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Abstract

We present a new method for the solution of the unsteady incompressible Navier-Stokes equations. Our
goal is to achieve a robust and scalable methodology for two and three dimensional incompressible flows.
The discretization of the Navier-Stokes operator is done using boundary integrals and structured-grid finite
elements. We use finite-differences to advance the equations in time. The convective term is discretized via
a semi-Lagrangian formulation which not only results in a spatial constant-coefficient (modified) Stokes op-
erator, but in addition is unconditionally stable. The Stokes operator is inverted by a double-layer boundary
integral formulation. Domain integrals are computed via finite elements with appropriate forcing singu-
larities to account for the irregular geometry. We use a velocity-pressure formulation which we discretize
with bilinear elements (Q1-Q1), which give equal order interpolation for the velocities and pressures. Sta-
bilization is used to circumvent the div-stability condition for the pressure space. The integral equations
are discretized by Nyström’s method. For the specific approximation choices the method is second order
accurate. Our code is built on top of PETSc, an MPI based parallel linear algebra library. We will present
numerical results and discuss the performance and scalability of the method in two dimensions.

1 Introduction

In this article we propose a boundary integral method for the unsteady incompressible Navier-
Stokes in complex geometries. Most state-of-the-art methods for such problems are based on local
PDE-based formulations—finite element, finite difference or finite volume methods. These dis-
cretization techniques require unstructured or semi-structured meshes for local discretizations. For
irregular domains, mesh generation is still a bottleneck—especially on multiprocessor platforms,
three dimensions and for problems with moving boundaries.

Several researchers have used boundary integral formulations to model the homogeneous Stokes
problem (no distributed forcing terms); see (Pozrikidis, 1992) for a detailed presentation of the for-
mulation and derivation of boundary integral equations for potential and viscous flows. In (G´omez
and Power, 1997; Mammoli and Ingber, 2000; Power, 1993), the homogeneous Stokes problem
is solved via a primitive variable formulation (velocity and pressure), combined with multipole
expansions to accelerate the matrix-vector multiplications.

Despite its effectiveness, a boundary integral formulation becomes less attractive for problems
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with distributed forces. By the nature of the problem some kind of domain computations are re-
quired: domain convolution of the forcing term with the fundamental solution. These integrals are
also known asNewton potentials. A problem with this approach is that the integration is a global
operation. Fast multipole methods (FMM), (Greengard and Rokhlin, 1987), can be used to acceler-
ate this calculation. A second problem is that the integrals are quite difficult to evaluate accurately
for points close to the boundary—the kernels become nearly singular. Adaptive integration can be
used but this complicates the computation.

Alternatively, the embedded boundary integral method (EBI) uses local methods, like finite
elements, to efficiently evaluate the contribution from distributed forces. With the EBI method we
embed the flow domain inside a larger domain, for which fast-scalable solvers are available (most
likely a regular grid), and to which we suitably extend the velocity and pressure fields. We use an
integral formulation to compute the inteface jumps of the velocity and its derivatives and then we
use Taylor expansions to express these jumps as a source term at regular grid points close to the
interface. This source term, which appears in the right hand side of a the regular grid problem, we
term Taylor Expansion Stencil Correction (TESC). Depending on the details of the implementation
the method can be first, second, or higher order accurate. EBI originally appeared in Anita Mayo’s
work (Mayo, 1984) for the Laplace and biharmonic operators.

In the following sections we discuss EBI method and its different algorithmic components.
In Section 2 we give an overall description of the method; in Section 3 we explain the boundary
integral formulation; in Section 4 we explain how the Taylor expansions stencil corrections are
used to compute Newton potentials; and in 5 we present numerical results.

Notation. Scalars will be denoted with lowercase italics, vectors with lowercase boldface letters;
tensors and matrices will be denoted with uppercase boldface letters. Infinitely dimensional quan-
tities will be in italics, whereas finite dimensional ones (usually discretizations) will be non-italic
fonts.

2 Description of the Embedded Boundary Integral method

We seek solutions for the incompressible Navier-Stokes equations inside multiply connected do-
main with Dirichlet boundary conditions. We choose a primitive variable formulation (velocities
and pressures), for which the momentum and mass conservation laws are given by

∂u

∂t
+ (∇u)u − ν∆u + ∇p = 0, in ω × (0, T ],

divu = 0, in ω × [0, T ], (1)

u = g, on γ × (0, T ].

Hereu is the velocity field,p is the pressure, andg is a given Dirichlet boundary condition for
the velocity. To circumvent the nonlinearity of the convective term we use a semi-Lagrangian
formulation (Douglas Jr. and Russell, 1982). The relation between the the Lagrangian and Eulerian
description of the acceleration term is given by

du

dt
=

∂u

∂t
+ (∇u)u. (2)
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Figure 1: Semi-Lagrangian formulation. To discretize in time we have to locate the point from
which a particle with velocityu(t − ∆t) traveled to the grid point with velocityu(t).

We discretize the left hand side, using a backward Euler scheme:

du(x(t), t)

dt
=

1

∆t
(u(x(t), t) − u(x(t − ∆t), t − ∆t). (3)

For a semi-Lagrangian formulationx(t) will always be a some point of the regular grid. To com-
pute the velocity at the previous time step, we have to computex(t−∆t); i.e. we have to locate the
starting point of the flow particle that arrived to the grid pointx, (Figure 2). To computex(t−∆t)
we use

dx(t)

dt
= u(x(t), t). (4)

If δx is x(t) − x(t − ∆t), we obtain the following nonlinear equation (forδx)

δx = ∆tu(x(t) − δx, t − ∆t), (5)

and which we solve iteratively by taking a few Piccard steps. The interpolation ofu has to be done
carefully to avoid excessive dissipation. We use cubic b-splines.

After the time discretization we obtain a system of the form

αu − ν∆u + ∇p = b, in ω,

divu = 0, in ω, (6)

u = g, on γ.

Hereb is a body force and includes the terms from the time stepping. As explained in the intro-
duction, in order to avoid the cost of mesh generation, we would like to solve the above equations
via a boundary integral formulation. However the presence of the forcing termb significantly
complicates this approach.

Anita Mayo’s algorithm can be viewed as a method to evaluate Newton potentials accurately
and inexpensively. We first embedω in a regular (or more generally, easier to discretize) domain
Ω and by linearity we decompose (6) into two problems: a problem that has an inhomogeneous
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distributed (or body) force and homogeneous boundary conditions (particular solution)

αu1 − ν∆u1 + ∇p1 = b, in Ω

divu1 = 0, in Ω, (7)

u1 = 0, on Γ;

and a problem that satisfies the boundary conditions (homogeneous solution)

αu2 − ν∆u2 + ∇p2 = 0, in ω,

divu2 = 0, in ω, (8)

u2 = g − u1, on γ.

We solve (7) with aQ1 − Q1 finite-element approximation method. For the second problem we
use a double layer boundary integral formulation.

The solution (u, p) is given byu1 + u2 andp = p1 + p2. The evaluation (u2, p2) for a point
insideω can be done with convolution of double layer kernels with the velocity potential. This
presents the same difficulties with the convolution of a forcing term. An easier way to computeu2

is based on the fact that once problems (7) and (8) are solved, derivatives of the solutionu can be
very accurately computed onγ. A discontinuous extension ofu2 onΩ can be chosen so that all the
interface jumps can be semi-analytically computed. By tracking the intersection of the interface
with the background grid and using the jump relations, we employ Taylor expansions to correct the
stencil truncation error (TESCs). Using TESCs this information is transformed into a distributed
forces which can be also viewed as the discretization of a dipole along the boundary. Then we
solve

αu3 − ν∆u3 + ∇p3 = su, in Ω

divu3 = sp, in Ω, (9)

u3 = u2, on Γ;

where (at the limit)u3 is discontinuous onγ, andu2 is the restriction ofu3 in ω.
Therefore, an EBI solve consists of two regular grid solves and one boundary integral solve.

3 The Double Layer Formulation for the Stokes Equations

In this section we examine a problem of the form (6) withb = 0. We also assume thatω ⊂ R
2 is

bounded and ofC2-class. We use an indirect formulation based on double layer potentials. For the
steady Stokes operator the double layer potential is given by

D[w](x) :=

∫
γ

D(x,y)w(y) dγ(y) =
1

π

∫
γ

r ⊗ r

ρ2

r · n(y)

ρ2
w(y) dγ(y), (10)

wheren(y) is the outward surface normal at a boundary pointy. The unsteady potential is given
by

Du[w](x) := D[w](x) + Da[w](x), (11)
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with

Da[w](x) =

∫
γ

Da(x,y) dγ(y) =

=
1

π

∫
γ

v1(σ)(
n(y) ⊗ r

ρ2
+

r · n(y)

ρ2
I)w(y)

+ v2(σ)
r⊗ r

ρ2

r · n(y)

ρ2
w(y)

+ v3(σ)
r⊗ n(y)

ρ2
w(y) dγ(y). (12)

Hereσ is given by
σ = ρ

√
α, (13)

To definev1, v2, v3 let us first useK0 andK1 for the modified Bessel functions of second kind of
zero and first order respectively. We also define an auxiliary functionβ(σ) by

β(σ) =
1

σ2
+ K0(σ) +

2K1(σ)

σ
. (14)

Then

v1(σ) =
2β(σ) + σK1(σ)

2
, (15)

v2(σ) = −4β(σ) − σK1(σ) − 1, (16)

v3(σ) =
2β(σ) + 1

2
. (17)

For a derivation of the above formulas see (Pozrikidis, 1992).
We limit our discussion to the simply connected interior Dirichlet problem. The extension of

EBI to exterior and Neumann problems is very similar to the interior problem. We can write the
velocities as boundary potentials:

u(x) = D[µ](x), x in ω, (18)

p(x) = K[µ](x), x in ω. (19)

Hereµ is the hydrodynamic potential, andK is defined by:

K[w](x) :=

∫
γ

K(x,y) · w(y) dγ(y) = −ν
1

π

∫
γ

1

ρ2
(I − 2

r⊗ r

ρ2
)n(y) · w(y) dγ(y). (20)

Taking limits to the boundary from the interior and exterior regions we obtain

u(x) = −1

2
µ(x) + D[µ](x), x on γ. (21)

A necessary condition for a solution of the above equation is thatu has to satisfy
∫

γ

u · n dγ = 0, (22)
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which a direct consequence of the conservation of mass. This constraint is an indication that for
the simply-connected interior problem the double layer operator has a null space of dimension at
least one. In fact, it can be shown ((Power and Wrobel, 1995), p. 159) that the dimension of the
null space is exactly one. The null space can be removed by a rank-one modification ((Power and
Wrobel, 1995), p. 615). Let

N [w](x) :=

∫
γ

N (x,y)w(y) dγ(y) =

∫
γ

n(x) ⊗ n(y)w(y) dγ(y); (23)

we solve foru from

u(x) = −1

2
µ(x) + D[µ](x) + N [µ](x), x on γ. (24)

For the multiply connected interior problem, a direct calculation can verify that the steady
double layer kernel has a larger null space—spanned by potentials that correspond to restrictions
of rigid body motion velocity fields on the boundary. These fields generate zero boundary tractions
and thus belong to the null space of the double layer kernel. In (Power, 1993) point singularities
are used to complete the spectrum of the double layer operator.

We discretize (24) by the Nystr¨om method combined with the composite trapezoidal rule which
achieves superalgebraic convergence for smooth data. (Without loss of generality we assumeω to
be simply connected in the remaining part of this section.) Let[0, 2π] be the curve parameterization
space andn the number of discretization points withh = 2π/n. We discretize by:

u(x(ih)) = −0.5µ(ih) +
n∑

j=1

D(x(ih),y(jh))µ(y(jh)) ‖∇y(jh)‖2 (25)

+ n(x(ih))

n∑
j=1

µ(y(jh)) · n(y(jh) ‖∇y(jh)‖2, i = 1, . . . , n. (26)

which results in a dense2n × 2n linear system. Herey(·) is the parameterization ofγ.
Jump computation. Equation (18) is defined for points insideω. We can use exactly the

same relation to extendu in R
2/ω̄. The resulting field is discontinuous across the inteface. From

the properties of the double layer kernel (for an interior problem) we have the following jump
relations:

ue − ui = µ,

σe − σi = 0, (27)

(∇ue −∇ui)t = µ̇.

The left hand side formulas should be interpreted as appropriate limits from the exterior and interior
of the domain. The last equation can be obtained by differentiating the first equation in the tan-
gential direction;̇µ is the derivative of the potential with respect the parameterization of the curve:
µ̇ = dµ(y(t))/dt. Similar relations can be derived for the pressure. Higher order derivatives
can be obtained by differentiating (27) augmented with the continuity of the momentum equation
across the interface.
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Figure 2: Stencil corrections. Given a irregular domainω we embedded in a regular or fictitious
domainΩ. A finite difference scheme can be used to approximate an elliptic operator. For stencils
that cross the interface, like the one depicted in (c), the truncation error is constant as the mesh
size goes to zero. If one knowsue − ui appropriate correction terms can be computed so that a
converging scheme is obtained.

4 Taylor Expansion Stencil Corrections

In this section we show how discontinuities across the interface (jumps) can be used as a forcing
term for an equivalent problem in a regular grid. For simplicity we consider Poisson’s equation
∆u = b, in ω with Dirichlet boundary conditions onγ (Fig. 4). We embedω in a larger domainΩ
and assume thatu will be discontinuous across the intefaceγ.

We also assume that the discontinuities (jump conditions) are known up to second derivatives.
Typical discretizations of elliptic PDE’s (finite elements, finite differences or finite volumes) pro-
duce a “stencil”, a formula that relates each discretization variableui to its spatial neighbors. This
relation can be expressed by

αui +
∑

j

βjuj = ζbi,

wherej runs through the neighbors ofui. (For unstructured gridsα, β, ζ and the number of
neighbors depends oni.) A standard technique in the finite-differences literature is to use Taylor
expansions of the neighbors to determine the truncation error. For the standard 2D five-point
discrete Laplacian (Fig. 4(c)) the stencil is:

1

4
ui −

4∑
j=1

uj = h2bi, (28)

whereh is the mesh size.
In the absence of an interface this stencil is well defined and second order accurate. For stencils

that intersect with the interface, however, this is not true. For example in Fig. 4(c) the stencil
around pointX includes two points,W andS for which a Taylor expansion will not work sinceu
and its derivatives are not continuous across the interface.

In Fig. 4(d), we show an example for which two unknownsui andue are related in a discretiza-
tion stencil that “crosses” the interface at pointX. The limit from the interior is denoted asu∗

i and
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the limit from the exterior is denoted asu∗
e. The key idea is that the truncation error of the stencil

can be corrected to be second (or higher-order) accurate if we just know the difference between the
interface limits, and not their exact values.

For this section, let us defineD as the Gateaux derivative operator, and

µ = u∗
e − u∗

i ,

Dµ = Du∗
e − Du∗

i , (29)

D2µ = D2u∗
e − D2u∗

i ,

the jump conditions up to second derivatives. Let us also definen = p/h (not to be confused with
the normal to the interface) to be the unit-length direction vector oriented fromui to ue, pe = hen
andpi = hin, Fig. 4(d). By using Taylor expansions we can write

ue = u∗
e + heDu∗

e · n +
h2

e

2
n · (D2u∗

e)n + O(h3)

= (µ + u∗
i ) + he(Dµ + Du∗

i ) · n +
h2

e

2
n · (D2µ + D2u∗

i )n + O(h3). (30)

If we define

si = µ + heDµ · n +
h2

e

2
n · (D2µ)n (31)

then (30) becomes

ue = si + u∗
i + hen · D2u∗

i +
h2

e

2
n · (D2u∗

i )n + O(h3).

Next we expandu∗
i aroundui to get

ue = si + ui + hin · Dui +
h2

i

2
n · (D2ui)n

+ he(Dui + hi(D
2ui)n) · n +

h2
e

2
n · (D2ui)n + O(h3)

= ui + hDui · p +
h

2
p · (D2ui)p + si + O(h3). (32)

Similarly (take a minus sign for the opposite direction vectors and a minus sign for the jump) we
can write

ui = ue − hDue · p +
h2

2
p · (D2ue)p + se + O(h3), (33)

wherese is given by:

se = −(µ − hiDµ · n +
h2

i

2
n · (D2µ)n). (34)

For the stencil centered atue we use (34) and for the stencil centered atui we use (31).
By using the correction term we achieveO(h3) truncation error for a second order discretiza-

tion of the Laplacian for the points immediate to the boundary andO(h4) for the remaining set
of points. This results to anO(h2) discretization error for all points (Mayo, 1984). Second order
convergence can be achieved using jump information up to second derivatives.
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5 Numerical Experiments

We have chosen to solve for the velocity and pressure simultaneously using a finite element method
with Q1-Q1 bilinear elements. TheQ1-Q1 element does not satisfy theinf-sup condition (Gun-
zburger, 1989). In (Norburn and Silvester, 1999) it is shown how to optimally stabilize by adding
a pressure diffusion term which is proportional to the viscosity and to the square of the mesh size.
The resulting approximation is second order accurate for the velocities and first order accurate for
the pressures. In this section we test EBI on a problem with exact analytic solution.

We present preliminary results for the unsteady Stokes and Navier-Stokes problems. We have
chosen an synthetic solution for the steady Stokes given by

u = 2
{−x2y, y2x

}
, p = sin(xy), b = 4ν {y(1 + cos(xy),−x(1 + cos(xy)} .

We use the unsteady solver to “march” to the steady state solution. In Figures 3 and 4 we show
the exact solution and the error distribution for a642 and a2562 grid respectively. Pointwise

Figure 3: Solution and error for the for the642 grid.

error norms for the first-order and second-order accurate jump corrections are given in Table 1.
The first and second columns give the maximum pointwise absolute errors for the velocity and
pressure; and the third and fourth columns give results for second order accurate jumps. We can
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Figure 4: Solution and error for the for the2562 grid.

observe suboptimal rates for the first-order jumps and optimal convergence rates for the second
order jumps. For this type of flow the influence of the time stepping accuracy is negligible.

Table 1: Pointwise absolute error for the velocity and pressure.

first-order second-order
grid size uerr perr uerr perr

322 1.38×10−1 9.82×10−1 4.19×10−3 1.56×10−1

642 4.98×10−2 7.86×10−1 1.51×10−3 7.91×10−2

1282 1.49×10−2 4.38×10−1 4.68×10−4 4.78×10−2

2562 5.65×10−3 3.57×10−1 1.18×10−4 2.33×10−2

In a second example we solve for a flow around a cylinder who is located inside a pipe. The
boundary conditions on the walls are those of a Poiseuille flow. In Figure 5 we show streamlines for
a Reynolds number equal to 100. For an exterior problem such flow is unsteady (but still laminar).
However for the chosen problem setup the resulting flow is steady.
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Figure 5: Flow around a cylinder for Reynolds number 100.

6 Conclusions and extensions

We have presented a second-order accurate solver for the unsteady Navier-Stokes equations on
arbitrary geometry domains. We use a hybrid boundary integral, finite element formulation to
bypass the need for mesh generation. We employ an efficient double layer formulation for the
integral equations. At each time step the method requires two regular grid solves and one integral
equation solve.

One restriction of the method, as we have presented it, is the stringent requirements on the
regularity of the boundary geometry. However this can be circumvented by replacing the jump
computation by direct evaluation. For example the jump terms can be computed to machine accu-
racy by plugging the exact solution in the stencils that cross the boundary. The exact solution can
be obtain by direct evaluation of the velocity using the integral representation. This will require
adaptive quadratures—but only for the points close to a corner.
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