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A framework does not currently 
exist to link migratory connectivity, 
geographic specificity, site and route 
fidelity, or individual variation within 
and across geographic areas. Migratory 
connectivity (how events at any single 
location can affect other locations) can 
be characterized depending on geo-
graphic specificity (the degree to which 
individuals or groups of individuals use 
the same places) and fidelity (the extent 
to which individual migrants use an area 
repeatedly within and across years). For 
example, if coastal migrants move every-
where (Figure 1a) or forage briefly in a 
series of different estuaries (Figure 1b), 
specificity and fidelity to a localized for-
aging area would not occur. The result-
ing weak or nonexistent connectivity can 
reduce across-system impacts. In con-
trast, the presence of strong connectivity, 

specificity, and fidelity (Figure 1c–f) can 
create across-system heterogeneity in 
trophic transfer between migrant fish 
and their prey. As a result, some loca-
tions will be strongly connected and 
others will not. In addition, internal 
structure that results when not all fish 
behave the same (i.e., groups of individu-
als exhibit distinct behaviors) can further 
strengthen or weaken the impact of fish 
migrations (Figure 1d–f). Here, we use 
the example of the southward fall migra-
tion of striped bass (Morone saxatilis) 
to explore the complexity of these long-
distance biotic connections.

Spawning fidelity has been docu-
mented for many fish (e.g., Scholz et al., 
1976; Quinn, 2004; Starcevich et al., 
2012), but limited evidence exists for 
fidelity to a specific location for foraging 
(Buzby and Deegan, 2000; Solmundsson 
et al., 2005). Research on routes used 
by migratory organisms has exploded 
with the advent of low-cost tracking 
technology, but, at present, there is no 
consensus on consistency of routes or 
migration timing within and across spe-
cies (e.g., Melnychuk et al., 2010; Welch 
et al., 2011; Brodersen et al., 2012). 
Furthermore, although an increasing 
number of distinct behaviors by individ-
uals is being documented within popu-
lations (e.g., Secor et al., 2001; Pautzke 
et al., 2010; Sih et al., 2012), a general 
framework for patterns, drivers, and 
consequences of individual variation in 
migratory fish is lacking. These gaps in 
existing knowledge are troubling because 
failing to account for this individual 

INTRODUCTI ON
Migration is an essential component 
of the life history of marine fishes 
(e.g., Campana et al., 2011), anadromous 
fishes (e.g., Marschall et al., 2011), and 
freshwater fishes (e.g., Buzby and Deegan, 
2000). By acting as vectors connecting 
spatially disjunct estuaries, migratory fish 
can translocate nutrients and transform 
energy. Long-distance migration between 
geographically distinct areas is an adap-
tive response that allows animals to take 
advantage of spatial variation in the sea-
sonal fluctuation of resources (e.g., Baker, 
1978). This form of connectivity has the 
potential to propagate events from one 
estuary to another estuary (Reiners and 
Driese, 2001). However, variations in 
when, where, and how fish migrate can 
dampen or intensify these across-system 
effects (Figure 1). 

ABSTRACT  . The paucity of data on migratory connections and an incomplete 
understanding of how mobile organisms use geographically separate areas have been 
obstacles to understanding coastal dynamics. Research on acoustically tagged striped 
bass (Morone saxatilis) at the Plum Island Ecosystems (PIE) Long Term Ecological 
Research site, Massachusetts, documents intriguing patterns of biotic connectivity 
(i.e., long-distance migration between geographically distinct areas). First, the 
striped bass tagged at PIE migrated southward along the coast using different routes. 
Second, these tagged fish exhibited strong fidelity and specificity to PIE. For example, 
across multiple years, tagged striped bass resided in PIE waters for an average of 
1.5–2.5 months per year (means: 51–72 days; range 2–122 days), left this estuary in 
fall, then returned in subsequent years. Third, this specificity and fidelity connected 
PIE to other locations. The fish exported nutrients and energy to at least three other 
coastal locations through biomass added as growth. These results demonstrate that 
what happens in an individual estuary can affect other estuaries. Striped bass that use 
tightly connected routes to feed in specific estuaries should have greater across-system 
impacts than fish that are equally likely to go anywhere. Consequently, variations in 
when, where, and how fish migrate can alter across-estuary impacts. 
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variation in migration patterns can mis-
represent population dynamics, commu-
nity trends, and ecosystem impacts. For 
example, different fish behaviors within 
a population can have implications for 
a variety of fisheries management issues 
(e.g., Conrad et al., 2011). 

Striped bass is a model species for 
examining connectivity, specificity, 
fidelity, and internal structure of long-
distance migrants. US Atlantic coast 
striped bass spawn primarily in three 
locations (Hudson River, Delaware 
River, Chesapeake Bay; Collette et al., 
2002), migrate north along the Atlantic 
coast in late spring, feed in the waters 
off New England and southern Canada 
in summer, and return south in the fall 
(Mather et al., 2009). After recovering 
from population declines in the early 
1980s, striped bass have been abundant 
in estuaries and coastal waters since 1995 

(Richards and Rago, 1999). This highly 
visible example of conservation was 
the result of a successful collaboration 
among coastal researchers and state and 
federal fisheries managers (Field, 1997). 
Because striped bass move widely along 
the Atlantic coast, have broad physi-
ological tolerance, and consume a wide 
variety of prey (Ferry and Mather, 2012), 
the conventional (but untested) wisdom 
has been that any particular migratory 
striped bass could and does feed any-
where along the coast within their gen-
eral migration range. 

 The type and degree of impact that 
fish migrations can have on estuary 
structure and function, predator popu-
lation dynamics, and prey community 
interactions depends on how fish move 
from place to place, including how 
long they stay and what they do in any 
given place. Here, we ask three specific 

questions about biotic connectivity. 
We illustrate the potential outcomes of 
these questions using the fall coastal 
migration of striped bass during which 
these fish are returning south toward 
their natal estuaries after a summer 
of foraging (Figure 1). The fall migra-
tion represents the most immediate 
coastal connection between striped bass 
that were acoustically tagged in sum-
mer in the Rowley River and in Plum 
Island Sound within the Plum Island 
Ecosystems (PIE) Long Term Ecological 
Research (LTER) site and other coastal 
locations. The first question is: do strong 
connectivity, geographic specificity, and 
site fidelity exist between the starting 
estuary (estuary e1 in Figure 1, PIE) 
and other coastal locations during the 
southward striped bass migration in the 
fall (estuary e2-5 in Figure 1), and, if so, 
what locations do striped bass connect? 

Figure 1. (a–f) Conceptual 
framework showing six 
possible outcomes for our 
research on biotic con-
nectivity. These alternative 
outcomes reflect different 
combinations of connectivity, 
specificity, fidelity, internal 
structure, and heterogene-
ity. The scenarios are based 
on a southward migration of 
striped bass from foraging 
estuaries (north) to overwin-
tering and spawning estuaries 
(south). Each box represents 
an estuary. e1 = Plum Island 
Ecosystems (PIE). 
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We predict that all striped bass do not 
go everywhere equally (H0, Figure 1a), 
but instead individuals connect specific 
estuaries (H2–5, Figure 1c–f). The sec-
ond question is: are individual estuaries 
equally important during the summer 
migration (H1–3, Figure 1b–d) or do 
specific estuaries aggregate summer 
residents that subsequently return to a 
variety of southern coastal locations in 
fall (H4–5, Figure 1e–f)? And the third 
question is: do distinct groups of striped 
bass exist within the southward coastal 
migration (i.e., internal structure; H3–5, 
Figure 1d–f), and, if so, do these within-
population groups vary across years? We 
close by assessing what future data are 
needed to better understand patterns 
and ecological consequences of connec-
tivity related to mobile predators.

METHODS
Study Site 
PIE is a coupled watershed and estuary 
within the Acadian zoogeographic prov-
ince (Ayvazian et al., 1992) that is located 
on the north shore of Massachusetts, 
USA. PIE is north of the Hudson River 
(523 km as the fish swims), Delaware 
River (708 km), and Chesapeake Bay 
(934 km), the three most important natal 
estuaries for migratory striped bass. The 
PIE estuary is a shallow, vertically well-
mixed system dominated by salt marsh 
habitat with a mean tidal range of 2.9 m, 
which creates highly variable bathy-
metric structure and a mosaic of chan-
nels, islands, and sand bars (Deegan and 
Garritt, 1997). The surface area of water 
in the estuary ranges from 12.8 km2 
(average low tide) to 20.0 km2 (aver-
age high tide) (Vallino et al., 2005) and 
includes major river inputs, numerous 
tidal creeks, and a large open bay.

Acoustic Tagging
Migratory striped bass, caught in PIE 
in spring-summer, were implanted with 
VEMCO V13 coded acoustic transmit-
ters in 2005 (n = 14), 2006 (n = 46; 
Pautzke, 2008), 2009 (n = 50), and 
2010 (n = 35; Kennedy, 2013). These 
tags had a frequency of 69 kHz, a ping 
rate of 20–180 s, and an estimated tag 
life of 100–365 d. We used acoustic 
tags because this type of tag allows for 
multiple detections of individual fish 
over long time periods and large spa-
tial scales. Tagged two- to six-year-old 
striped bass were 335–634 mm in total 
length (TL), and their mean sizes were 
419 mm in 2005, 433 mm in 2006, and 
510 mm in 2009–2010 (age and length 
relationships; Gary Nelson, Energy and 
Environmental Affairs, Massachusetts 
government, pers. comm., 2013). These 
fish represented a mixture of migrat-
ing mature and immature fish, and 
were the most common sizes observed 
in PIE. Striped bass, caught by hook 
and line, were held in a large, continu-
ally aerated holding tank, anesthetized 
in clove oil (Pautzke et al., 2010), and 
surgically implanted with acoustic 
tags (less than 2% of the weight of the 
tagged striped bass). The incision was 
closed with dissolvable sterile sutures, 
fish were injected with oxytetracycline 

(0.1 mg kg–1 of fish), placed in a recov-
ery tank filled with ambient estuary 
water until the fish swam upright, and 
then were released at the capture loca-
tion. The entire tagging process took less 
than 12 min (mean: 2005–2006, 11 min; 
2009–2010, 5.4 min). In caged control 
experiments, tagged and untagged fish 
survived similarly (Pautzke et al., 2010; 
Kennedy, 2013).

Arrays
Tagged striped bass were tracked using 
stationary VEMCO VR20, VR1, and 
VR2W receivers at PIE and five other 
general areas along the Atlantic coast. 
Receiver arrays, mostly deployed for 
other research, were distributed from 
PIE to Delaware Bay during fall to spring 
of 2005–2011 (Table 1). These receiv-
ers detected acoustic signals emitted as 
tagged fish swam within range (a radius 
of about 300 m in PIE; Pautzke et al., 
2010; Kennedy, 2013). Numbers of 
receivers in each array area varied annu-
ally (e.g., 4–182). Not all arrays were 
deployed every year. For example, the 
Long Island Coast array was only func-
tional in 2010–2011. No tagged striped 
bass were detected in the Chesapeake 
Bay, which had only a few, smaller arrays 
throughout and no gating coverage of 
the estuary mouth.
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Data Processing and Analysis
Data from receivers within PIE were 
downloaded biweekly, and the raw 
detection data were sorted and filtered. 
Detection data from VEMCO station-
ary receiver arrays outside of PIE were 
shared via personal communication 
with individual researchers within 
the Atlantic Cooperative Telemetry 
Network (ACT; http://www.theactnet-
work.com). To examine specificity and 

fidelity, we quantified the number of 
days tagged fish spent in PIE in sum-
mer, when they left in the fall, and 
whether they returned the following 
spring. To examine connectivity, we 
plotted trajectories, identified general 
groupings based on final winter destina-
tions, and then compared frequency of 
pathways across years. 

To identify discrete groups of fish 
that had similar southward migration 

Table 1. Location of acoustic arrays along the East Coast of the United States, 
showing array number, general location, latitude, and longitude. Not all 

arrays were functional in all years. Multiple arrays could be present within 
a general area. Only the general areas are shown on Figure 2.

Array General Location Year Latitude Longitude

1 Plum Island Estuary (PIE)

2005

42.720°N –70.808°W

2006

2009

2010

2011

2 Massachusetts Coast (MA)

2009

41.768°N –69.899°W2010

2011

3 Long Island Sound (LIS)

2006

41.226°N –72.316°W

2007

2009

2010

2011

4 Hudson River (HUD)

2006

40.706°N –74.027°W
2009

2010

2011

5 S. Long Island Coast (LIC)
2010

40.542°N –73.478°W
2011

6 Delaware River and Bay (DE)

2006

39.107°N –75.266°W

2007

2009

2010

2011

patterns, we used network community 
detection analysis and nonhierarchical 
cluster analysis. Network analysis is a 
useful approach for quantifying com-
plex connections among objects (Dale 
and Fortin, 2010). Network community 
detection analysis (Newman, 2006; Pons 
and Latapy, 2006) was used to group fish 
based on shared migratory destinations. 
For this analysis, we used the “leading.
eigenvector.community” function in 
the “igraph” package in R (Csardi and 
Nepusz, 2006; R Core Team, 2013). For 
the nonhierarchical cluster analysis, 
we used a Euclidean distance matrix 
on the date of arrival and departure 
at each migration stop for each fish, 
combined with the partitioning around 
medoids (pam) function in the “cluster” 
package. The “clusterboot” function in 
the “fpc” package was used to calcu-
late Jaccard bootstrap mean values for 
each cluster (values > 0.60 confirmed 
cluster patterns and values > 0.75 indi-
cated stable clusters) (Hennig, 2010). 
Clusters were displayed in Principal 
Components Analysis (PCA) ordination 
space for each year.

RESULTS
Striped Bass Connectivity, 
Specificity, and Fidelity to PIE
Tagged striped bass in PIE exhibited 
strong specificity and fidelity to PIE. 
Our tagged striped bass exhibited 
a strong site attachment to PIE in 
all years. Across four years, tagged 
striped bass resided in PIE an average 
of 1.5–2.5 months (51–72 days) per 
year (Figure 2a). Energy and nutrients 
gained in PIE were exported to other 
locations along the coast as 100% of 
fish in all years were detected exit-
ing PIE in the fall. During fall-winter, 

http://www.theactnetwork.com
http://www.theactnetwork.com
leading.eigenvector.community
leading.eigenvector.community
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36–98% of striped bass were detected 
elsewhere along the coast (Figure 2a). 
Furthermore, about two-thirds of our 
fish (64–74%) returned to PIE the fol-
lowing spring (Figure 2a). 

Connections Among PIE 
and Other Estuaries
Striped bass that were seasonal residents 
of PIE connected PIE to other coastal 
areas. In the fall/winter, tagged striped 
bass were detected in three general loca-
tions outside of PIE. Group 1 (23–24%) 
was last detected within the Hudson 
River, a known natal estuary (Figure 2b); 
group 2 (11–37%) was last detected in or 
near Delaware Bay, another known natal 
estuary (Figure 2c); and groups 3a and 
3b (16–40%) were briefly detected at one 
or more arrays outside of PIE (although 
not in any terminal natal estuary; 
Figure 2d–e). Variation existed in the 
routes striped bass used to get to their 
overwintering locations but these con-
nections between PIE and other estuaries 
were similar across years (Figure 2b–e). 
Although many fish passed through one 
or more of the arrays near Long Island, 
no fish that ended up in the Hudson 
River visited the Delaware River and no 
Delaware River fish visited the Hudson 
River (Figure 2b–c).

Internal Structure 
Individual migration pathways existed 
within the general coastal migration 
of striped bass. When the final desti-
nation and stopovers were examined 
(Figure 3), four destinations (gray, red, 
blue, green) and six types of routes (solid 
and dotted lines) were observed in 2009 
(Figure 3a–d), and there were five des-
tinations (gray, red, blue, green, aqua) 
and nine routes (solid and dotted lines) 

in 2010 (Figure 3e–h). In both years, 
all tagged striped bass were connected 
through PIE and coastal Massachusetts 
(Figure 3a,e, gray). When the PIE con-
nection was removed, other connections 

among destinations and routes were 
easier to identify (Figure 3b,f). The 
green group went to the Hudson River 
(HUD) either directly (solid line) or 
indirectly (dotted line) via Long Island 

1 Hudson Estuary
2005, 2006 (NA)
2009, n = 12 (50; 24%)
2010, n = 8 (35; 23%)

3a Long Island Sound & Coast Only
2006, n = 15 (46; 33%)
2009, n = 8 (50; 16%)
2010, n = 14 (35; 40%)

3b Coastal Massachusetts Only
2009, n = 15 (50; 30%)
2010, n = 7 (35; 20%)

DEL

CB

PIE

LIS

LIC

H
U

D

2 Delaware
2005, n = 5 (14; 36%)
2006, n = 17 (46; 37%)
2009, n = 12 (50; 24%)
2010, n = 4 (35; 11%)

DEL

CB

PIE

LIS

LIC

H
U

D

DEL

CB

LIS

LIC

H
U

D

DEL

CB

PIE

LIS

LIC

H
U

D

MA

MA MA

PIE

Year Residence Depart Detected Spring Return 
in PIE PIE Elsewhere To PIE

(No) (Days) (%) (%) (%)
2005 14 66 100 36 (n = 5) 64 (n = 9)*
2006 46 72 100 70 (n = 32) NA*
2009 50 51 100 98 (n = 49) 66 (n = 33)
2010 35 56 100 94 (n = 33) 74 (n = 26)

Striped Bass Tagged in PIE

Connec�vity, Specificity, and Fidelity in  
Southward  Striped Bass Migra�on 

a. 

Figure 2. Connectivity, specificity, and fidelity in striped bass migrations for four years. (a) The number of 
tagged striped bass, PIE mean residence time (days), the percent of fish that departed PIE in the fall, per-
cent of tagged fish that were detected elsewhere along the coast, and percent of tagged fish that returned 
to PIE the following spring. (*Data from 2005 and 2006 are taken from Pautzke, 2008; Mather et al., 
2010; Pautzke et al., 2010). Fall/winter destinations for striped bass feeding in PIE are shown, including 
(b) Hudson River (group 1), (c) Delaware River (group 2), or last location the tagged fish were detected in 
fall, including (d) Long Island and (e) Coastal Massachusetts (groups 3a–b). PIE = Plum Island Ecosystems. 
MA = Coastal Massachusetts. LIS = Long Island Sound. LIC = Long Island Coast. HUD = Hudson River. 
DEL = Delaware Bay. Data at the bottom of each frame are numbers of fish that used each route in a spe-
cific year. In parenthesis are the numbers of fish tagged that year and percent of fish that used each route 
relative to the numbers of fish tagged that year. For reference, Chesapeake Bay (CB) is shown. Trajectories 
include multiple years: 2005, 2006, 2009, and 2010. Background maps from Google Maps
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Sound (LIS) or the southern Long 
Island Coast (LIC) (2009: Figure 3b–d; 
2010: Figure 3f–h). The red group went 
to Delaware Bay (DEL) either directly 
(solid line) or indirectly (dotted line, 
Figure 3b–d,f–h). The blue and aqua 
groups were strongly associated with LIS 
or LIC (solid lines, Figure 3b–d,f–h) but 
could also be weakly connected to other 
locations (dotted line, Figure 3f–h). 
Cluster analysis identified the same six 
(2009, Figure 3c) and nine groups (2010, 
Figure 3g) as the network route analysis. 

DISCUSSION
Factors Influencing the 
Degree of Impact
The degree of impact that biotic con-
nectivity has on source and recipient 
ecosystems depends on characteristics of 
fish movements. At least four conditions 
may influence how much fish migration 
affects distant estuaries: (1) the fidelity 
of migrants to spawning, overwintering, 
and feeding grounds; (2) whether spe-
cific connections exist among feeding, 
overwintering, and spawning locations; 
(3) the degree of within-population 

specialization in movement patterns; 
and (4) the reason that fish visit distant 
locations. If migrating fish visit many 
locations, stay in any specific estuary for 
only a short period, exhibit no consistent 
links across locations, are equally likely 
to go anywhere, and are not actively 
feeding, then little across-system impact 
would be expected. 

Connectivity, Fidelity, Specificity 
The vector of coastal striped bass migra-
tion connected a northern estuary 
(PIE) to two distant spawning locations: 

Figure 3. For 2009 and 2010, the (a, e) destination networks including PIE, (b, f) route networks without PIE, (c, g) cluster analysis groups displayed in Principal 
Components Analysis (PCA) ordination space, and (d, h) the observed southward migration routes of striped bass. Colors in all panels correspond to group-
ings from community detection analysis. For 2009 (a–d), the four destinations are shown in gray, red, green, and blue, and the six types of routes are indicated 
as solid and dotted line circles. For 2010 (e–f), five destinations are shown in gray, red, blue, green, and aqua, and nine routes are indicated by solid and dotted 
line circles. Jaccard bootstrap mean values indicated stable clusters for groups that contained more than one individual striped bass (range = 0.74 to 1.00). 
(c, g) Colors used in the cluster analysis and (d, h) for the trajectories correspond to route networks.
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Hudson and Delaware Rivers. Our 
tagged striped bass may also have trav-
eled to the third major spawning loca-
tion, Chesapeake Bay, but no gate was 
present in this system to detect coastal 
migrants. The migratory striped bass 
that we tagged in summer in Plum 
Island exhibited strong, within-year site 
specificity and fidelity to PIE (i.e., many 
fish stayed in this single estuary for a 
prolonged period). Tagged fish also 
returned to PIE the following spring, 
demonstrating across-year site fidelity. 
Although the striped bass we tagged 
went to multiple locations, they did not 
go everywhere. In fall, these migrants 
moved south to two different overwin-
tering locations, adjacent to known natal 
estuaries, as well as to other general 
coastal locations, after which they were 
undetected. In a related study, 85% of 
the striped bass (mean = 426 mm TL, 
SE = 2, n = 97) caught in Massachusetts 
estuaries from spring through fall ate 
a seasonally dependent mix of fish and 
invertebrates (Ferry and Mather, 2012). 
This result demonstrates that active 
feeding occurs during the summer 
migration. The occurrence of migra-
tory striped bass in multiple estuaries 
through spring-summer-fall (Mather 
et al., 2009), the seasonal residence 
of individual striped bass in specific 
estuaries (Able and Grouthues, 2007; 
Pautzke et al., 2010), and active forag-
ing during the migration (Nelson et al., 
2003) have been reported previously. 
However, individual striped bass have 
not been previously observed to stay a 
long time in a few foraging estuaries, 
leave those foraging estuaries in the fall, 
travel to specific, but different, over-
wintering areas, then return to the same 
northern estuaries the following year, as 

we observed here. 
Because of their strong fidelity 

and specificity, striped bass have the 
potential to alter dynamics within and 
across estuaries. Striped bass can act as 
transport vehicles and export nutrients 
and energy to other estuaries hundreds 
of kilometers away. For example, the 
biomass striped bass gain in a single 
estuary like PIE could increase spawn-
ing stock biomass of coastal striped bass 
in the Hudson and Delaware estuaries. 
This increased striped bass biomass 
may intensify predation pressure on 
prey in connected natal estuaries, and 
eventually feed back to PIE across years. 
Migrating striped bass can potentially 
move substantial amounts of energy 
across estuaries. Thus, what happens 
in one estuary may impact distant 
locations. The magnitude of export of 
nutrients and energy by migrating fish 
from one coastal location to another 
location depends on many variables 
(e.g., cumulative time at each location, 
location-specific temperatures, location-
specific amount-type of food consumed, 
fish size). In runs of a bioenergetics 
model parameterized for striped bass 
(Hartman and Brandt, 1995) and incor-
porating system- and season-specific 
temperatures and diets (Ferry and 
Mather, 2012), subadult and young adult 
striped bass (650–1,000 g) that stay in 
PIE from spring through fall (72 d) 
could consume 0.05 (spring), 0.01 (sum-
mer), and 0.05 (fall) grams of prey per 
gram of body weight per day. As a result, 
these fish could remove more than 
their initial body weight in prey from 
the source estuary and translocate the 
resultant biomass to another estuary. At 
present, the magnitude of this trophic 
transfer across systems is unknown. 

Empirical tests are needed of how much 
energy is translocated across estuar-
ies as well as how this export changes 
across system, years, seasons, and fish 
sizes. Consequently, variations in how 
fish migrate (e.g., estuary-specific tra-
jectories, fidelity, migration timing, type 
of connectivity, and foraging behavior) 
will determine the degree of across-
system impact that migrants have in 
PIE and other estuaries.

Internal Structure 
Not all tagged migratory striped bass 
behaved the same, confirming the exis-
tence of internal structure in the coastal 
migration. Internal structure is any 
behavior(s) that results in consistent 
within-population differences among 
groups of fish. Striped bass tagged in 
PIE in summer went to at least three 
overwintering destinations (excluding 
PIE) via six (2009) and nine (2010) dif-
ferent routes. This diversity in move-
ment groups, for the same-sized striped 
bass, was observed across multiple years 
although the composition of each group 
varied temporally. Behavioral groups are 
recognized with increasing frequency in 
ecology and fisheries (e.g., Conrad et al., 
2011). For example, contingents related 
to spawning behavior and movements 
have been documented for Hudson 
River striped bass (Wingate and Secor, 
2007), and different behavioral groups of 
striped bass have been observed within 
feeding estuaries (Able and Grothues, 
2007; Pautzke et al., 2010). As a result, 
this within-population diversification 
can have ecological and evolutionary 
consequences (e.g., Chapman et al., 
2011; Dall et al., 2012; Sih et al., 2012). 
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Fish Migrations 
Few generalizations exist about speci-
ficity and fidelity of fish-related biotic 
connections even though reports of fish 
movements among distant spawning, 
foraging, and overwintering areas (the 
migration triangle of Harden Jones, 
1968) are increasingly common. The 
return of fish to natal systems for spawn-
ing is the classic example of strong 
geographic specificity (e.g., Scholz 
et al., 1976; Quinn, 2004). In addition, 
many anadromous fish are assumed to 
return to the freshwater locations where 
they were spawned (untested spawn-
ing site fidelity; e.g., Frank et al. 2011). 
Prolonged fidelity to a specific locality 
for foraging, however, is less common 
(Buzby and Deegan, 2000; Solmundsson 
et al., 2005). Interestingly, migratory bull 
trout (Salvelinus confluentus), like migra-
tory striped bass, remain in localized 
marine habitats during their migration 
(Hayes et al., 2011). Generalities about 
routes that fish use to transit among 
feeding, foraging, and overwinter-
ing locations are also limited at pres-
ent. Diverse fish migration strategies 
exist across species and populations 
with potential survival consequences 
(Melnychuk et al., 2010; Dempson et al., 
2011; Welch et al., 2011). Individual fish 
can be consistent in fidelity and migra-
tion timing but this consistency can vary 
across individuals within a population 
(Brodersen et al., 2012). Furthermore, 
environmental conditions may alter 
patterns of fish distribution and move-
ments (Bottom et al., 2005). Geographic 
connectivity (i.e., specific links among 
feeding, spawning, and overwinter-
ing; Webster et al., 2002) is of increas-
ing scientific interest in migratory fish 
research, but, again, general patterns of 

connectivity have yet to be established. 
Thus, although an increasing number 
of puzzle pieces exist, a framework that 
unifies spatial and temporal patterns 
of fish movement (Nathan et al., 2008) 
and integrates disciplines (Giuggioli and 
Bartumeus, 2010) is still in its infancy. 
Here, we contribute to the maturation of 
this conceptual framework by proposing 
conditions that may explain variation in 
the impact of biotic connectivity across 
spatially segregated estuaries. 

Animal Migrations 
Beyond fish, there is a large volume of 
basic and applied research on animal 
migration that focuses on a variety of 
taxa, ecosystems, and conceptual frame-
works (e.g., Webster et al., 2002, Wilcove 
and Wikelski, 2008). This substantial 
and rapidly growing literature on biotic 
connectivity is diverse. For example, 
many studies examine how migratory 
mammals connect terrestrial landscapes 
(e.g., Boone et al., 2006; Morrison and 
Bolger, 2012). Long-distance migra-
tion research has been dominated by 
avian studies (e.g., Catry et al., 2011; 
Vardanis et al., 2011; Stanley et al., 
2012). However, the rapidly increasing 
body of literature on fish movements 
can add significant new dimensions to 
general migration theory (e.g., Radinger 
and Wolte, 2013). Migration represents 
an extreme case of motility. In ecology, 
movement is important to a diverse 
array of concepts such as population 
regulation (e.g., Hixon et al., 2002), 
across-system subsidies (Polis et al., 
1997), and metapopulations and meta-
communities (Kritzer and Sale, 2004; 
Holyoak et al., 2005; Logue et al., 2011). 
Concepts related to spatial segregation 
of mobile organisms (e.g., trophic relay 

[Kneib, 1997]; shifting interaction zones 
[Kneib, 2000]) have also played key roles 
in estuarine ecological dynamics. A 
critical synthesis of this voluminous and 
expanding literature is needed that con-
nects and integrates results of movement 
studies across taxa, ecosystems, and dis-
ciplines to identify information gaps and 
guide future research needs.

Future Directions 
Although new tracking technologies 
provide the ability to answer a host 
of research questions about patterns, 
causes, and consequences of move-
ment, an integrated research strategy 
for migration is needed that combines 
multiple perspectives, disciplines, and 
approaches (Bowlin et al., 2010). First, 
coastal researchers and managers need 
to tag fish of similar species and sizes 
at similar times using similar methods 
in order to better understand general 
patterns of connectivity, specificity, and 
fidelity. Standardized tagging and moni-
toring should be undertaken in an array 
of estuaries along the coast across sea-
sons and years. Without this expansion 
of standardized tagging and consistency 
in monitoring, we will never know if 
tagged fish visit other estuaries, if the 
movement patterns we observed in PIE 
are unique or a general rule, nor will we 
understand how variation in connectiv-
ity affects distant ecosystems. Second, 
researchers need to better understand 
across-year variability. We found both 
similarities and differences in routes and 
destinations used by striped bass across 
years (Mather et al., 2010; this study 
2009 vs. 2010). This result likely reflects 
both natural variations in patterns and 
methodological differences. Third, 
researchers need to provide complete 
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trajectories for individuals across the 
range of migration (i.e., how locations 
of migratory fish change through time). 
For the data presented here, we need 
to link the southward and northward 
migrations. These complete trajecto-
ries are difficult data to obtain but are 
essential to understanding migratory 
connectivity. Fourth, researchers need to 
quantify fitness consequences of migra-
tion strategies (e.g., the effect of time 
or behavior at specific feeding or over-
wintering locations on survival, growth, 
and reproductive success). In addition, 
a better understanding is needed of 
the mechanisms underlying migration. 
For example, fish spawned in Delaware 
Bay that repeatedly migrate north to 
PIE may forage more effectively in PIE 
by learning how to feed under specific 
conditions. They may return to the 
same foraging location with which they 
have had success for several years. As a 
result, they may become more efficient 
predators, maximizing their growth, 
intensifying their top-down impact on 
prey, and consequently exercising a 
stronger effect on estuarine productiv-
ity. As discussed above, better estimates 
are also needed of energy and nutrients 
exported by migrating animals. Finally, 
our understanding of biological connec-
tivity would benefit tremendously from 
coupling ecological studies of coastal 
fish movements with concurrent ocean-
ographic studies of physical processes, 
such as currents, that might influence 
fish migration (e.g., energy landscapes; 
Wilson et al., 2012).

Applications
Estuaries are spatially and temporally 
complex ecosystems used by impor-
tant commercial fishes and shellfishes, 

including many migratory fish. Many 
of the most spectacular migrations are 
severely threatened by human activities 
(Wilcove and Wikelski, 2008). Harvest 
and fishing pressure, as well as other 
anthropogenic effects such as hypoxia 
and coastal river dams, can adversely 
affect biotic connectivity. Our results 
suggest that a more holistic approach is 
needed to coastal management rather 
than the site-specific management of 
estuarine and coastal resources that is 
often undertaken at present. Agencies 
at both state and federal levels seek to 
develop approaches to fisheries manage-
ment that ensure long-term sustainabil-
ity. A better understanding of patterns, 
consequences, and causes of biotic con-
nectivity at a range of scales would sup-
port the development of these cohesive, 
coast-wide conservation strategies.

 
Conclusion 
In summary, our research has advanced 
what is known about patterns of biotic 
connectivity, especially the complexity 
and heterogeneity of fish migration. The 
long-term focus of LTER research at PIE 
permits the development of increasingly 
complex questions that could not be 
anticipated a priori (Dodds et al., 2012). 
Our research started with simple striped 
bass distribution-feeding relation-
ships, progressed to local movements, 
evolved to coastal movements, and 
finally advanced to making connections 
across estuaries. This type of sequential, 
focused, in-depth research on variations 
in when, where, and how fish migrate is 
essential for a much-needed understand-
ing of how biotic connectivity affects 
coastal ecosystems. 
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