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Abstract

We study symmetric information games where a number of senders choose what information to com-
municate. We show that the impact of competition on information revelation is ambiguous in general.
We then identify a condition on the information environment (i.e., the set of signals available to each
sender) that is necessary and sufficient for equilibrium outcomes to be no less informative than the col-
lusive outcome, regardless of preferences. The same condition also provides an easy way to characterize
the equilibrium set and governs whether introducing additional senders or decreasing the alignment of
senders’ preferences necessarily increases the amount of information revealed.
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1 Introduction

Does competition increase the amount of information revealed? A long tradition in political and legal

thought holds that the answer is yes. This view has motivated protection of freedom of speech and freedom

of the press, media ownership regulation, the adversarial judicial system, and many other policies.1

Economic theory suggests several mechanisms by which competition can increase information reve-

lation. Milgrom and Roberts (1986) study verifiable message games and point out that if there is some

sender in each state who wishes that state to be known, then full revelation is the unique equilibrium. Shin

(1998) shows that two adversarial senders who convey verifiable messages about their independent signals

always generate more information than a single signal directly observed by the receiver. In a cheap talk

setting, Battaglini (2002) establishes that it is generically possible to construct a full revelation equilibrium

when there are two senders and uncertainty is multidimensional. These results, however, do not imply that

competition need increase information in all settings, as the following example makes clear.

Example. There are two pharmaceutical companies j = 1,2 each of which produces a drug, and unit mass

of potential consumers indexed by i. For a given consumer i, drug j may have either high or low efficacy,

which we represent by ωi j ∈ {l,h}, with Pr (ωi j = h) = 0.2 distributed independently across consumers and

drugs. All consumers prefer high efficacy and are otherwise indifferent between the drugs, but they differ in

their outside options: half always buy whichever drug has the higher expected efficacy, while the other half

buys the better drug only if its Pr (ωi j = h) is greater than 0.5. The share of these two types is independent

of ωi j.

Each firm j simultaneously chooses one of two disclosure policies: a completely uninformative signal

(null), or a fully informative one (reveal j) that allows each consumer i to determine her ωi j for that firm’s

drug. The firms maximize the share of consumers buying their drug. We can represent this situation as the

following normal form game:

null reveal2

null .25, .25 .40, .20

reveal1 .20, .40 .34, .34

This is a Prisoner’s Dilemma. Revealing information is beneficial for the firms’ joint profits as it increases

1See Gentzkow and Shapiro (2008) and references cited therein.
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expected profits from the consumers who buy only if Pr (ωi j = h) > 0.5. (Those consumers never buy

unless given information.) But revealing information is unilaterally unattractive since it disadvantages the

revealing firm in the competition for the consumers who always buy. The uninformative signal is thus a

dominant strategy and the unique equilibrium yields no information. In contrast, if the firms were to collude

and maximize the sum of their payoffs, they would choose (reveal1,reveal2).

In this example, competition between the firms decreases information revelation and lowers consumer

welfare. Note that the situation would be very different if firms could disclose information not only about

their own drug, but also about their competitor’s drug—i.e., if each firm could choose reveal1 and/or reveal2.

In this case, each firm would prefer to unilaterally disclose the efficacy of their competitor’s drug, and so

full revelation would be an equilibrium.

The main contribution of this paper is to identify a necessary and sufficient condition on the information

environment (i.e., the set of signals available to each sender) under which competition cannot decrease

information revelation. We consider a setting where senders with a common prior simultaneously conduct

costless, publicly observed experiments about an unknown state of the world. The information revealed by

these experiments can be succinctly summarized by the induced distribution of posterior beliefs (Blackwell

1953). We refer to this distribution of beliefs as the outcome of the game. We allow senders to have arbitrary

utility functions over outcomes.

We say that an information environment is Blackwell-connected if for any profile of others’ strategies,

each sender has a signal available that allows her to unilaterally deviate to any feasible outcome that is

more informative. Note that the environment in the example above is not Blackwell-connected, because

starting from (null,null), firm 1 cannot unilaterally deviate to induce the more informative outcome pro-

duced by (null,reveal2). The modified game where firms can disclose information about their competitors

is Blackwell-connected. In general, the key implication of Blackwell-connectedness is that any individual

sender must be able to generate as much information as the senders can do jointly.

Our main result shows that no pure-strategy equilibrium outcome can be less informative than the collu-

sive outcome (regardless of preferences) if and only if the information environment is Blackwell-connected.

Moreover, when the environment is Blackwell-connected, we show there is a simple way to characterize the

set of equilibrium outcomes without solving a fixed point problem.

For a concrete illustration of Blackwell-connectedness, suppose we wish to know whether a merger
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between two pharmaceutical companies would result in consumers becoming more or less informed about

the quality of the firms’ drugs. If each firm can commission a range of clinical trials about the efficacy of

both drugs, the environment will be Blackwell-connected, and our result implies that the merger could only

reduce consumers’ information. In contrast, if each firm can conduct clinical trials only about its own drug,

the information environment is not Blackwell-connected, so there are some demand systems for which the

merger will make consumers more informed. We develop this example in more detail below.

We also analyze two other notions of increased competition: presence of additional senders and a de-

crease in the alignment of senders’ preferences. When considering these additional comparative statics, we

restrict our attention to situations where each sender has access to the same set of signals and we focus on

minimally informative, or minimal, equilibria. (These equilibria have some desirable properties we discuss

below.) We find that if the environment is Blackwell-connected, neither introducing additional senders nor

increasing preference misalignment can decrease the informativeness of minimal equilibria.

To simplify our main comparative statics, we assume the collusive outcome is unique and focus on

minimal equilibria when we vary the number of senders or preference alignment. In Section 7, we drop

these assumptions and extend our comparative statics using set comparisons. We also briefly discuss mixed

strategy equilibria, non-Blackwell information orders, and costly signals.

Our work connects to several strands of existing literature. First, our analysis relates to the work

on multi-sender communication (e.g., Milgrom and Roberts 1986; Krishna and Morgan 2001; Battaglini

2002).2 Our model differs from this literature in three ways. First, senders’ information in our model is

endogenous, but we abstract from incentive compatibility issues in disclosure. Second, we allow for arbi-

trary preferences and characterize the full set of equilibria whereas most existing papers focus on identifying

specific preferences under which full revelation is possible. Finally, we consider a richer set of comparative

statics than most existing papers — comparing competition to collusion, varying the set of senders, and

varying the alignment of senders’ preferences.

Second, our work relates to research on advocacy. Dewatripont and Tirole (1999) consider a principal

2Bhattacharya and Mukherjee (2013) analyze multiple-sender persuasion games when there is uncertainty about whether each
sender is informed. Under the assumption that senders’ preferences are single-peaked and symmetric, they geometrically charac-
terize the equilibrium strategies. They establish that receiver’s payoff may be maximized when senders have identical, extreme
preferences rather than opposed ones. Chen and Olszewski (2014) analyze a model of debate in which two senders with opposed
preferences try to convince a receiver. They take senders’ information as exogenous and do not consider comparative statics with
respect to the extent of competition. Banerjee and Somanathan (2001) show how the relative homogeneity of preferences within a
group affects the ability of individuals to communicate information to a leader.
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who employs agents to gather costly information. Effort exerted to gather information is unobservable and

experts’ wages are contingent only on the principal’s decision. The authors establish that employing two

advocates with opposed interests is preferable to employing a single unbiased agent; it either generates

more information or yields less rent to the employee(s). Shin (1998) develops a related result in a model

with exogenous information. In his setting, two advocates get two independent draws of a signal whereas an

unbiased investigator gets a single draw. Our analysis differs from these papers in showing necessary and

sufficient conditions for competition to be beneficial, and analyzing a broader set of environments, including

those where competition does not change the set of feasible signals.

Third, our analysis is related to the nascent literature that examines situations with ex ante symmetric

information with multiple senders. Brocas et al. (2012) and Gul and Pesendorfer (2012) examine settings

where two senders with exactly opposed interests provide costly signals about a binary state of the world.

In contrast to these papers, we consider an arbitrary state space, arbitrary preferences, and arbitrary signal

structures. Moreover, neither Brocas et al. (2012) nor Gul and Pesendorfer (2012) examine comparative

statics with respect to the extent of competition.3 Finally, Gentzkow and Kamenica (2012) analyze a spe-

cial case of the current where every sender can conduct any experiment whatsoever, including those that

are arbitrarily correlated with the outcomes of other senders’ experiments. That is a far more restrictive

environment than the one we consider in this paper but it yields a richer characterization of the equilibrium

set.

2 Model

2.1 Setup

Let Ω be the state space, with a typical state denoted ω . There are n senders indexed by i who share a

common prior µ0. The senders play a simultaneous-move game in which each sender i chooses a signal

πi ∈ Πi. Throughout the paper we focus on pure-strategy equilibria. We denote a strategy profile by π =

(π1, ...,πn). Let Π≡×Πi and Π−i ≡× j 6=iΠ j. We refer to Π as the information environment.

For some results, we will focus on situations where each sender has access to the same signals, i.e.,

3Ostrovsky and Schwarz (2010) examine a model where schools choose how much information to provide about their students’
abilities so as to maximize the students’ job placement. They focus on a different question than we do – they examine whether the
amount of information revealed depends on how students’ abilities are distributed across schools.
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where Πi = Π j for any pair i and j.

A signal is a random variable whose distribution may depend on ω . Given a set of signals P, let 〈P〉

denote the distribution of beliefs of a Bayesian with prior µ0 who observes the realization of all signals in

P.4 We say that π = π ′ if 〈{π,π ′}〉 = 〈π〉 = 〈π ′〉. Note that in this notation, saying that π = π ′ does not

merely mean that observing π yields as much information as observing π ′; rather π = π ′ means that the two

signals provide exactly the same, mutually redundant information.

A sender’s payoff is a function of the aggregate information revealed jointly by all the signals. We

summarize this information by the distribution of beliefs 〈π〉. Sender i’s payoff given distribution of beliefs

τ = 〈π〉 is denoted by vi (τ). In Subsection 2.2, we discuss a range of models nested by this specification.

If π is a Nash equilibrium, we say 〈π〉 is an equilibrium outcome. If πc solves maxπ∈Π ∑i vi (〈π〉), we

say that 〈πc〉 is a collusive outcome. All of our results remain true (with near-identical proofs) if we define

collusive outcomes based on other aggregations of senders’ preferences.5 We say an outcome τ is feasible

if there exists π ∈Π such that τ = 〈π〉.

Let � denote the Blackwell (1953) order on distributions of beliefs. That is, τ � τ ′ if τ is a mean

preserving spread of τ ′, in which case we say that τ is more informative than τ ′. It is immediate that if

P′ ⊆ P, we have 〈P〉 � 〈P′〉. If τ � τ ′, we say that τ ′ is no less informative than τ . If τ � τ ′ or τ ′ � τ , we

say that τ and τ ′ are comparable.

We assume that no sender is forced to provide information, so that each Πi includes the null signal π

s.t. 〈P∪π〉 = 〈P〉 for any P. We also make a technical assumption that the set of equilibrium outcomes is

non-empty and compact. This could be guaranteed by assuming that each vi (〈π〉) is jointly continuous in

all components of π and that each Πi satisfies weak regularity conditions.6

Finally, to ease exposition we assume that the collusive outcome is unique. This will be true generically.7

When we say a result holds “regardless of preferences,” we mean that it holds for any preferences consistent

4We will slightly abuse notation by writing 〈π〉 for 〈{π}〉 and 〈π〉 for 〈{πi}n
i=1〉.

5Consider any function V such that if vi (τ
′) ≥ vi(τ

′′) for all i and at least one inequality is strict, then V (τ ′) > V (τ ′′). If
we define a collusive outcome to be a τ that maximizes V , all of our results remain true. For example, we could assume that
V (τ) = ∑λivi (τ) to reflect that some senders’ have more influence in determining the collusive outcome. Or, we could assume that
V (τ) = ∏max

(
vi (τ)− vd

i ,0
)

to reflect that senders reach the collusive outcome through Nash bargaining where sender i’s outside
option is vd

i .
In Section 7 where we drop the assumption that the collusive outcome is unique, we could also simply define a collusive outcome

as any Pareto-undominated outcome. That definition, however, would be problematic under the assumption that the collusive
outcome is unique.

6Namely, that it is a non-empty compact subset of a locally compact Hausdorff topological vector space.
7If we perturb any set of preferences replacing vi (τ) with vi (τ)+ε where ε has an atomless distribution, the collusive outcome

will be unique almost surely.
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with the uniqueness of the collusive outcome. In Section 7 we relax the uniqueness assumption and state

our results using orders on sets.

2.2 Interpretation

Our model applies to circumstances where a number of senders wish to influence the action a ∈ A of some

receiver with a utility function u(a,ω). In that case we have

vi (τ) = Eτ

[
Eµ ṽi (a∗ (µ) ,ω)

]
(1)

where a∗ (µ) is the action chosen by receiver given belief µ and ṽi (a,ω) is sender i’s primitive preference

over receiver’s action and the state.8 The general formulation with an arbitrary vi, however, also allows for

circumstances where receiver’s action depends on τ as well as µ . Suppose, for instance, that sender i is a

seller and receiver is a potential buyer who must pay a cost to visit the seller’s store. The seller chooses

information πi that will be revealed about ω , the buyer’s value for the seller’s good. If receiver observes the

choice of πi (but not its realization) before deciding whether to visit the store, then a∗ depends on τ as well

as µ .

Our model also applies to settings with multiple receivers who may engage in strategic interaction with

each other. For instance, suppose sender i is an auctioneer and there are a number of bidders. The sender

chooses information πi that will be revealed about ω , the bidders’ values for the good (e.g., as in Milgrom

and Weber 1982). Our model covers both the case of common values (where ω is one-dimensional) and

the case of private values (where ω is the vector of valuations). It also applies both to the case where the

bidders observe the same signal realizations (in which case a∗(µ) is the equilibrium vector of actions given

the commonly held posterior µ) and the case where each bidder observes an independent draw of the signal

realizations (in which case the equilibrium actions may be a function of τ as well as µ).

8This microfoundation puts some restrictions on the induced preferences over informational outcomes: not every vi can be
generated by choosing a suitable u and ṽi. This is particularly important to keep in mind when interpreting the results that a given
property of the information environment is necessary for comparative statics to hold for all possible vi. It is an open question of
whether there is a weaker condition on the information environment that is necessary for comparative statics to hold for any vi
generated by some u and ṽi. Also, note that continuity of u and ṽi are not sufficient to guarantee continuity of vi when a∗ is not
single-valued.
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2.3 Discussion

Our model makes several strong assumptions. First, we assume that the information generated by each

sender is directly observed by others. This assumption distinguishes our setting from both cheap talk (e.g.,

Crawford and Sobel 1982) and persuasion games with verifiable information (e.g., Grossman 1981; Milgrom

1981; Milgrom and Roberts 1986; Bull and Watson 2004; Kartik and Tercieux 2012). In Kamenica and

Gentzkow (2011) we discuss the variety of real-world settings where this assumption is suitable.

Second, an important feature of our model is that senders do not have any private information at the time

they choose their signal. If they did, the choice of the signal could convey information even conditional on

the signal realization, which would substantially complicate the analysis. Perez-Richet and Prady (2012)

and Rosar (2014) consider models where privately informed senders choose publicly observable signals

about their type.

Third, we assume that all signals available to a sender are equally costly. This is clearly a restrictive

assumption, but the fact that we allow for arbitrary Πi’s means that our framework does allow for cases

where some signals are prohibitively costly to generate. The possibility that Πi can vary across senders

means that some senders can have a comparative advantage in accessing certain kinds of information.

Finally, our model implicitly assumes that no sender can drown out the information provided by others,

say by sending many useless messages. This is the basic import of the fact that P′⊆P implies that 〈P〉� 〈P′〉.

One interpretation of this assumption is that receiver is a classical Bayesian who can costlessly process all

information she receives. This means that, from receiver’s point of view, the worst thing that any sender can

do is to provide no information.

3 The information environment

Definition. Π is Blackwell-connected if for all i, π ∈ Π, π−i ∈ Π−i such that 〈π〉 � 〈π−i〉, there exists a

πi ∈Πi such that 〈π〉= 〈π−i∪πi〉.

In other words, an information environment is Blackwell-connected if, given any strategy profile, each

sender can unilaterally deviate to induce any feasible outcome that is more informative. We illustrate this

definition with several examples.

Example 1. (Number of draws) Given a signal π , each sender i chooses the number of independent draws
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from π to generate. Signals from distinct senders are uncorrelated so if sender i chooses ni draws, aggregate

information is simply ∑i ni independent draws from π .

Example 2. (Precisions) Suppose Ω ⊂ R and let πh be a normal signal with precision h, i.e., πh generates

a signal realization s with distribution N
(
ω, 1

h

)
. Each sender chooses the precision hi ∈ R+ of her signal.

(We interpret the signal with zero precision as the uninformative signal π.) Signals from distinct senders are

uncorrelated so aggregate information is a normal signal with precision ∑i hi.

Example 3. (Partitions) Each sender chooses a partition of Ω. Observing the realization of a signal means

learning which element of the partition the state is in (as in Aumann 1976).

Example 4. (Facts) There is a set F of facts about ω and revealing any one of these facts generates an i.i.d.

signal. Each sender i chooses a subset Fi ⊂ F of facts to reveal. The outcome is determined by the total

number of facts that are revealed, i.e., by the cardinality of ∪Fi.

Example 5. (All-or-nothing) Each sender has access to only two signals, π that reveals nothing and π that

fully reveals the state of the world.

All of the information environments above are Blackwell-connected.

The most substantive implication of an environment being Blackwell-connected is that an individual

sender can unilaterally provide as much information as several senders can do jointly. Say that individual

feasibility equals aggregate feasibility if for any sender i, {〈π〉|π ∈Πi}= {〈π〉|π ∈Π}.9

Remark 1. If the information environment is Blackwell-connected, then individual feasibility equals aggre-

gate feasibility.

This follows from the observation that for any π ∈ Π and any sender i, Π being Blackwell-connected

means there is a πi ∈ Πi s.t. 〈πi ∪ π〉 = 〈π〉 where π = (π, ...,π) ∈ Π−i. It implies that the information

environment from the example in the introduction cannot be Blackwell-connected because each firm can

generate information only about the quality of its own drug. Also, consider the Number of draws environ-

ment, but modify it so that each sender can generate no more than some fixed number of draws. Remark 1

implies that this modified information environment is not Blackwell-connected.

9Note that if each sender has access to the same set of signals, then individual feasibility necessarily equals aggregate feasibility,
but the converse does not hold. In the Number of draws and Precisions environments, for example, individual feasibility equals
aggregate feasibility, but it is not the case that each sender has access to the same set of signals. In contrast, Partitions, Facts and
All-or-nothing are environments where each sender has access to the same set of signals.
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Having individual feasibility equal aggregate feasibility is thus a necessary condition for Blackwell-

connectedness, but it is not quite sufficient. An information environment can also fail to be Blackwell-

connected if the sets Πi are too “coarse.” Suppose, for example, that we modify the Number of draws

environment so that each sender must generate at least two draws (unless she sends the null signal). Even

though each sender can unilaterally generate any feasible outcome, this information environment is not

Blackwell-connected: the outcome with three total draws is feasible and more informative than the outcome

with two total draws, but if π−i induces the outcome with two total draws, there is no πi that sender i can

choose such that π−i∪πi induces the outcome with three.

4 Competition versus collusion

4.1 Main result

When does competition increase information revelation? In this section, we consider this question by com-

paring equilibrium outcomes to the collusive outcome. Since this comparison is meaningful only when there

are at least two senders, we assume that n ≥ 2. Recall that we maintain the assumption that the collusive

outcome is unique. Our main result is the following:

Proposition 1. Suppose n≥ 2. Every equilibrium outcome is no less informative than the collusive outcome

(regardless of preferences) if and only if the information environment is Blackwell-connected.

The basic intuition behind this proposition is the following. Let τ∗ be some equilibrium outcome and let

τc denote the collusive outcome. Suppose contrary to the proposition that τc � τ∗. It must be the case that

for at least one sender i we have vi (τ
c)> vi (τ

∗); otherwise, it could not be the case that τc is collusive and

τ∗ is not. But, since the environment is Blackwell-connected this sender i could deviate from the strategy

profile that induces τ∗ and induce τc instead. Hence, τ∗ could not be an equilibrium.

The proof of the converse is constructive. If the environment is not Blackwell-connected, there is some

strategy profile πc and some π ′−i ∈ Π−i such that 〈πc〉 � 〈π ′−i〉 but player i cannot induce πc when others

are playing π ′−i. Consider a strategy profile π∗ where i sends the null signal and others play π ′−i. If sender

i strictly prefers πc to π∗ and other senders are indifferent, then πc is collusive, π∗ is an equilibrium, and yet

〈πc〉 � 〈π∗〉.
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The environment being Blackwell-connected does not by itself ensure that an equilibrium outcome is

comparable to the collusive outcome in the Blackwell order. It might be the case that the collusive outcome

yields information that is more relevant for a particular decision maker than an equilibrium outcome does.

However, an argument closely related to the proof of Proposition 1 can be used to show that every equilib-

rium outcome is more informative than the collusive outcome if and only if the information environment is

Blackwell-connected and all feasible outcomes are comparable.

4.2 Illustrations

In this subsection, we illustrate the implications of Proposition 1 with a few examples.

4.2.1 Clinical trials on competitors’ drug

Suppose we wish to know whether a merger between two pharmaceutical companies would result in con-

sumers being more or less informed about the firms’ drugs. Suppose further that each firm can commission a

third-party to conduct a clinical trial and that each additional group of subjects provides an i.i.d signal about

the quality of both drugs. This environment is Blackwell-connected (and moreover, any two outcomes are

comparable.) Hence, Proposition 1 tells us that regardless of the demand structure – the extent of differen-

tiation between the firm’s products, consumers’ outside options, etc.—the merger will reduce consumers’

information about both firms’ drugs.

In contrast, suppose that each firm has a comparative advantage in generating certain type of information.

For instance, it might be the case that a firm is not allowed to conduct clinical trials about its competitor’s

drug. Remark 1 tells us that whenever such comparative advantage exists, the information environment is

not Blackwell-connected. By Proposition 1, whether a merger leads to more or less information will depend

on the demand structure. For some demand structures, such as the one in the introductory example, a merger

can make consumers more informed.

4.2.2 Educating consumers about a new technology

There are two firms, G and N in a food industry. Firm G’s food contains genetically modified organisms

(GMOs) whereas firm N’s food does not. Each firm can conduct an investigation into safety of GMOs.

An investigation by firm i generates an i.i.d normal signal about safety with precision hi ∈ [0,H] where
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H ∈ [0,∞]. Precision of 0 is equivalent to the null signal π . Aggregate information τh is determined by

h ≡ hG + hN . Uncertainty about the safety of GMOs reduces the demand for firm G’s product on average

and somewhat increases the demand for firm N’s product, but by substantially less. Consequently, vG (τh)

and vG (τh)+ vN (τh) are increasing in h while vN (τh) is decreasing in h.

First consider the case where H = ∞, i.e., each firm can convincingly reveal the safety of GMOs on its

own. In that case, the collusive outcome is full revelation (τ∞). Moreover, the environment is Blackwell-

connected so the equilibrium outcome cannot be any less informative: full revelation is also the unique

equilibrium outcome. (Clearly, firm G chooses the fully revealing signal.)

In contrast, suppose that H takes on some finite value. This implies that no amount of available evidence

will completely eliminate consumers’ uncertainty but more importantly it also means that firm G cannot

unilaterally reveal as much information as firms G and N can do together. Hence, the environment is not

Blackwell-connected and we cannot be certain that equilibria will be more informative than the collusive

outcome. In fact, the unique equilibrium profile is hG = H and hN = 0, strictly less informative than the col-

lusive hG = hN = H. Firm G would like to bribe firm N to reveal information but contractual incompleteness

prevents it from doing so. This can happen whenever the environment is not Blackwell-connected.

4.2.3 Dislike of partial information

There are two facts about the world θ and γ which jointly determine the state of the world. There are

4 possible outcomes, determined by which facts are revealed: τ{θ ,γ}, τ{θ}, τ{γ}, and τ /0 where τS is the

outcome when facts in S are revealed. Each firm i can reveal facts Fi ⊂ {θ ,γ}. All firms have the same

preference over the informational outcome: vi
(
τ{θ ,γ}

)
> vi (τ /0) > vi

(
τ{θ}

)
,vi

(
τ{γ}

)
. In other words, all

firms would most rather have a fully informed public, but partial information is worse than no information.

First consider the Blackwell-connected environment where Fi = {θ ,γ}, i.e., any firm can reveal both

facts. In this case, the collusive outcome and the unique equilibrium coincide at full information.

In contrast, suppose that both facts can be revealed (∪Fi = {θ ,γ}), but each individual firm can reveal at

most one fact (|Fi| ≤ 1). In this case, the environment is not Blackwell-connected and there is an equilibrium

outcome τ /0 where nothing is revealed. Hence, competition is bad for information. This example illustrates

how equilibrium miscoordination can lead to less information being revealed than would take place under

collusion, but it only shows that this can only happen when the environment is not Blackwell-connected.
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5 Characterizing equilibrium outcomes

Ascertaining whether a particular τ is an equilibrium outcome requires identifying whether there is a strategy

profile π such that π induces τ and no sender has a profitable deviation from π . In general, the set of

deviations that are feasible for sender i depends on the entire strategy profile of the other players. Hence,

identifying equilibrium outcomes requires solving a fixed point problem.

When the information environment is Blackwell-connected, however, the set of feasible deviations be-

comes easy to identify: sender i can deviate to induce a feasible outcome τ if and only if τ � 〈π−i〉. The

“only if” part of this claim is trivial. The “if” part is equivalent to the environment being Blackwell-

connected. Moreover, the “if” part imposes an important restriction on equilibrium outcomes. Say that

an outcome τ is unimprovable for sender i if for any feasible τ ′ � τ , we have vi (τ
′) ≤ vi (τ). If Π is

Blackwell-connected, any equilibrium outcome must be unimprovable for all senders. Moreover, if each

sender has access to the same set of signals and there are at least two senders, this condition is not only

necessary but also sufficient for a given τ to be an equilibrium outcome:

Proposition 2. Suppose each sender has access to the same set of signals, the information environment is

Blackwell-connected, and n≥ 2. A feasible outcome is an equilibrium outcome if and only if it is unimprov-

able for each sender.

As we already mentioned, the “only if” part of this result follows directly from the environment being

Blackwell-connected. The “if” part relies on the assumptions that n ≥ 2 and that each sender has access

to the same set of signals. Given an outcome τ that is unimprovable for each sender, there must be a π

such that 〈π〉= τ and then (π, ..,π) is an equilibrium: the only deviations possible are those that yield more

information but such deviations cannot be profitable.

Proposition 2 can be quite useful as it provides an easy way to determine the set of equilibrium outcomes.

In particular, we can identify this set simply by taking an intersection rather than by solving a fixed point

problem. We illustrate this in Figure 1.

We consider a Facts environment with a unit measure of facts. Each of the two senders chooses a set

of facts Fi ⊂ [0,1] to uncover and the outcome is determined by the overall share of facts that are revealed,

i.e., by the measure of F1∪F2. Hence, we can represent each feasible τ simply as a real number in the unit

interval.
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Figure 1: Characterizing equilibrium outcomes

(a) Sender 1’s preferences

v1(τ)

(b) Sender 2’s preferences

v2(τ)

(c) Equilibrium construction

M1

M2

M

τc τ1 τ20 1

(d) Collusive preferences

v1(τ)+v2(τ)
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Panel (a) shows the graph of a hypothetical v1 (τ) as well as the outcomes that are unimprovable for

sender 1 given those preferences (the thick lines on the x-axis). As the figure shows, this set of unimprovable

outcomes is a union of two intervals. The dashed lines show how the set of unimprovable outcomes is

identified. Panel (b) depicts the same information for sender 2, with another hypothetical utility function

v2 (τ) . In this case, the set of unimprovable outcomes is the union of a single interval and the fully revealing

outcome.

Panel (c) depicts how to construct the equilibrium set. The set of unimprovable outcomes for sender 1

(M1) is shown right above the unimprovable outcomes for sender 2 (M2) . Their intersection, M = [τ1,τ2]∪

{1}, is the set of equilibrium outcomes. In equilibrium either all facts will be revealed, or some share of

facts between τ1 and τ2.

Finally, we can also illustrate our main comparative statics result in Figure 1. Panel (d) shows collusive

preferences, v1 (τ)+ v2 (τ). The dashed line depicts its argmax, i.e., the collusive outcome τc. Panel (c)

shows that τc reveals fewer facts than any equilibrium outcome, consistent with Proposition 1.

6 Other notions of increased competition

In this section we consider two other notions of increased competition. First, we analyze the impact of

introducing additional senders. This counterfactual could be relevant, for example, to the impact of barriers

to entry. Second, we consider increasing the misalignment of senders’ preferences. This analysis could

inform adversarial judicial systems and advocacy.

To simplify these comparative statics, we initially focus on a particular class of equilibria that elimi-

nates pure miscoordination among senders. When the antecedent of Proposition 2 is satisfied and τ is an

equilibrium outcome, any feasible τ ′ � τ is also an equilibrium outcome. In particular, if the set of feasible

outcomes has a maximum element τ̄ , this is an equilibrium outcome regardless of senders’ preferences.

Hence, even if all senders have the exact same preferences and dislike providing any information, revealing

all information is still an equilibrium. Such “excessively informative” equilibria clearly rely on miscoordi-

nation between senders. More broadly, for any two comparable equilibrium outcomes, the less informative

one must be preferred by all of the senders:

Remark 2. Suppose the information environment is Blackwell-connected. If π and π ′ are equilibria and
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〈π〉 � 〈π ′〉, then for each sender i, vi (〈π ′〉)≥ vi (〈π〉).

To see this, note that Blackwell-connectedness implies sender i can unilaterally deviate from π ′ to π , so

if vi (〈π ′〉) were strictly less than vi (〈π〉), π ′ could not be an equilibrium.

Given this Pareto ranking of equilibria by senders, minimally informative equilibria are of particular

interest. We say that π is a minimal equilibrium if π is an equilibrium and there is no equilibrium π ′ such that

〈π〉� 〈π ′〉. If π is a minimal equilibrium, we say that 〈π〉 is a minimal equilibrium outcome. Throughout this

section we restrict our attention to minimally informative equilibria. In Section 7 we consider comparative

statics on the full equilibrium set.

6.1 Adding senders

In this subsection we consider the difference between outcomes when the set of senders is J and when the

set of senders is some J′ ⊂ J. Note that if the information environment is Blackwell-connected when the set

of senders is J, it is also Blackwell-connected when the set of senders is J′ ⊂ J. Hence, when we say that Π

satisfies this property, we mean that it does so when the set of senders is J.

We begin the analysis by noting that having a Blackwell-connected environment is no longer sufficient

for unambiguous comparative statics. For example, suppose we are in the Number of draws environment and

let τm denote the outcome if a total of m independent draws are generated. Suppose sender 1’s preferences

satisfy v1 (τ0)> v1 (τ2)> v1 (τm) ∀m /∈{0,2}. Sender 2’s preferences satisfy v2 (τ1)> v2 (τ2)> v2 (τm) ∀m /∈

{1,2}. If senders 1 and 2 are the only senders, any equilibrium outcome must generate strictly more than 2

independent draws.10 But, if we introduce a third sender who is indifferent across all outcomes, we can now

support τ2 as an equilibrium by having senders 1 and 2 generate no draws and sender 3 generate 2 draws. No

sender can then profitably deviate. This is an example of a more general principle that introducing additional

senders can reduce the set of possible deviations available to the existing senders. Hence, additional senders

can expand the set of equilibrium outcomes and make minimal equilibria less informative.

That said, when we restrict our attention to settings where each sender has access to the same set of

signals, the environment being Blackwell-connected does imply that the presence of additional senders

10Suppose τ0 is an equilibrium. Then, sender 2 has a profitable deviation by increasing her number of draws by 1. Suppose τ1
is an equilibrium. Then, sender 1 has a profitable deviation by increasing her number of draws by 1. Suppose τ2 is an equilibrium.
It must be the case that sender 2 does not generate any draws; otherwise, she has a profitable deviation by lowering her number of
draws by 1. Hence, it must be that sender 1 generates both draws, but then she has a profitable deviation to τ0.
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cannot lead to less information. (Recall that access to the same set of signals means not only that 〈Πi〉= 〈Π〉

as in the Number of draws environment, but that Πi = Π.)

Proposition 3. Suppose each sender has access to the same set of signals. If the information environment

is Blackwell-connected, then (regardless of preferences) any minimal equilibrium outcome when the set of

senders is J is no less informative than any minimal equilibrium outcome when the set of senders is J′ ⊂ J.

When |J′| ≥ 2, this result is related to Proposition 2: loosely speaking, adding senders “shrinks” the set

of equilibrium outcomes and thus makes minimal equilibria more informative. When |J′| = 1, a different

argument, more closely related to the proof of Proposition 1, establishes the result.

Finally, it is easy to show that the environment being Blackwell-connected is sufficient but not necessary

for the result. For an extreme example, suppose that all senders in J′ can only send the null signal: Π j = {π}

∀ j ∈ J′. Then, additional senders cannot make the equilibrium outcome less informative regardless of

whether the informational environment is Blackwell-connected or not.

6.2 Increasing misalignment of senders’ preferences

Given that senders can have any arbitrary state-dependent utility functions, the extent of preference align-

ment among senders is not easy to parametrize in general. Hence, we consider a specific form of preference

alignment. Suppose there are two functions f and g, and two senders j and k, with preferences of the form

v j (τ) = f (τ)+bg(τ)

vk (τ) = f (τ)−bg(τ)

while preferences of other senders are independent of b. The parameter b ≥ 0 thus captures the extent of

preference misalignment between two of the senders.

Proposition 4. Suppose each sender has access to the same set of signals. If the information environment is

Blackwell-connected, then any minimal equilibrium outcome when the level of misalignment is b is no less

informative than any minimal equilibrium outcome when the level of misalignment is some b′ < b .

In other words, increasing the level of preference misalignment increases the informativeness of (mini-

mal) equilibria. A detailed proof is in the Appendix. The basic intuition behind Proposition 4 is the follow-

ing. When preferences are less aligned, there are fewer outcomes such that none of the senders wishes to
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deviate from the outcome. Hence, the set of equilibrium outcomes shrinks and minimal equilibria become

more informative. As in the previous subsection, this comparative static only applies to settings where each

sender has access to the same set of signals. Otherwise, it is possible for increased misalignment to increase

the set of equilibrium outcomes and make minimal equilibria less informative.

7 Extensions

7.1 Comparisons of sets of outcomes

So far in the paper we made simplifying assumptions that allowed us to avoid the issue of comparative

statics on sets. Specifically, we assumed that the collusive outcome is unique and in Section 6 we focused

on minimal equilibria. In this subsection we will drop these assumptions and analyze comparative statics on

sets of outcomes.

Note that it would be too much to expect for any equilibrium outcome to be more informative than

any collusive outcome simply because the two sets may overlap. For example, if all senders are indifferent

across all outcomes, every outcome is both an equilibrium outcome and a collusive outcome; hence, it is not

the case that every equilibrium is more informative than every collusive outcome.

Topkis (1998) defines two orders on subsets of a lattice. Given two subsets Y and Y ′ of a lattice (Y ,≥),

Y is strongly above Y ′ if for any y ∈ Y and y′ ∈ Y ′ we have y∨ y′ ∈ Y and y∧ y′ ∈ Y ′. Set Y is weakly above

Y ′ if for any y ∈ Y and y′ ∈ Y ′, ∃ŷ ∈ Y : ŷ≥ y′ and ∃ŷ′ ∈ Y ′ : y≥ ŷ′.

We cannot apply Topkis’ definitions directly, however, because the set of distributions of posteriors is

not always a lattice under the Blackwell order if there are more than two states (Müller and Scarsini 2006).

Accordingly, throughout this section we assume that any two feasible outcomes are comparable.11 The

strong order then reduces to the following: we say that T is strongly more informative than T ′ if for any

τ ∈ T and τ ′ ∈ T ′ such that τ ′ � τ we have τ ∈ T ′ and τ ′ ∈ T . We say T is weakly more informative than T ′

if T is weakly above T ′ under �.

We might hope that Proposition 1 generalizes to the claim that the set of equilibrium outcomes is strongly

(or weakly) more informative than the set of collusive outcomes if and only if the information environment

is Blackwell-connected. This, however, turns out not to be true in general. Accordingly, we restrict our

11An alternative would be to weaken the notion of the strong order and require to hold only along chains of the partially ordered
set. See discussion in Gentzkow and Kamenica (2012).
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attention to two natural classes of information environments for which the analogue of Proposition 1 does

hold.

Say that signals are independent if given any sender i and any πa,πb ∈Πi we have that for all π−i ∈Π−i,

〈πa〉 � 〈πb〉 ⇔ 〈πa∪π−i〉 � 〈πb∪π−i〉. In other words, when signals are independent, whether one signal

is more informative than another does not depend on what other information is being provided. This will be

true, in particular, if the signals are statistically independent.

At the other extreme is a situation where each sender has access to the same set of signals so one of

the senders can always provide information that makes the other’s information completely redundant. Note

that the Number of draws and Precisions environment are independent while Facts and All-or-nothing are

environments where each sender has access to the same set of signals. Restricting our attention to these

types of environments, we establish the key result of this subsection:

Proposition 5. Suppose any two feasible outcomes are comparable. Suppose that each sender has access

to the same set of signals or that signals are independent. The set of equilibrium outcomes is strongly

more informative than the set of collusive outcomes (regardless of preferences) if and only if the information

environment is Blackwell-connected.

Consider some collusive outcome τc and some equilibrium outcome τ∗= 〈π∗〉with τc� τ∗. To establish

Proposition 5, we need to show that, if the environment is Blackwell-connected, it must be the case that τ∗

is also a collusive outcome and τc is also an equilibrium outcome. The argument for the first part is closely

analogous to the proof of Proposition 1. Since τc � τ∗, any sender can deviate from τ∗ to τc, so it must be

the case that vi (τ
∗)≥ vi (τ

c) for each sender i. Since τc is a collusive outcome, this implies that τ∗ must also

be a collusive outcome. The second part of the argument, which establishes that τc must be an equilibrium,

is more involved, and relies on the assumption that each sender has access to the same set of signals or that

signals are independent. As the proof in the Appendix shows, in these two classes of environments there

must be some strategy profile πc such that τc = 〈πc〉 and any outcome that sender i can deviate to from πc,

she can also deviate to from π∗. Therefore, since π∗ is an equilibrium, πc must be one as well.

We also derive full-equilibrium-set analogues of our comparative statics results on adding senders and

increasing preference misalignment, though they only hold in the weak set order, when each sender has

access to the same set of signals, and when the set of feasible outcomes has a maximum element, i.e., there

exists a feasible τ s.t. for all π ∈Π we have τ � 〈π〉.

19



Proposition 6. Suppose any two feasible outcomes are comparable. Suppose each sender has access to the

same set of signals and the set of feasible outcomes has a maximum element. If the information environment

is Blackwell-connected, then

(1) The set of equilibrium outcomes when the set of senders is some J is weakly more informative than

the set of equilibrium outcomes when the set of senders is some J′ ⊂ J.

(2) The set of equilibrium outcomes when the level of misalignment is b is weakly more informative than

the set of equilibrium outcomes when the level of misalignment is b′ < b.

The basic idea behind Proposition 6 is the following. Since each sender has access to the same set

of signals and the environment is Blackwell-connected, the set of equilibrium outcomes is the intersection

of unimprovable outcomes for each sender. Hence, the set of equilibrium outcomes shrinks when we add

senders or increase misalignment of their preferences. But, Proposition 2 also implies that the maximum

element always remains an equilibrium outcome. Hence, loosely speaking, adding senders shrinks the

equilibrium set “toward” the most informative equilibrium. The argument is somewhat different when |J′|=

1.

7.2 Preferences over own signals

We have assumed that each sender only cares about the overall amount of information revealed rather than

about her own chosen signal.12 This precludes both situations where generating informative signals is

privately costly (in which case a sender prefers her signal to be less informative given the outcome) and

situations where a sender obtains “good will” from being the source of information (in which case a sender

prefers her signal to be more informative given the outcome).

It is easy to see why in the former case we cannot expect competition to generally increase information

revelation. The provision of costly information creates a classic public goods problem. Suppose for instance

that all senders have the same preferences vi (τ) ≡ v(τ) and prefer more information to less: τ � τ ′ =⇒

v(τ)> v(τ ′). Then, if generating information is privately costly, non-cooperative strategic behavior and the

presence of additional players would both reduce provision of information relative to social optimum.

12This connects our model to the literature on aggregate games (e.g., Martimort and Stole 2012), though the preferences we
consider are even starker than in that literature as we assume each sender cares only about the aggregate and not about her own
contribution to it.
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7.3 Mixed strategies

Throughout the paper we focus on pure strategy equilibria. This focus has substantive consequences for

our results. If senders choose mixed strategies from ∆(Πi), the information environment may cease to

be Blackwell-connected. For example, in most of the information environments we discuss in Section 3,

namely Number of draws, Precisions, Partitions, and Facts we can construct a feasible outcome τ and a

mixed strategy profile π̃−i such that τ � 〈π̃−i〉 but there exists no πi ∈ Πi such that τ = 〈π̃−i ∪πi〉. With-

out knowing which signal others will generate, sender i cannot “add” a suitable amount of information to

induce a particular outcome. Consequently, by Proposition 1 we know that in all of these cases we can

construct preferences such that the collusive outcome is strictly more informative than some mixed strategy

equilibrium outcome.

7.4 Non-Blackwell orders

While the Blackwell order is a natural way to present our comparative statics, none of our results rely on use

of this particular order. Consider any partial order ≥ on the set of outcomes. Say that the information envi-

ronment is ≥-connected if for all i, π ∈Π, π−i ∈Π−i such that 〈π〉 ≥ 〈π−i〉, there exists a πi ∈Πi such that

〈π〉= 〈π−i∪πi〉. By the exact same arguments as before, we can conclude that every equilibrium outcome

is no less informative (under the≥ order) than the unique collusive outcome regardless of preferences if and

only if the environment is ≥-connected. Similar analogues apply to the characterization result and the other

comparative statics.

8 Conclusion

A large body of policy and legal precedent has been built on the view that competition in the “marketplace

of ideas” will ultimately lead more truth to be revealed. Existing models of strategic communication with

multiple senders have focused on settings such as cheap talk or disclosure where the key issue is the credi-

bility with which senders can communicate what they know, and shown some conditions under which this

intuition is valid. The strategic complexity of these settings, however, means that they stop short of full

characterizations and consider a limited range of comparative statics (Sobel 2013).

We depart from the literature in setting aside incentive compatibility in communication and focusing in-
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stead on senders’ incentives to gather information, assuming that they can commit to communicate it truth-

fully. In this setting, we show that the impact of competition is ambiguous in general, and that Blackwell-

connectedness is the key condition separating cases where competition is guaranteed to be beneficial from

those where it is not.
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9 Appendix

9.1 Proof of Proposition 1

Proof. Suppose that Π is Blackwell-connected. Suppose τ∗ is an equilibrium outcome and τc is the col-

lusive outcome. Let π∗ be the strategy profile that induces τ∗ and πc the strategy profile that induces τc.

Suppose contrary to the claim that τc � τ∗. Since τc is the unique collusive outcome, there is some sender

i s.t. vi (τ
c) > vi (τ

∗). Consider π−i =
(
π∗1 , ...,π

∗
i−1,π

∗
i+1, ...,π

∗
n
)
∈ Π−i . We have 〈πc〉 � 〈π∗〉 � 〈π−i〉,

so the fact that Π is Blackwell-connected implies that there exists a signal π ′ ∈ Π s.t. 〈π−i ∪ π ′〉 =

〈
(
π∗1 , ...,π

∗
i−1,π

′,π∗i+1, ...,π
∗
n
)
〉 = τc. Hence, sender i has a profitable deviation which contradicts the claim

that π∗ is an equilibrium.

Suppose that Π is not Blackwell-connected. This means that there exist some i, πc ∈Π and π ′−i ∈Π−i

such that 〈πc〉 � 〈π ′−i〉 but for all π ∈ Πi we have 〈πc〉 6= 〈π ′−i ∪ π〉. Moreover, since π ∈ Πi, we have

〈πc〉 � 〈π ′−i〉. Let π∗ =
(
π ′1, ...,π

′
i−1,π,π

′
i+1,π

′
n
)
. For all j 6= i, let v j be constant. Let vi (〈πc〉) = 1,

vi (〈π∗〉) = 0, and vi (τ) =−1 for τ /∈ {〈πc〉,〈π∗〉}. Then we have that 〈πc〉 is the unique collusive outcome,

〈π∗〉 is an equilibrium outcome and yet 〈πc〉 � 〈π∗〉.

9.2 Proof of Proposition 2

Proof. Suppose each sender has access to the same set of signals, Π is Blackwell-connected, and n≥ 2. Let

P denote the set of signals available to each sender.

We first show that every equilibrium outcome is unimprovable for every sender. Consider a feasible out-

come τ that is improvable for some sender i. Let π∗ be a strategy profile that induces τ . Since τ is improvable

for sender i, there is a π s.t. 〈π〉 � τ and vi (〈π〉)> vi (τ). Consider π∗−i =
(
π∗1 , ...,π

∗
i−1,π

∗
i+1, ...,π

∗
n
)
∈Π−i.

Since 〈π〉 � τ = 〈π∗〉 � 〈π∗−i〉 and Π is Blackwell-connected, there exists a signal π ′ ∈Πi s.t. 〈π∗−i∪π ′〉=

〈π〉. Hence, π ′ is a profitable deviation for sender i from π∗, so π∗ is not an equilibrium.

Conversely, suppose that some feasible outcome τ is unimprovable for each sender. Let π ′ be a strategy

profile that induces τ . Consider π = (π, ...,π) ∈Pn−1. Since 〈π ′〉 � 〈π〉 and Π is Blackwell-connected,

there exists some π∗ ∈P s.t. 〈π ′〉 = 〈π∗〉. Consider a strategy profile π∗ = (π∗, ...,π∗). Since n ≥ 2, no

sender can deviate except to a more informative outcome. Since τ is unimprovable for each sender, no such

deviation is profitable.
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9.3 Proof of Proposition 3

Proof. First consider the case where |J′|= 1. Let i be the sender in J′ and let τ i be a minimally informative

outcome that is unilaterally optimal for sender i. Let τ∗ be a minimal equilibrium outcome when the set of

senders is J. Suppose that τ i � τ∗. Since τ i is a minimally informative outcome that is unilaterally optimal

for sender i, τ∗ must not be unilaterally optimal for sender i. (By Remark 1, we know τ∗ ∈ {〈π〉|π ∈Πi}

because Π is Blackwell-connected). In other words, vi
(
τ i
)
> vi (τ

∗). But, since Π is Blackwell-connected,

given any strategy profile π∗ that induces τ∗, there exists a signal π ′ ∈ Πi that allows sender i to deviate

from π∗ to induce τ i. Hence, π∗ cannot be an equilibrium.

Now consider the case where |J′|> 1. Let τ ′ be a minimal equilibrium outcome when the set of senders

is J′ and let τ∗ be a minimal equilibrium outcome when the set of senders is J. Suppose that τ ′ � τ∗. But,

by Proposition 2, the set of equilibrium outcomes when the set of senders is J is a subset of the set of

equilibrium outcomes when the set of senders is J′. Hence, τ∗ is an equilibrium outcome when the set of

senders is J′. Therefore, τ ′ � τ∗ contradicts the fact that τ ′ is a minimal equilibrium outcome.

9.4 Proof of Proposition 4

We begin the proof with the following Lemma (which will also be useful for the proof of Proposition 6).

Lemma 1. Suppose each sender has access to the same set of signals. Let T m be the set of equilibrium

outcomes when the level of misalignment is m ∈ {b,b′}. If b > b′ then T b ⊂ T b′ .

Proof. Let T m
i be the set of feasible outcomes that are unimprovable for sender i when the level of mis-

alignment is m ∈ {b,b′}. By Proposition 2, T m = ∩iT m
i . For i /∈ { j,k} we have T b

i = T b′
i . Hence, it will

suffice to show that T b
j ∩T b

k ⊂ T b′
j ∩T b′

k . Consider any τ ∈ T b
j ∩T b

k . Let T ′ be the set of feasible outcomes

that are more informative than τ . Since τ ∈ T b
j we have that f (τ)+bg(τ)≥ f (τ ′)+bg(τ ′) for all τ ′ ∈ T ′.

Since τ ∈ T b
k we have that f (τ)−bg(τ)≥ f (τ ′)−bg(τ ′) for all τ ′ ∈ T ′. Combining these two inequalities

we get f (τ)− f (τ ′)≥ b |g(τ)−g(τ ′)| ∀τ ′ ∈ T ′ which in turn implies that f (τ)− f (τ ′)≥ b′ |g(τ)−g(τ ′)|

∀τ ′ ∈ T ′. This last inequality implies f (τ)+b′g(τ)≥ f (τ ′)+b′g(τ ′) and f (τ)−b′g(τ)≥ f (τ ′)−b′g(τ ′)

∀τ ′ ∈ T ′ , so we have τ ∈ T b′
j ∩T b′

k .

With this Lemma, the proof of Proposition 4 follows easily:
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Proof. Let τ ′ be a minimal equilibrium outcome when the level of misalignment is b′ and let τ be a min-

imal equilibrium outcome when the level of misalignment is b. Suppose τ ′ � τ . By Lemma 1, the set of

equilibrium outcomes when the level of misalignment is b is a subset of the set of equilibrium outcomes

when the level of misalignment is b′. Hence, τ is an equilibrium outcome when the level of misalignment

is b′. Therefore, τ ′ � τ∗ contradicts the fact that τ ′ is a minimal equilibrium outcome when the level of

misalignment is b′.

9.5 Proof of Proposition 5

We begin by establishing a key property of settings where each sender has access to the same set of signals or

signals are independent. Say that τ ′ is an i-feasible deviation from π if there exists a π ′ ∈Πi s.t. 〈π−i∪π ′〉=

τ ′. Say that Π is simple if given any π ∈Π and any feasible τ ′ � 〈π〉 there exists a π ′ s.t. 〈π ′〉= τ ′ and for

any sender i, the set of i-feasible deviations from π ′ is a subset of i-feasible deviations from π . Say that Π is

incrementable if given any π ∈ Π and any feasible τ ′ � 〈π〉 there exists a π ′ ∈ Π s.t. 〈π ′〉= τ ′ and π ′i � πi

for all i.

Lemma 2. If Π is Blackwell-connected and each sender has access to the same set of signals, then Π is

simple.

Proof. If n = 1, every environment is simple so suppose n ≥ 2. Suppose Π is Blackwell-connected and

each sender has access to the same set of signals. Let P denote the set of signals available to each sender.

Consider some π ∈ Π and some feasible τ ′ � 〈π〉. Since Π is Blackwell-connected, individual feasibility

equals aggregate feasibility (by Remark 1) which implies there exists a π ′ ∈P such that 〈π ′〉 = τ ′. Let

π ′ = (π ′, ...,π ′). Consider some τ ′′, an i-feasible deviation from π ′. We must have τ ′′ � τ ′ � 〈π〉. Since Π

is Blackwell-connected, τ ′′ must be i-feasible from π .

Lemma 3. If Π is Blackwell-connected and signals are independent, then Π is simple.

Proof. Suppose the environment is Blackwell-connected and independent. We first show that Π is incre-

mentable. Consider some π ∈Π and a feasible τ ′ � 〈π〉. Pick any sender i and consider π−i. We have that

τ ′ � 〈π〉 � 〈π−i〉. Since the environment is Blackwell-connected, there is a π ′ ∈Πi s.t. 〈π−i∪π ′〉= τ ′. Let

π ′ = (π−i,π
′). By construction π ′j = π j for j 6= i so π ′j � π j for j 6= i. By independence, 〈π−i∪π ′〉= τ ′ �

〈π〉= 〈π−i∪πi〉 implies that π ′ = π ′i � πi.
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Next we show that Π is simple. Given a π ∈ Π and a feasible τ ′ � 〈π〉 consider a π ′ ∈ Π s.t. 〈π ′〉= τ ′

and π ′j � π j for all j. (Such a profile exists since the environment is incrementable.) Suppose that some

outcome τd is an i-feasible deviation from π ′. That means that τd � π ′−i � π−i. The last inequality follows

from the fact that π ′j � π j for all j 6= i and the fact that the environment is independent. Since τd � π−i and

the environment is Blackwell-connected, we know that τd is an i-feasible deviation from π .

We are now ready to turn to the proof of Proposition 5.

Proof. Suppose that each sender has access to the same set of signals or that signals are independent. Sup-

pose the information environment is Blackwell-connected and any two feasible outcomes are comparable.

By Lemmata 2 and 3, we know the environment is simple. Suppose there is some collusive outcome τc and

some equilibrium outcome τ∗such that τc � τ∗. We need to show that τ∗ is a collusive outcome and τc is

an equilibrium outcome. Let π∗ be the strategy profile that induces τ∗. Since τc � τ∗ and Π is Blackwell-

connected, any sender can deviate from π∗ to induce τc, so it must be the case that vi (τ
∗)≥ vi (τ

c) for each

sender i. Since τc is a collusive outcome, this implies that τ∗ is also a collusive outcome. Moreover, since

the environment is simple, there exists a strategy profile πc such that τc = 〈πc〉 and any outcome that is

i-feasible from πc is also i-feasible from π∗, for every sender i. But then the fact that π∗ is an equilibrium

implies that πc is also an equilibrium. That completes the “if” part of the proof.

We now turn to the “only-if” part. Suppose Π is not Blackwell-connected. There exist some i, πc ∈

Π and π ′−i ∈ Π−i such that 〈πc〉 � 〈π ′−i〉 and for all π ∈ Πi we have 〈πc〉 6= 〈π ′−i ∪ π〉. Let π∗ =

(π ′1, ...,πi−1,π,πi+1,π
′
n). For all j 6= i, let v j be constant. Let vi (〈πc〉) = 1, vi (〈π∗〉) = 0, and vi (〈π〉) =−1

for π /∈{πc,π∗}. Then we have that 〈πc〉 is a collusive outcome, 〈π∗〉 is a non-collusive equilibrium outcome

and 〈πc〉 � 〈π∗〉.

9.6 Proof of Proposition 6

Proof. We first prove part (1). Let τ∗ be an equilibrium outcome when the set of senders is some set J

and τ ′ an equilibrium outcome when the set of senders is some J′ ⊂ J. We need to show that: (i) there is

an equilibrium outcome when the set of senders is J that is more informative than τ ′ and (ii) there is an

equilibrium outcome when the set of senders is J′ that is less informative than τ∗. Consider the case where

|J′| = 1. If J = J′, the proposition is trivially true, so suppose that |J| > 1. By Proposition 2, we know

26



τ is an equilibrium outcome when the set of senders is J and by definition τ � τ ′. That establishes claim

(i). Now, suppose contrary to the second claim that there is no outcome τ ′′ � τ∗ that is unilaterally optimal

for the sender in J′. Since any two feasible outcomes are comparable, this implies that τ ′ � τ∗ and that τ∗

is not optimal for the sender in J′. But since Π is Blackwell-connected, the sender in J′ can deviate from

the strategy profile that induces τ∗ and induce τ ′ instead so τ∗ cannot be an equilibrium outcome. That

establishes claim (ii).

Now consider the case where |J′| > 1. By Proposition 2, we know τ is an equilibrium when the set of

senders is J and by definition τ � τ ′. That establishes claim (i). Moreover, by Proposition 2 we know τ∗

must be an equilibrium when the set of senders is J′, which establishes claim (ii). This completes the proof

of part (1).

We now turn to part (2) of the proposition. Let τ∗ be an equilibrium outcome when the the level of

misalignment is some b and τ ′ an equilibrium outcome when the level of misalignment is some b′ < b. By

Proposition 2, we know τ is an equilibrium when the the level of misalignment is b and by definition τ � τ ′.

By Lemma 1, we know that τ∗ is also an equilibrium when the level of misalignment is b′.
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