found in other applications. By collapsing 
make-models into composite cars, we reduce the number of channels for substitution.

Much of the work estimating these elasticities has focused exclusively on new vehicles (e.g., 
Berry, Levinsohn, and Pakes 1995; Petrin 2002). These studies have generally employed multiple 
years of automobile sales data and controlled for the potential endogenity of price arising from 
unobserved car characteristics.32 In contrast, we have a single household-level cross section and 
control for unobserved product characteristics through class, make, and age dummies that vary 
across household types.

32 For example, Berry, Levinsohn, and Pakes (1995) employ 20 years of market-level data for new make-model 
combinations, and use alternative specific constants and instrumental variables to identify price effects.

Table 4—Posterior Mean Long-Run Elasticity Estimates

Elasticity of
gasoline use
wrt pricea

Elasticity of
gasoline use
wrt incomea

Car ownership
elasticity wrt
rental price

VMT elasticity
wrt operating

costa

All − 0.35 0.76 − 0.82 − 0.74

By household
  Retired − 0.32 0.61 − 0.93 − 0.69
  Not retired, no children − 0.32 0.68 − 0.72 − 0.69
  Not retired, with children − 0.39 0.96 − 0.85 − 0.83

By auto
  By class
    All cars
      Compact − 0.27 0.83 − 0.65 − 0.59
      Luxury compact − 0.30 0.78 − 1.25 − 0.64
      Midsize − 0.28 0.74 − 0.67 − 0.60
      Fullsize − 0.29 0.75 − 0.73 − 0.63
      Luxury midsize/fullsize − 0.30 0.79 − 1.25 − 0.63
      Small SUV − 0.29 0.93 − 0.73 − 0.63
      Large SUV/van − 0.32 0.88 − 0.98 − 0.69
      Small truck − 0.34 0.78 − 0.62 − 0.72
      Large truck − 0.31 0.79 − 0.85 − 0.66
      Minivan − 0.31 0.85 − 0.77 − 0.65
    New cars
      Compact − 0.28 1.14 − 1.44 − 0.60
      Luxury compact − 0.27 0.76 − 3.14 − 0.46
      Midsize − 0.29 0.95 − 1.58 − 0.60
      Fullsize − 0.29 1.04 − 1.77 − 0.61
      Luxury midsize/fullsize − 0.28 0.83 − 3.04 − 0.47
      Small SUV − 0.26 1.86 − 1.58 − 0.55
      Large SUV/van − 0.34 1.06 − 2.30 − 0.69
      Small truck − 0.37 0.91 − 1.32 − 0.75
      Large truck − 0.32 1.05 − 1.69 − 0.65
      Minivan − 0.31 0.98 − 1.67 − 0.63

By age
  New cars − 0.30 1.10 − 1.97 − 0.63
  1- 2-year-old cars − 0.29 0.79 − 1.01 − 0.63
  3- 6-year-old cars − 0.27 0.76 − 0.73 − 0.59
  7- 11-year-old cars − 0.30 0.75 − 0.28 − 0.65
  12- 18-year-old cars − 0.31 0.83 − 0.13 − 0.68

a Elasticities in the By Auto panel are conditional on car choice.
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A close comparison with data types and results from other studies suggests that our smaller 
elasticities might also reflect limitations from cross-sectional data and are not likely, due to a fail-
ure to adequately control for unobserved car characteristics. Our elasticities are similar in mag-
nitude to those reported in Berry, Levinsohn, and Pakes (2004) and Train and Winston (2007), 
studies that employ household-level cross-sectional data and control for price endogeneity with 
alternative specific constants and instrumental variables.33 In addition, Goldberg (1995), using 
five years of household-level data and an identification strategy comparable to ours, finds elas-
ticities for make-models that are similar in magnitude to those of Berry, Levinsohn, and Pakes 
(1995). 34 Combined, these results suggest that our estimates control sufficiently for endogeneity 
of price but may reflect limitations from the cross section of data used.

The final column of the table reports long-run VMT elasticities with respect to operating costs. 
Across all households and cars, the average elasticity is − 0.74. This elasticity is lower for new 
cars than for older vehicles. Older cars are disproportionately owned by lower-income house-
holds, which exhibit higher VMT elasticities. Because gasoline makes up slightly less than half 
of per-mile operating costs, our average estimate implies an average VMT elasticity with respect 
to the price of gasoline of − 0.34. In their survey, Graham and Glaister report that, from prior 
studies, the average estimate for this long-run elasticity is − 0.30, while Small and van Dender 
report an estimate closer to − 0.1. Both sets of authors note that existing estimates are quite sen-
sitive to the data and modeling assumptions employed, and thus the caveats mentioned earlier 
concerning the limitations of cross-sectional data may apply here as well. Past applications that 
(like ours) use disaggregate household data to control for endogenous vehicle choice tend to find 
larger elasticities than aggregate time series or panel data studies that combine household and 
commercial demand for highway VMT (Mannering 1986).

IV.  Simulation Results

A. Assumptions Underlying the Simulation Dynamics

The simulation model generates a time path of economic outcomes over ten years at one-year 
intervals. As mentioned, the model solves in each period for the market-clearing new and used 
car prices. We assume that household incomes grow at an annual rate of 1 percent. In all simu-
lations, the pre-tax price of gasoline is $1.04 and is taken as exogenous and unchanging over 
time.35

B. Baseline Simulation

The baseline simulation offers a reference scenario with which we compare the outcomes from 
various gasoline tax policies. Consistent with historical trends, we assume in this simulation that 
automobile horsepower and weight increase at an annual rate of 5 percent. In our central case, 
we calibrate the baseline fuel economy technology to the “Path 1” assumptions of the National 
Research Council (2002) regarding improvements in fuel economy: over a ten-year period, such 
improvements range from 11 percent for compacts to 20 percent for large SUVs. As part of a 

33 Train and Winston use a cross section of household-level data involving 200 new cars, and find average elasticities 
for new cars ranging from − 1.7 to − 3.2.

34 We explored the sensitivity of estimates to several alternative specifications and estimation strategies. In particu-
lar, we experimented with allowing the income coefficient to vary across car classes and age groups, and restricting a 
subset of parameters to be fixed across the sample. None of these alternatives generated elasticities significantly differ-
ent from those in Table 4.1.

35 Preexisting federal taxes are $0.185, and average state taxes are $0.225.
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sensitivity analysis below, we adopt in the baseline the more optimistic National Academy of 
Sciences (NAS) “Path 3” assumptions regarding growth in baseline fuel economy technology. 
In our policy simulations, producers adjust fuel economy away from these baseline technologies 
following equation (6) above.

Table 5 displays the equilibrium quantities of new and used cars under the baseline simulation. 
Our reference case overpredicts the size of the vehicle fleet by about 8 percent, ranging from 
5 percent for midsize cars to 14 percent for small trucks.

C. Impacts of Gasoline Tax Increases under Alternative Recycling Methods

Here we present results from simulations of permanent increases in gasoline taxes. We start 
by focusing on the impacts of a tax increase of 25 cents per gallon (other tax increases are con-
sidered below) under the following alternative ways of recycling the additional revenues from 
the tax increase:

•	 “Flat” recycling: revenues are returned in equal amounts to every household.
•	 “Income-based” recycling: revenues are allocated to households according to each house-

hold’s share of aggregate income.
•	 “VMT-based” recycling: revenues are allocated as a lump sum according to each house-

hold’s share of aggregate vehicle miles traveled in the baseline.

Recycling could be accomplished by the government’s mailing rebate checks to households on 
an annual basis. The shares of total revenues going to different households depend on baseline 
values and thus do not depend on behavioral responses to the gasoline tax.

Aggregate Impacts

Gasoline Consumption. Table 6 presents the impacts of this policy on gasoline consumption. In 
the short run (year 1), the percentage reduction is about 5.1 percent under flat and income-based recy-
cling, and about 4.5 percent under VMT-based recycling. Compared with other recycling methods, 

Table 5—Baseline Fleet Composition

Year 1 Year 10

New Used
All cars  

in operation New Used
All cars  

in operation

Class
  Compact 4.98 44.68 49.66 5.27 49.52 54.79
  Luxury compact 0.22 4.44 4.66 0.26 2.79 3.05
  Midsize 2.63 27.58 30.21 2.82 27.30 30.12
  Fullsize 1.32 16.32 17.64 1.49 14.64 16.13
  Luxury mid/full 0.32 8.30 8.62 0.39 4.67 5.06
  Small SUV 1.32 10.65 11.97 1.41 12.99 14.40
  Large SUV 1.10 15.93 17.02 1.30 12.92 14.23
  Small truck 1.27 10.26 11.54 1.35 12.25 13.60
  Large truck 2.17 19.83 22.00 2.42 22.16 24.58
  Minivan 1.32 12.74 14.06 1.45 13.62 15.07

Total 16.65 170.73 187.39 18.15 172.87 191.03

Note: Units are millions of privately owned cars in operation.
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VMT-based recycling gives a larger share of gasoline tax revenue to car owners, who tend to have 
larger income elasticities of gasoline use. As a result, there is a larger offsetting income effect on 
gasoline use under VMT-based recycling than under other recycling methods, and the overall reduc-
tion in gasoline consumption is smaller.

The percentage change in gasoline use is approximately equal to the percentage change in 
miles traveled (VMT) minus the percentage improvement in fuel economy (miles per gallon). 
The table shows the contributions of these two components. Most of the reduction in gasoline 
use comes from the reduction in VMT: the improvements in fleetwide fuel economy are fairly 
small.36

In the short run, the major channel for improved aggregate fuel economy is an increase in 
the scrapping rate for vehicles with unusually low fuel economy. The augmented gasoline tax 
raises per-mile operating costs, which makes vehicles with low fuel economy relatively less 
desirable, causing their demand and prices to fall and their scrap rates to rise. In the first year 
of the policy, an additional 160,000 used large trucks and large SUVs are scrapped. Over the 
longer term, average fuel economy is influenced by changes in fleet composition attributable to 
increased relative sales of new cars that are more fuel efficient, and by price-induced increases 
in fuel economy of given models. The percent increase in fuel economy is larger in the long run, 
although fuel economy improvements still account for a small share of the overall reduction in 
gasoline consumption.

Table 7 summarizes the changes in fleet composition. On impact, the higher gasoline tax occa-
sions a shift away from cars (more cars are scrapped) and, among cars that remain in operation, 
a shift toward used cars (which, as reflected in Table 3, are on average more fuel efficient). In 
the long run, the percentage reduction in new cars is smaller. This is the case because new cars 
become increasingly efficient relative to older cars as time passes, and the gasoline tax increase  
gives greater importance to fuel-economy.37

36 In our simulations, the fraction of the response coming from fleet fuel economy improvements (as compared to 
reduced VMT) is much smaller than in Austin and Dinan (2005) and Small and Van Dender (2007), who find that over 
half of the response comes from fuel economy rather than VMT. The fuel economy response can be divided into (i) 
changes in fleet composition, and (ii) improvements in the fuel economy of particular models. Our results differ from 
those of  Austin and Dinan mainly because of differences in the magnitude of the second factor. Austin and Dinan cali-
brate the potential for technological improvements based on the cost estimates in NRC 2002. In contrast, we calibrate 
parameters determining the marginal costs of engineering improvements in a way that reconciles observed automobile 
choices with the assumptions of profit maximization and utility maximization. This yields marginal costs of improving 
fuel economy that are larger than the marginal costs implied by the NRC study.

37 This increasing relative efficiency of new cars applies both under the baseline price path and under the policy 
change. The baseline path is based on the National Research Council’s (2002) “Path 1” assumptions on new car fuel 
economy.

Table 6—Change in Gasoline Use with 25-Cent Tax Increase

Flat Income-based VMT-based

Recycling method Year 1 Year 10 Year 1 Year 10 Year 1 Year 10

Baseline gasoline use  
  per household (gallons)

775.18 828.89 775.18 828.89 775.18 828.89

Percentage change in gasoline use − 5.09 − 4.99 − 5.06 − 5.07 − 4.51 − 4.40
  Percentage change in VMT − 5.01 − 4.84 − 4.98 − 4.93 − 4.43 − 4.21
    Percentage change in VMT per car − 4.62 − 4.37 − 4.56 − 4.38 − 4.01 − 3.69
    Percentage change  
      in cars in operation

− 0.41 − 0.49 − 0.44 − 0.57 − 0.44 − 0.54

  Percentage change in overall MPG 0.08 0.16 0.08 0.15 0.09 0.20
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Several prior studies38 suggest that the overall reduction in gasoline consumption should be 
larger in the long run than in the short run, since the fleet composition (fuel economy) channel 
requires considerable time to take effect. In fact, our simulations indicate that, in percentage 
terms, the long-run reduction is smaller than the short-run reduction. This occurs because VMT 
per household falls by a smaller percentage in the long run than in the short run (see Table 6). This 
in turn stems from the fact that, although in the long run there is a larger percentage reduction 
in the number of cars owned by the average household, there is a smaller percentage reduction 
in miles traveled per car.39

Table 6 shows that the 25-cent-per-gallon increase in the gasoline price leads to a reduction 
of 4½ to 5 percent in the equilibrium demand for gasoline in the long run, or about a 0.2 percent 
reduction for each penny increase in the gasoline price. It is difficult to compare this result with 
other studies, since other studies do not consider market equilibrium for both new and used cars, 
and do not consider time explicitly. However, it may be noted that Austin and Dinan (2005) 
report that a 30-cent-per-gallon increase in the gasoline tax would reduce gasoline consumption 
(by new cars) by 10 percent (cumulatively) over a 14-year period, or 0.3 percent reduction (cumu-
latively) for each penny increase.

Efficiency Costs. Table 8 displays the efficiency cost of gasoline tax increases of 10, 25, and 
75 cents per gallon. This cost is the weighted sum of the negative of each household’s equivalent 
variation, where a household’s weight is proportional to its share of the total population. Here, “cost” 
should be interpreted as a gross measure, since it does not net out the environmental or national secu-
rity benefits stemming from the policy change.

Under flat recycling, the (gross) cost per dollar raised is $0.16, $0.18, and $0.24 for gasoline tax 
increases of 10, 25, and 75 cents per gallon, respectively. The costs under the alternative recycling 
cases are not much different from those in the flat recycling case: the nature of recycling, though 
very important distributionally (as indicated below), does not much affect the aggregate costs. 
This result requires careful interpretation. Another choice in the recycling decision is whether to 
return revenues in lump-sum form or, rather, by way of cuts in the marginal rates of prior taxes 
such as income or sales taxes. Prior studies have shown that returning revenues through marginal 

38 Examples are Jean Agras and Duane Chapman (1999), Glaister and Graham (2002), and Olof Johansson and Lee 
Schipper (1997).

39 In the long run, the cost of gasoline represents a smaller fraction of per-mile operating cost, a reflection of 
improvements in fleet fuel economy.

Table 7—Fleet Size and Composition

Baselinea 25-cent gasoline tax increaseb

 
Flat recycling

Income-based 
recycling

 
VMT-based recycling

Year 1 Year 10 Year 1 Year 10 Year 1 Year 10 Year 1 Year 10

Cars in operation
  All 188.3 191.0 − 0.41 − 0.49 − 0.44 − 0.57 − 0.44 − 0.54
  New 16.7 18.2 − 1.00 − 0.08 − 1.12 − 0.38 − 0.93 − 0.07
  Used 171.6 172.8 − 0.35 − 0.53 − 0.37 − 0.59 − 0.39 − 0.59
  Low MPG 75.9 78.9 − 0.47 − 0.81 − 0.50 − 0.82 − 0.49 − 0.77
  High MPG 112.4 112.1 − 0.37 − 0.26 − 0.40 − 0.39 − 0.40 − 0.38

a Millions of cars.
b Percent change relative to the baseline.
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rate reductions can significantly reduce policy costs, relative to lump-sum recycling.40 Because 
our simulation model does not include prior taxes (except for taxes on gasoline), we can consider 
recycling only through lump-sum transfers, and cannot contrast other aspects of recycling.41

Distributional Impacts

Effects across Income Groups. �Figures 1A and 1B display the impacts of a 25-cent gasoline 
tax increase on household income groups.42 The distribution of impacts depends crucially on the 
nature of recycling. Under flat recycling, lower-income groups experience a welfare improvement 
from the policy change, while higher-income groups suffer a welfare loss. Here, the lower-income 
groups receive a share of the tax revenues that is considerably larger than their share of gasoline tax 
payments. While policy discussions often refer to the potential regressivity of a gasoline tax, these 
simulations indicate that flat recycling more than fully offsets this potential regressivity.43

Under income-based recycling, the pattern of impacts is U-shaped. In this case the middle-
income households experience the largest welfare loss. As indicated in Table 9, for these house-
holds the ratio of miles driven (or gasoline taxes paid) to income is highest; hence recycling 
based on income benefits these households less than other households. Only the very rich expe-
rience welfare gains under income-based recycling; these households have the lowest ratio of 
miles traveled (or gasoline tax paid) to income.

VMT-based recycling implies a fairly flat pattern of impacts across the income distribu-
tion, although the welfare losses are greater for higher-income households. In comparison with 
lower-income households, rich households drive more luxury cars, which are relatively less fuel-
efficient. As a result, the ratio of gasoline taxes paid to VMT is especially large for richer house-
holds, and these households benefit least from VMT-based recycling.

40 See, for example, Lawrence H. Goulder et al. (1999) and Parry and Wallace E. Oates (2000).
41 The absence of prior taxes can also affect policy costs. The direction of the bias from this omission depends on 

the extent to which the commodity receiving the tax increase (gasoline) is a complement or substitute for taxed factors 
of production such as labor and capital. Previous studies indicate, in particular, that if gasoline is an average substitute 
for leisure, the presence of prior taxes raises the costs of a gasoline tax (or of an increase in this tax). See, for example, 
Goulder and Williams (2003). On the other hand, if gasoline is a sufficiently weak substitute (or relatively strong 
complement) for these factors, then the pre-existing taxes imply lower costs from a gasoline tax. West and Williams’s 
(2007) empirical estimates suggest that gasoline and leisure may be complements, which imply an upward bias in our 
model’s estimate of the cost of a gasoline tax increase. Their study calculates the cost of a marginal increase in the 
gasoline tax to be about 26 cents, somewhat higher than the cost in our simulations.

42 The pattern of impacts across households is similar for the 10-cent and 75-cent gasoline tax increases.
43 West and Williams’s (2004) econometric study also finds that a gasoline tax with flat (or lump-sum) recycling is 

regressive.

Table 8—Revenue and Costs from 25-Cent Increase in Gasoline Tax (Results for Year 1)

Revenue recycling Flat Income-based VMT-based

Tax increase (cents) 10 25 75 10 25 75 10 25 75

Net tax revenue ($billion) 7.43 17.96 48.46 7.43 17.97 48.43 7.52 18.29 49.91

Efficiency costa

  Total ($billion) 1.23 3.24 11.43 1.25 3.28 11.72 1.11 2.89 10.38
  Per dollar of additional
    revenue

   0.16 0.18 0.24    0.17    0.18 0.24 0.15 0.16    0.21

  Per avoided gallon of
    gasoline consumed ($)

0.71 0.76 0.96 0.73 0.78 0.98 0.72 0.77 0.97

a Negative of the weighted sum of equivalent variations of each household.
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Figure 1A. Welfare Impacts across Household Income Groups  
under Alternative Revenue-Recycling Methods 

(Year 1, 25 Cent Tax)

Note: Welfare impacts are in average price-adjusted 2001 dollars per household.

Figure 1B. Welfare Impacts across Household Income Groups  
under Alternative Revenue-Recycling Methods

(Year 10, 25 Cent Tax)

Note: Welfare impacts are in average price-adjusted 2001 dollars per household.
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Table 10 decomposes the welfare impacts into the various contributing factors: the change in 
gasoline price, the transfer (rebate) of gasoline tax revenue, the net capital gain or loss associated 
with policy-induced changes in car prices, and changes in profit to new car producers. We have 
assumed that households own shares of new car profits in proportion to their share of benchmark 
aggregate income. The table makes clear that changes in the gasoline price and the transfer 
are by far the most important sources of the household welfare impact. It also confirms that, 
depending on the type of recycling involved, the transfer may or may not offset the gasoline price 
impact to a particular household.

Table 10—Decomposition of Welfare Impacts of 25-Cent Gasoline Tax Increase 
(Results for Year 1)

Gasoline 
price Transfer Car prices

Producer 
profits EV

EV as a percent 
of income

Flat recycling
  Income
    <25 − 84.36 157.58 2.62 − 3.12 74.96 0.45
    25–50 − 196.36 160.22 − 0.43 − 7.19 − 51.87 − 0.14
    50–75 − 284.09 158.88 − 3.16 − 11.88 − 154.50 − 0.24
    >75 − 334.45 160.29 − 4.62 − 19.11 − 213.94 − 0.21
    All − 176.02 159.04 0.04 − 7.22 − 29.73 − 0.08

Income-based recycling
  Income
    <25 − 83.90 68.33 2.90 − 3.42 − 13.75 − 0.08
    25–50 − 196.40 157.21 − 0.40 − 7.86 − 55.45 − 0.15
    50–75 − 284.65 259.81 − 3.40 − 13.00 − 55.33 − 0.09
    >75 − 336.04 417.87 − 5.07 − 20.90 39.99 0.04
    All − 176.06 157.83 0.10 − 7.90 − 31.48 − 0.08

VMT-based recycling
  Income
    <25 − 84.26 79.40 2.86 − 2.80 − 2.01 − 0.01
    25–50 − 197.37 181.56 − 0.38 − 6.44 − 30.56 − 0.08
    50–75 − 285.89 261.01 − 3.31 − 10.64 − 52.80 − 0.08
    >75 − 340.00 307.48 − 4.92 − 17.12 − 69.87 − 0.07
    All − 177.08 162.93 0.11 − 6.46 − 25.70 − 0.07

Note: Welfare effects are expressed in price-adjusted 2001 dollars.

Table 9—Consumption, Mileage, and Car-Ownership Patterns of Household Income Groupsa

Gasoline consumption Miles traveled
Average fuel 
economy of

owned
vehiclesb

Share of
economy’s
light trucks
and SUVs

Income
decile

Average level
(gallons)

Share of
total

Average level
(000’s)

Share of
total

  1 157.3 0.02 4.03 0.02 25.61 0.02
  2 315.7 0.04 7.97 0.04 25.25 0.04
  3 473.6 0.06 11.69 0.06 24.68 0.05
  4 588.3 0.08 14.33 0.08 24.35 0.08
  5 724.0 0.09 17.65 0.09 24.38 0.09
  6 823.7 0.11 19.76 0.11 23.98 0.11
  7 922.0 0.12 22.35 0.12 24.25 0.13
  8 1,060.8 0.14 25.46 0.14 24.00 0.15
  9 1,227.1 0.16 29.55 0.16 24.08 0.17
10 1,459.8 0.19 35.28 0.19 24.17 0.17

a Predicted values from simulation model
b VMT-weighted
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Effects along Other Demographic Dimensions. Figures 2A and 2B show VMT and policy impacts 
by race and income. The figures reveal two main results. First, income seems to be a more important 
determinant of welfare impact than race: there is greater variation in welfare impacts across income 
groups than across racial categories. This reflects the fact that much of the welfare impact is deter-
mined by VMT, and the differences in VMT across income groups are much larger than the VMT 
differences across racial groups, after controlling for income (Figure 2A). Second, low-income 
African American households enjoy the largest gains from flat recycling, while high-income 

Figure 2A. Base VMT by Race and Income

Figure 2B. Household EV by Race and Income—25-Cent Gas Tax Increase with Flat Recycling
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African Americans experience the smallest losses. This is in keeping with the relatively small dif-
ferences in VMT between low-income and higher-income African American households.44

Figures 3A and 3B display differences in welfare impacts across states.45 The top map dis-
plays average VMT per household from the data. The bottom map exhibits the differences in 
average household welfare impact. The top and bottom maps are nearly identical, indicating 
that benchmark VMT is a strong predictor of the welfare impact. Benchmark VMT seems to be 
strongly correlated with population density. Several relatively densely populated states—New 
York, Pennsylvania, New Jersey, and Florida—experience the smallest average welfare impact, 
while many of the relatively sparsely populated states—Montana, Idaho, Utah, Oklahoma, 
Texas, Alabama, Georgia, and South Carolina—suffer the largest adverse impacts. However, 
population density does not perfectly correlate with benchmark VMT or the magnitude of the 
impact: some sparsely populated states—Wyoming and Nevada—nevertheless have low bench-
mark VMT and relatively small welfare impacts.

Table 11 shows how impacts differ depending on the employment status of the household. 
Retirees fare better than younger individuals, as they tend to drive less. Households with no 
children also do better, for the same reason.

D. Sensitivity Analysis

Here we consider the sensitivity of results to parameters affecting changes in fuel economy 
and scrapping. We also explore the extent to which responses to gasoline tax increases depend on 
the existence of the CAFE standard. Finally, we consider the welfare effects when revenue from 
the tax is not returned to households in any form (or used in any productive manner).

The impacts of gasoline tax increases could well be affected by the rate of technology change 
in automobiles over the next decade. One aspect of faster technological improvement would be 
speedier growth in the fuel economy of given car models in successive years.46 To explore this 
possibility, we created an additional scenario allowing for easier improvements in fuel economy. 
Here we adopt the “Path 3” baseline assumptions from the National Research Council (2002) 
study. This scenario’s lower costs of fuel-economy improvements imply larger improvements 
over time in the baseline.47

Table 12 shows the different implications of the two technology paths. In contrast with the 
central case, in which baseline model fuel economy improves between 11 percent (compacts) and

44 Although not displayed, the same pattern emerges under other forms of recycling: differences in income account 
for more of the variation of welfare impacts than racial differences do, and the variation in impacts between high-income 
and low-income African American households is relatively small compared to the variation for other households.

45 To generate the results in these figures, we first regressed the household welfare impacts (EVs) from the simula-
tion on household characteristics and on the predicted baseline VMT and predicted baseline VMT squared. Next we 
used the coefficients from the regression, the same set of household characteristics, and household baseline VMT from 
the data (as opposed to predicted VMT) to get a new fitted value of EV for each household. We then aggregated this 
information by state.

46 Growth in fleetwide fuel economy has been promoted by the increased production and sale of hybrid vehicles. 
In our model, hybrid vehicles are merged with conventional cars within given manufacturer-class combinations (e.g., 
Toyota compacts). We are considering splitting out hybrids in future work. To estimate demands for hybrids, we may 
need to supplement our revealed-preference data with stated-preference information, since hybrids were introduced in 
the automobile fleet in 2001, the year corresponding to our benchmark data. Today they represent about 4 percent of 
the compact car fleet.

47 The NRC study interprets the scenario involving faster fuel economy growth as due to technological advances that 
reduce producers’ costs of supplying more fuel-efficient cars. Our simulations also express such a scenario. It should 
be noted, however, that changes in the baseline time-profile of fuel economy could also reflect changes in household 
preferences. Our model cannot capture such demand-side changes, since we assume a stable utility function in our 
econometric estimation.



June 2009694 THE AMERICAN ECONOMIC REVIEW

20 percent (large SUVs), under this alternative scenario the baseline improvements are more than 
twice as large (see note b to the table). In the baseline, by year 10 average household gasoline 
consumption is 751.6 gallons in the fast technology improvement case. This is about 9 percent 
lower than in the central case baseline. Fuel economy (miles per gallon) is about 15 percent 
higher in the fast-improvement case. Average VMT is also higher (by 5 percent), reflecting the 
lower per-mile cost of driving associated with higher fuel economy.

Figure 3A. Average Household VMT by State

Figure 3B. Average Household EV—25-Cent Gasoline Tax Increase with Flat Recycling
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In the case with lower-cost fuel economy improvements, the gasoline tax increase induces a 
smaller long-run percentage reduction in consumption than it does in the central case. This is 
because gasoline occupies a smaller share of the household budget in the baseline in this alter- 
native scenario, implying a smaller income effect from the tax increase. The average long-run 

Table 11—Welfare Impact of 25-Cent Gasoline Tax Increase on Selected Household Groups

Year 1 Year 10

Recycling Flat
Income-

based
VMT-
based Flat

Income-
based

VMT-
based

All − 29.73 − 31.48 − 25.70 − 31.02 − 32.64 − 25.55
Retired 46.81 8.65 − 15.02 52.78 11.98 − 12.69
Not retired, no children − 26.27 − 33.02 − 21.55 − 21.52 − 28.77 − 15.16
Not retired, with children − 88.01 − 58.40 − 37.81 − 101.03 − 68.64 − 45.98

Note: Welfare effects are expressed in price-adjusted 2001 dollars.

Table 12—Impacts of Gasoline Taxes under Alternative Parameter Assumptions

Year 1 Year 10

Baseline

25-cent tax
increasea

(percent) Baseline

25-cent tax
increasea

(percent)
Central case
  Gasoline consumption (gallons/household) 775.18 − 5.09 828.89 − 4.99
  Aggregate VMT (000's miles/household) 18.80 − 5.01 21.23 − 4.84
  Average MPG (miles weighted) 24.26 0.082 25.62 0.155
  Average EV (price-adjusted dollars) — − 30.13 — − 31.28

Faster fuel-economy improvementsb

  Gasoline consumption 773.66 − 5.07 751.56 − 4.48
  Aggregate VMT 18.83 − 4.99 22.25 − 4.23
  Average MPG 24.34 0.080 29.60 0.263
  Average EV — − 29.67 — − 24.23

High scrap elasticity
  Gasoline consumption 775.18 − 5.16 828.89 − 5.00
  Aggregate VMT 18.80 − 5.08 21.23 − 4.86
  Average MPG 24.26 0.088 25.62 0.154
  Average EV — − 29.75 — − 30.93

No CAFE standard
  Gasoline consumption 775.18 − 5.25 828.89 − 6.21
  Aggregate VMT 18.80 − 4.93 21.23 − 4.90
  Average MPG 24.26 0.339 25.62 1.401
  Average EV — − 29.28 — − 30.11

Gasoline tax revenue not recycledc

  Gasoline consumption 775.18 − 5.49 828.89 − 5.62
  Aggregate VMT 18.80 − 5.41 21.23 − 5.50
  Average MPG 24.26 0.084 25.62 0.122
  Average EV — − 218.07 — − 231.32

Notes: 
a Percent change relative to the baseline under the same parameter assumptions.
b Percent increases in fuel economy over ten years are: compact 41, luxury compact 41, midsize 52, fullsize 58, lux-

ury mid/full 55, small SUV 54, large SUV 65, small truck 58, large truck 59, minivan 59.
c More precisely, assume revenue is neither recycled to households nor used in any productive way.
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welfare impact (EV) is 22 percent smaller under the fast technology growth scenario, which 
is also consistent with gasoline’s smaller budget share. Thus, the baseline time-profile of fuel 
economy significantly influences the welfare consequences of a gasoline tax. However, the dif-
ferences across the two scenarios in baseline welfare are greater than the welfare impact within 
either of the two scenarios of introducing a 25-cent gasoline tax increase.

The third main row heading in the table reports results from a simulation in which we double 
the scrap elasticity ηj to − 6.0 from its central value of − 3.0. With this change, the gasoline tax 
causes a somewhat larger reduction in gasoline use in the short run, reflecting a higher scrap-
ping rate: with the higher scrap elasticity, the policy change causes 22 percent more cars to be 
scrapped compared with the policy under the central case. While the higher scrap elasticity 
implies a larger policy impact on gasoline consumption in the short run, it has little influence on 
the policy impact in later years.

The fourth panel of Table 12 displays results in an alternative case where (counter to fact) there 
is no binding CAFE standard—neither on small cars nor on trucks. In the absence of this standard, 
the increase in gasoline taxes yields a significantly larger short- and long-run improvement in fuel 
economy compared with the case of a pre-existing binding CAFE standard. Correspondingly, there 
is a larger reduction in gasoline consumption. After ten years, gasoline consumption is reduced by 
about 6.2 percent, as compared with 5.0 percent in the central case. When firms are not constrained 
by the CAFE standard, producers have greater incentives to change the composition of their car or 
truck fleets to meet the increased consumer demands for fuel economy that stem from higher fuel 
costs. In contrast, when firms are constrained by the CAFE standard, the increase in the gasoline 
tax leads to smaller changes in the composition and average fuel economy of their fleets of cars and 
trucks. The composition of a producer’s car or truck fleet is largely determined by the CAFE stan-
dard. In the presence of the CAFE standard, an increase in the gasoline tax affects a car producer’s 
fleet composition mainly by altering the relative sales of cars versus trucks.

The final panel models the scenario where gasoline tax revenues are not returned to house-
holds in any form. Implicitly, this is a case where the government uses the revenues to finance 
projects of no value to the household. In this case, the welfare costs rise from $30 to $218 per 
household. Gasoline consumption and VMT fall more than in the central case due to the larger 
income effects. Finally, as opposed to the case with “flat” revenue recycling, this policy is regres-
sive over most of the income distribution.

V.  Conclusions

This paper has examined the impacts of gasoline tax increases with a model that considers 
jointly supply- and demand-side responses to policy changes. The model links the markets for 
new, used, and scrapped vehicles, and accounts for the imperfectly competitive nature of the 
automobile industry. Linking the three markets enables us to account for the penetration of the 
car fleet by new cars, and thereby assess how the impacts of policy interventions evolve through 
time. We also address the considerable range of car choices in a high-dimensional discrete-
continuous choice model. Parameters for the household demand side of the model stem from 
a one-step estimation procedure that integrates individual choices for car ownership and miles 
traveled, thereby yielding consistent welfare measures. Finally, we allow for the considerable 
heterogeneity among car owners, which enables us to explore the distributional impacts of policy 
changes along many important dimensions.

We find that each cent-per-gallon increase in the price of gasoline reduces the equilibrium gas-
oline consumption by about 0.2 percent. The reduction in demand mainly reflects reduced miles 
traveled by car owners; shifts in demand from low to high miles-per-gallon vehicles appear much 
less important. Under a 25-cent gasoline tax increase, the size of the vehicle fleet falls about 0.5 
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percent. The impacts on new and used car ownership differ substantially over time. In the first 
year of the policy, the reduction in vehicle ownership comes largely by way of a decline in new 
car purchases. However, the ratio of fuel economy of new to old vehicles increases over time, and 
the increased gasoline tax gives greater importance to fuel economy. As a result, the decline in 
new car ownership is attenuated over time, and by year 10 the reduction in car ownership applies 
nearly uniformly to new and used vehicles.

The gasoline tax’s marginal excess burden (excluding external benefits) per dollar of revenue 
raised ranges from about $0.15 for a 10-cent tax-increase to $0.25 for a 75-cent increase. This effi-
ciency cost is considerably lower than the estimates of the marginal external benefits from higher 
gasoline taxes,48 suggesting that increases in the gasoline tax would be efficiency-improving. 
Taking account of revenue-recycling (and disregarding external benefits), the impact of a 25-cent 
gasoline tax increase on the average household is about $30 per year (2001 dollars).

The distributional impacts of the gasoline tax differ dramatically under the three revenue-
recycling approaches we considered. Under flat recycling, the average household in each of the 
bottom four income deciles experiences a welfare gain from a gasoline tax increase. The gain 
to the average household in the lowest income decile would be equivalent to about $125. This 
suggests that a single-rebate-check approach to recycling would more than eliminate (for the 
average household within a given income group) the potential regressivity of a gasoline tax 
increase. On the other hand, if revenues are recycled in proportion to income, only very poor 
households (those in the lowest decile) and very rich households (those in the highest) stand to 
gain. The different impacts of the various recycling methods largely reflect differences across 
the income distribution in car use (VMT). However, household income does not perfectly 
correlate with VMT and other important determinants of the welfare impacts: controlling 
for income, we find significant differences in impacts across racial categories and regions of 
residence.

The framework presented here has considerable potential to address other automobile-related 
policies, including tightening of CAFE standards and subsidies to retirement of low-mileage (or 
high-polluting) automobiles. We plan to investigate these policies in future work, examining 
impacts not only on gasoline consumption, but on automobile-generated pollution as well.

Two limitations in our model deserve mention. First, although the model allows the fuel-economy 
of new cars to respond endogenously to gasoline tax changes, it does not distinguish the demands 
for some of the most fuel-efficient cars—namely, hybrids—from the demands for conventional-fuel 
cars in the same vehicle class. Only recently have sales of hybrids become significant, and thus the 
data for isolating demands for such cars are quite limited. Nonetheless, in future work we hope 
to develop surveys that will enable us to consider specifically the demands for hybrid vehicles. In 
addition, the model abstracts from transactions costs (e.g., time costs, information-gathering costs, 
and transactions-related taxes) associated with the purchase or sale of new or used cars. These costs 
cause households to change their car holdings less frequently than they otherwise would. Although 
data limitations currently make it impossible to assess such costs in a rigorous manner, we believe 
it would be useful in the future to incorporate alternative assumptions about such costs within the 
estimation effort and to judge the implications of such costs for policy outcomes.
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