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Atmospheric and surface ocean tempera-
tures in the Antarctic Peninsula region 
have increased by a few degrees Celsius 
over the last few decades, and they are 
the most rapid changes recorded in the 
Southern Hemisphere during this time 
period (Cook et al., 2005; Meredith 
and King, 2005). Associated with this 
ongoing warming are ice-sheet breakup, 
iceberg calving, and subsequent iceberg 
grounding that are accompanied by 
the release of acoustic energy into the 
Southern Ocean. Although much atten-
tion has been given to the increasing 
anthropogenic contributions to ocean 
noise, which may be as much as 12 dB 
over the last few decades (Hildebrand, 
2009), the sounds created by ice breakup 
at the poles may represent an under
appreciated, yet significant, natural con-
tribution to the ocean noise budget. 

Previous acoustic studies have 

tracked the paths of drifting icebergs 
and characterized the sounds gener-
ated when they run aground (Scambos 
et al., 2003; Muller et al., 2005; Martin 
et al., 2010); however, it is unusual to 
record the sound of an iceberg break-
ing apart in the open ocean. Here, we 
present the hydroacoustic signals of 
iceberg A53a as it disintegrated. We used 
an array of underwater hydrophones 
(250–1,000 Hz sample rate) deployed in 
the Scotia Sea and Bransfield Strait off 
Antarctica to record the full life-cycle 
sounds of this iceberg, from grounding 
harmonic tremor (HT) to “icequakes” 
that occurred as it melted and broke 
apart (Figure 1). These recordings permit 
an assessment of the sound energy levels 
projected into the marine environment 
by a disintegrating iceberg.

During April–June 2007, the iceberg 
A53a (~ 55 × 25 km) drifted out of the 

Weddell Sea and through Bransfield 
Strait (Figure 1A). Hydrophones first 
detected HT from A53a (Figure 1B) 
when it encountered a 124 m deep shoal, 
which caused the berg to rotate 192°. At 
this time, it began generating six days of 
semicontinuous HT as it ground across 
the seafloor (Figure 1A, position 1). The 
iceberg then entered Bransfield Strait 
where it became fixed over a 265 m deep 
shoal and began to pinwheel (Figure 1A, 
position 2). The HT became shorter 
in duration (40–60 s) in this area. The 
tremors’ fundamental frequencies, over-
tone spacings, and signal lengths are a 
direct function of the size and duration 
of the ice-seafloor contact and the speed 
of the iceberg as it is driven by wind and 
ocean currents (Martin et al., 2010). At 
both locations, it seems likely that peri-
odic, discrete stick-slip bursts caused by 
contact of the moving iceberg with the 
seafloor generated the iceberg tremors 
rather than resonant vibration (Macyeal 
et al., 2008; Winberry et al., 2013). The 
approximate keel depth of iceberg A53a 
is also given by the depth of the seafloor 
at these locations, and it seems keel 
depths vary significantly along the ice-
berg’s 60 km length.

The iceberg then drifted north during 
July 2007 into the Scotia Sea, and it began 
to melt in the warmer waters (Jansen 
et al., 2007). Photos taken from the 
International Space Station on January 
15, 2008, show visible melt ponds on 
the surface of the iceberg (Figure 1A, 
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top left inset). The presence of melt 
ponds indicates it had entered a period 
of rapid disintegration (Scambos et al., 
2003; e.g., Figure 1D); indeed, within 
two months, the iceberg broke apart and 
was no longer being tracked via satellite. 
However, because it disintegrated within 
the hydrophone array aperture, the 

acoustic signature of the iceberg break-
ing apart while adrift could be identified. 
These disintegration sounds (Figure 1C), 
or icequakes, are short-duration, broad-
band signals (from 1–440 Hz) generated 
by ice cracking and crack propagation 
(similar to earthquake processes) and 
are clearly distinct from the harmonic 

tremor (Martin et al., 2010). 
The icequake sounds (Figure 1C) 

averaged ~ 220 dB-rms re 1 μPa @ 1 m, 
yielding a total energy flux density of 
252 dB μPa2-sec over the ~ 20 minute 
duration of the entire sequence (see 
Methods below). This energy flux den-
sity, which is just a fraction of the total 

Figure 1. (A) Daily position of iceberg A53a (red dots) in Bransfield Strait (BRA) and the Scotia Sea (SCO) near South Georgia Island observed using NASA’s 
QuikSCAT satellite backscatter images (BYU Scatterometer Climate Record Pathfinder; http://www.scp.byu.edu). Hydrophone locations are shown as yellow 
dots. Positions (1) and (2) show iceberg locations where harmonic tremor was observed, with the exact sites where tremor was produced highlighted by white 
dots. Top left inset is an image of iceberg A53a on January 15, 2008, from the International Space Station, with blue melt ponds visible. (3) Location of the ice-
berg when these melt ponds were seen. The bottom right inset is a QuikSCAT image of A53a after the breakup event on February 2, 2008, showing hydrophone 
locations of icequake sounds (green dots). (4) Iceberg location during the breakup event. (B) Example spectrogram and time series of harmonic tremor from 
position 2 (see map in A). The fundamental frequency is 40 Hz, with 40 Hz overtone spacing. As many as 15 overtones are visible in the spectra. (C) Spectrogram 
and time series of the February 2, 2008, icequake and breakup events recorded on the northeast Scotia hydrophone (farthest east yellow dot with “X” in A). 
Note signal duration is significantly longer than the example shown in B. (D) Satellite image showing a large fracture forming in iceberg A53a as it approaches 
South Georgia following the major breakup events on February 2, 2008 (http://www.esa.int/ESA). Inset global map shows the location of the study area. 
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acoustic energy released during the life 
of this iceberg, is equal to an energy 
release of 6.9 × 107 Joules or the equiva-
lent sound energy of ~ 214 supertank-
ers operating over this same 20 minute 
time period. These totals demonstrate 
that sound from ice breakup in the 
Southern Ocean can be significantly 
greater than anthropogenic noise sources 
and thus are a major contributor to the 
overall ocean noise budget. Moreover, 
the acoustic output from these massive 
bergs may have unrecognized impacts 
on marine animals, many of which 
use sound to facilitate life-sustaining 
activities such as feeding, breeding, and 
navigation. Studies indicate these ice 
sounds propagate over long distances 
(thousands of kilometers) in the ocean 
(e.g., Talandier et al., 2002; Chapp 
et al., 2005), and tremors from near the 
Antarctic Peninsula are readily detected 
at the equator (Matsumoto et al., 2012). 
Thus, it is important to continue acoustic 
monitoring of the breakup of Antarctic 
ice shelves to understand how spatially 
and ecologically widespread their impact 
is on the global ocean. 

Methods
The decibel energy flux density (EFD) 
of the icequake signals are estimated by 
adding their decibel acoustic source lev-
els (SL) to log10 of the total signal dura-
tion T in seconds (Warren, 2011): 

EFDdB = SLdB-rms +10 log10(T) 	 (1)

Source level for each ice breakup event 
in Figure 1C was estimated by taking 
the received acoustic signals at each 
hydrophone, removing the hydrophone 
gain, then adding in acoustic transmis-
sion loss along the signal path from 
source to receiver. The amount of energy 
released in Joules is estimated from the 

EFD (expressed here in linear units of 
Pa2-sec) using the relation

Energy (Joules) = 2 π/ρc [EFD],	 (2)

where r and c are the density 
(1,000 kg m–3) and velocity (1,500 m s–1) 
of seawater, respectively. The equiva-
lent supertanker energy calculation 
assumes a continuous wave source 
with a bandwidth of 5–100 Hz and 
195 dBrms re 1 μPa2 @ 1 m source level 
(Hildebrand, 2009). The acoustic pres-
sure recorded on a hydrophone is a time 
history of ocean pressure perturbations 
(ΔP) relative to background ocean pres-
sure at the recording water depth. These 
excess ocean sound pressures are usually 
small (~ 10–2 Pa), and it has been the 
standard in the ocean acoustic literature 
to express sound pressure in log-scale 
decibels (dB) relative to a reference 
pressure (Po) of 1 μPa (Urick, 1975). 
Moreover, it is convention to use 1 m as 
the reference distance (ro) when calculat-
ing the acoustic pressure of the source.
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