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Abstract

A buyer and seller have the opportunity to exchange an indivisible good at

a prespecified price. Each agent may be imperfectly informed, in an arbitrary

way, about both his own value for the good and the other agent’s value. In such

environments, contagious adverse selection can potentially lead to breakdown of

trade in complex patterns. Nonetheless, we show limits to this breakdown: an

observer who knows only the distribution of values can predict some amount of

(expected) trade that is attainable in equilibrium no matter what the information

structure is. We show how to compute the sharpest such prediction.

Thanks to (in random order) Paul Milgrom, Alp Simsek, Stephan Lauermann, Alex

Wolitzky, Matthew Jackson, Anton Tsoy, Benny Moldovanu, Nathan Hendren, Daron

Acemoglu, Jean Tirole, Brett Green, Richard Holden, and

anonymous referees for helpful comments.

1 Introduction

Imagine a buyer and seller who can potentially meet to exchange a single object at a

fixed price. The value of the object to each party is uncertain. With high probability,

both parties stand to gain from the trade; but each party also foresees some nonnegligible

probability that the trade will hurt him. For example, suppose that the object can be

traded at a price of 5, and there is an 80% chance that the world is in a “normal” state,
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where the object is worth 6 to the buyer and 4 to the seller; but there is also a 10% chance

of a “bad” state, where both parties’ values are lower by 2 (so that ex post, the buyer

loses from the trade), and a 10% chance of a “good” state, where both values are higher

by 2 (so that the seller loses). Explicitly, the values are

(4, 2) (bad) with probability 10%;

(6, 4) (normal) with probability 80%;

(8, 6) (good) with probability 10%.

If there is asymmetric information between the buyer and seller, this can lead to some

breakdown of trade. A long literature in information economics since Akerlof [1] has

emphasized the possibility of such a breakdown. Moreover, as more recent contributions

have pointed out, this breakdown can be exacerbated by contagion. For example, if the

seller has a private signal that the good state is likely, he may refuse to trade, since it is

not in his interest. Then, if the buyer has a private signal that one of the extreme states

has occurred (but he does not know which), he may worry that the seller is only willing

to trade in the bad state, and this adverse selection makes the buyer in turn unwilling

to trade. This behavior by the buyer can in turn make the seller unwilling to trade for

some other realizations of his signal, and so forth. Thus, higher-order beliefs can play an

important role in determining economic outcomes [17, 2, 14]. These patterns of contagion

can be fairly subtle, as we shall momentarily illustrate with a more detailed example.

It seems, then, that we cannot predict the outcome of the interaction without knowing

the details of the information structure: whether the seller is perfectly informed and the

buyer completely uninformed, or vice versa, or each receives conditionally-independent

noisy signals of the state, or perhaps something much more intricate. Unfortunately,

information structures (and especially higher-order information) can be complex, and

difficult for an outside observer to model. In this paper, we show how such an observer

can nonetheless make some predictions about trade. In the above example, without

knowing the information structure at all, the observer can predict that the parties will

be able to realize the gains from trade with probability at least 60%. More precisely, no

matter what the information structure is, as long as the buyer and seller share a common

prior over it, the resulting Bayesian game between them has an equilibrium in which at

least 60% of the gains from trade are realized (in expectation); and this 60% prediction

is sharp.

The results of this paper will extend the example, and find the sharpest possible
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prediction for attainable gains from trade that an observer can make, if the observer

knows only the distribution of traders’ values and not anything about the information

structure. We will also describe the information structure that makes this prediction

sharp. As it turns out, this worst-case information structure does not involve asymmetric

information. Instead, both parties receive the same signal: either a “high-value” signal

(in which case the seller does not want to trade at the posted price, because his expected

value from keeping the good is higher); or a “low-value” signal (where the buyer does not

want to trade); or a “normal” signal. (The fact that the worst case entails symmetric

information is specific to the posted-price mechanism that we assume; this will be further

discussed in the conclusion.)

On some level, our characterization of the worst case is no big surprise: If trade fails,

it should be either because the seller expects his value is too high or the buyer expects his

value is too low. But the conclusion is not trivial because of the interaction of the parties’

information. It is not the case in equilibrium that the buyer simply refuses to trade when

his expected value given his signal is below the price, and likewise for the seller. Instead,

each conditions on the information content of the other’s willingness to trade.

Here is a small example illustrating how equilibrium behavior can be subtle. We stick

with the 80–10–10 distribution of values described above. Suppose that the information

structure is as follows: The buyer’s signal ηB may take one of three possible realizations,

which we call A,B,C; the seller’s signal ηS may take on realizations D,E, F . The proba-

bility of each pair of signals, and buyer’s and seller’s values for the good for each possible

signal pair, are as shown in Table 1. (In this example, each possible pair of signals can

occur for only one state of the world, but our general model will not assume this.)

ηB\ηS D E F

A
0.36
6, 4

0.03
4, 2

0.40
6, 4

B
0.04
6, 4

0.05
4, 2

C
0.10
8, 6

0.02
4, 2

Table 1: Joint distribution of signals and values

The buyer and seller observe their respective signals, and then each decide whether to

agree to trade or to stay out. If both agree, then they trade at the price of 5.
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In this example, if the seller receives signal D or F , then for sure he benefits from

trading, so we may as well assume he agrees to trade. Then, if the buyer receives signal

A, his expected gain from agreeing to trade is positive (although its exact value depends

how the seller with signal E behaves), so the buyer with signal A agrees as well.

Does the seller with signal E agree to trade? If he does, then we can check that the

buyer with signal B prefers not to trade, while the buyer with signal C prefers to trade.

Given that the buyer trades under signals A and C but not B, then the seller with signal

E earns negative gains from trade, so prefers not to trade.

On the other hand, if the seller does not trade under signal E, then the buyer prefers

to trade under signal B and not C. In this case, the seller’s best reply under signal E is

to trade.

So it must be in equilibrium that the seller mixes under signal E. With a little more

calculation, we can check that the equilibrium is as follows: the buyer agrees to trade with

probability 1/15 following signal B, and probability 1 for signal C; and the seller agrees

with probability 4/5 under signal E. The resulting probability of both parties agreeing

to trade is 667/750 ≈ 0.89.

This mixing gives us a clue that, in general, there is no easy recipe to compute the

equilibrium for a given information structure, and suggests that there might perhaps exist

more complex, email-game-like information structures [17] where contagion effects across

signals lead to frequent breakdown of trade. Our results provide an answer to this concern,

by showing that, from an ex-ante point of view, such contagion is limited.

Now that we have sketched out our results, it is tempting to discuss interpretations

and possible applications. However, it will be easiest to give this discussion clearly after

having given the full statement of the model and results, and indicating their limitations.

So we leave the discussion of direct interpretations to the concluding Section 5 — with

apologies to any hurried readers — and instead use the rest of this introduction to talk

about the paper’s methodological contribution and its context.

The broader question behind this paper is: In situations of uncertainty, what can

we predict about economic interactions without knowing the details of the information

structure? This question connects with the work of Bergemann and Morris, who take a

similar approach at an abstract level to general static games [5] and apply it to games with

a quadratic-normal structure [6], and with Bergemann, Brooks and Morris, who perform

a similar analysis in a monopoly pricing problem [4] and a first-price auction [3]. Like

the latter two papers in particular, we choose a relatively simple and common form of

economic interaction and explore the possible information-free predictions.
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A basic difference between our work and the others just mentioned is that the latter

explore all possible equilibria, whereas we focus on the best equilibrium for each informa-

tion structure. Indeed, in our setup, it is always an equilibrium for both parties to never

agree to trade. Moreover, such bad equilibria cannot always be eliminated with a simple

refinement (see Subsection 4.3). Hence if we allowed all equilibria, the observer could

make no predictions about the realized gains from trade. Accordingly, our results are

best interpreted not so much as a positive prediction about how much trade will actually

happen, but rather as a study of the limits of informational contagion arguments.

This difference also means that we cannot use the same technical tools as in the

Bergemann-Brooks-Morris work. They use linear programming methods, which are suit-

able for studying the set of all possible equilibria under different information structures,

but not for identifying a particular equilibrium for each information structure, as we do

here. Instead, we use a nonconstructive method, applying the Nash existence theorem to

variant games.

Our contribution is also reminiscent of the work of Kajii and Morris [9] on ex-ante ro-

bustness to incomplete information. They consider Nash equilibria of complete-information

games, and give conditions under which any nearby incomplete information game (whose

payoffs equal those of the complete information game with high probability) must have a

nearby equilibrium. Our results are connected if we think of the situation where both par-

ties gain from trade ex-post (the “normal” state in the above example) as corresponding

to the complete-information game, and both parties accepting trade as the complete-

information equilibrium. In fact, the argument in Kajii and Morris leads to a sharp

quantitative bound on how far the equilibrium can move when one introduces a given

amount of incomplete information, if both the payoffs in the newly-introduced states and

the information structure can be chosen arbitrarily. In contrast, for the particular trading

game that we consider, we keep the payoff distribution fixed, and vary the information

structure only, and give a corresponding sharp bound by different techniques.

2 Model

Let’s now flesh out the formal model. The buyer’s and seller’s values for the good, b and

s, are random variables whose joint distribution is given by a probability measure µ on

R
2, with compact support. This µ describes the prior belief, shared by the buyer, seller,

and the outside observer. We assume b ≥ s with probability 1: it is common knowledge

that there are (weak) gains from trade. (We will discuss later the consequences of relaxing
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this assumption.)

We assume a very simple institution for trading. There is a known market price p,

which is constant. Each of the two agents can either agree to trade at that price or decline

to trade. If both agents agree, they trade, giving payoffs b− p and p− s to the buyer and

seller respectively. If either declines, then both receive payoff 0.

We will assume that neither the buyer nor the seller is certain ex ante that trade is

beneficial for him: the events b− p < 0 and p− s < 0 both have positive probability.

Both the buyer and seller may receive information prior to trading, via an information

structure which is unknown to the observer. We restrict to finite information structures,

to avoid complications with equilibrium existence. Thus, an information structure consists

of two finite sets of signals, IB and IS, and a joint probability measure ν on R
2×IB×IS,

such that the marginal of ν on the R
2 component coincides with µ. The signals received

by the two agents will be denoted by ηB ∈ IB and ηS ∈ IS.

Any information structure induces a Bayesian game, in which the two agents observe

their signals and then decide whether to agree to trade. The buyer’s possible (mixed)

strategies are functions σB : IB → [0, 1], denoting the probability of agreeing after each

signal, and the seller’s strategies are functions σS : IS → [0, 1]. The expected payoffs from

a strategy profile are

uB(σB, σS) =

∫
σB(ηB)σS(ηS)(b− p) dν, uS(σB, σS) =

∫
σB(ηB)σS(ηS)(p− s) dν.

(2.1)

(Here and subsequently, all integrals are taken to be over the entire probability space

unless indicated otherwise.) A strategy profile (σB, σS) is a (Bayesian Nash) equilibrium

if

uB(σB, σS) ≥ uB(σ
′
B, σS) and uS(σB, σS) ≥ uS(σB, σ

′
S)

for any alternative strategies σ′
B, σ

′
S.

The observer would like to make robust predictions about the best possible equilibrium.

This could naturally be taken to mean the equilibrium that realizes the highest expected

surplus; but we could also imagine other criteria, e.g. the highest probability of trade.

We may as well give a formulation that allows for various such criteria, since it will not

require much extra work. So, we assume the observer has an objective, represented by

some bounded, measurable function of b, s, call it w(b, s): the observer gets w(b, s) when
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trade occurs and 0 otherwise. Thus, the observer’s criterion is

W (σB, σS) =

∫
σB(ηB)σS(ηS)w(b, s) dν.

For example, if we define w(b, s) = b − s then this captures the expected gains from

trade realized in equilibrium; if w(b, s) = 1 then we have the probability of trade. Other

criteria might express the observer’s placing more importance on trade in some states

than in others. We do, however, need that the observer always prefers for trade to occur:

w(b, s) ≥ 0, for all (b, s) in the support of µ.

We then say that a value x for the observer’s criterion is a robust prediction if, for

every information structure (IB, IS, ν), there exists an equilibrium (σB, σS) satisfying

W (σB, σS) ≥ x.1 It is immediate that there is some maximum robust prediction. We

wish to characterize what this value is.

Our analysis will also lead us naturally to look at symmetric information structures,

where both agents have the same information. Explicitly, we say the information structure

is symmetric if IB = IS and the measure ν places probability 1 on the event ηB = ηS.

We say that a value x is a robust prediction under symmetric information if, for every

symmetric information structure (IB, IS, ν), there exists an equilibrium (σB, σS) satisfying

W (σB, σS) ≥ x.

3 Results

3.1 Measures and decompositions

Let’s jump to the punch line. To identify how good or bad an equilibrium outcome is

(from the observer’s point of view), it suffices to describe when the agents fail to trade.

Our two main results describe these possible no-trade events. The first main result says

that for any information structure, there exists an equilibrium in which the event of no

trade is at most the union of two other events, one on which the buyer has a negative

expected gain from trading at price p, and one on which the seller has a negative expected

gain from trading. (Note that this result is just a characterization of the overall no-trade

1The term “prediction” is a bit of a misnomer, for two reasons: first, as already pointed out, we may
not be confident in predicting that this equilibrium will actually occur; and second, “prediction” may
suggest a point estimate, whereas in our language, if x is a robust prediction then any lower value is as
well. A name like “robustly attainable value” or “robustly surpassable value” might be more descriptive.
But we keep “prediction” for simplicity.
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event: It does not say that in equilibrium, the buyer declines trade on the first sub-event

and the seller declines on the second.) The second main result is a sort of converse: for any

event that has such a decomposition into two sub-events, there is an information structure

under which no trade can occur there. Thus, together, these two results characterize the

maximal possible no-trade events. Moreover, in the second result, one can choose the

information structure to be symmetric — that is, both players have identical information.

We will give the results, and then, before proceeding to the proofs (Subsection 3.3), will

first detail how they can be used to compute the maximum robust prediction (Subsection

3.2).

Although the above verbal description is in terms of events, it will actually be more

convenient to work with (sub-probability) measures on R
2. This will allow us to describe

where the mass of (buyer, seller) values corresponding to an event is distributed, without

needing to keep track of the underlying probability space.

For example, given an information structure, and given (mixed) strategies (σB, σS),

we can define a measure µT on R
2 by

µT (E) =

∫
σB(ηB)σS(ηS)1((b, s) ∈ E) dν,

for any measurable E ⊆ R
2. So for any E, µT (E) gives the probability that the pair of

values (b, s) is in E and the parties trade. This is in contrast to µ(E), which simply gives

the probability that (b, s) ∈ E. Likewise, we can define a measure µNT by

µNT (E) =

∫
(1− σB(ηB)σS(ηS))1((b, s) ∈ E) dν.

This is the probability that (b, s) ∈ E and trade does not occur. We call µT and µNT

the trade measure and no-trade measure associated to strategies (σB, σS), and note that

µT + µNT = µ. Note also that we can rewrite the observer’s criterion as

W (σB, σS) =

∫
w(b, s) dµT . (3.1)

To describe the decompositions used in our results, we again consider pairs of measures

on R
2, describing how a portion of the probability mass of values is distributed. Given a

pair (µB, µS) of such measures, call it a negative-gains pair if the following three conditions

hold:
∫
(b−p) dµB < 0,

∫
(p−s) dµS < 0, and µB+µS ≤ µ (that is, µB(E)+µS(E) ≤ µ(E)

for every event E). Then, say that a measure µ′ has a negative-gains decomposition if it
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can be written as µ′ = µB + µS for some negative-gains pair (µB, µS).

The first main result is then as follows:

Proposition 3.1. Let (IB, IS, ν) be any information structure. There exists an equi-

librium (σB, σS), whose no-trade measure satisfies µNT ≤ µ′, for some µ′ that has a

negative-gains decomposition.

The converse proposition says that, given a measure that has a negative-gains decom-

position, we can find an information structure where trade necessarily breaks down at

least that often in any equilibrium.

Proposition 3.2. Let µ′ be a measure that has a negative-gains decomposition. Then

there exists an information structure such that, in any equilibrium, the no-trade measure

µNT satisfies µNT ≥ µ′. Moreover, we can take this information structure to be symmetric.

With these results stated, the next task is to show how they can be used to compute

the maximum robust prediction for the observer’s criterion, given the prior µ. This

computation begins with the observation below:

Corollary 3.3. The following are equivalent, for a real number x:

(a) x is a robust prediction;

(b) x is a robust prediction under symmetric information;

(c) x ≤
∫
w(b, s) dµ − supµ′

∫
w(b, s) dµ′, where the supremum is over all measures µ′

having a negative-gains decomposition.

Proof: Clearly (a) implies (b): if a prediction of x is valid for any arbitrary informa-

tion structure, it is valid for any symmetric information structure.

For (b) implies (c), suppose that the conclusion (c) fails to hold; then x >
∫
w(b, s) dµ−∫

w(b, s) dµ′ for some particular µ′ that has a negative-gains decomposition. So, by Propo-

sition 3.2, there exists a symmetric information structure where, in every equilibrium, the

no-trade measure is at least as large as µ′, and therefore the trade measure µT is ≤ µ−µ′.

So, by (3.1) (and the fact that w ≥ 0 everywhere), in every equilibrium, the observer’s

criterion is W (σB, σS) ≤
∫
w(b, s) d(µ−µ′) < x. Thus, x is not a robust prediction under

symmetric information.

For (c) implies (a), suppose x satisfies the given condition. In any information struc-

ture, Proposition 3.1 gives an equilibrium (σB, σS), whose trade measure µT satisfies
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µT ≥ µ− µ′, for some µ′ that has a negative-gains decomposition. Then, using (3.1),

W (σB, σS) ≥
∫

w(b, s) dµ−
∫

w(b, s) dµ′ ≥ x

where the second inequality comes from the assumption in (c). So x is a robust prediction.

�

3.2 Maximal no-trade measures

It remains, then, to calculate the supremum in (c) of Corollary 3.3 — the worst total

value, as measured by the observer’s criterion w, that can be stuck in a measure with

a negative-gains decomposition. Or, equivalently, this is the worst total value of w that

can be packed into two measures carved out of the prior µ, with one measure being

negative-gain for the buyer and the other negative-gain for the seller. (Because of the

strict inequalities, the worst case is approached but not actually attained; but we will

disregard this detail in the informal description here.)

We first intuitively describe the worst possible such measures in the benchmark case

where the observer is concerned with expected gains from trade, w(b, s) = b − s. The

worst-case µB consists of as much total value of b−s as possible, subject to the constraint

that the total value of b − p should be negative. This is constructed by grabbing the

mass from µ that comes as “cheaply” as possible, i.e. for which the ratio (b − p)/(b − s)

is as low as possible, up until the
∫
(b − p) dµB < 0 constraint becomes binding. That

is, µB simply consists of the mass from µ lying in the region (b − p)/(b − s) < αB, for

some threshold αB. This region of (b, s)-space is shown by the horizontally-hatched area

in Figure 1 (where the gray heat map represents the density of the prior distribution µ;

note we ignore the upper-left half-space b < s since values in that half-space never occur).

How is the threshold value αB determined? It is the value for which the integral of b− p

over this region is zero. Similarly, the worst-case µS consists of the mass from µ lying

in the region (b − p)/(b − s) > αS (the diagonally-hatched area in the figure), with the

threshold αS determined by the condition that the integral of p − s over this region is

zero.

Thus, the worst-case µ′ consists of all the mass from µ lying in either of the two

hatched regions in the figure. If these two regions were to overlap, then the worst-case µ′

would equal µ, i.e. the worst-case prediction would be zero trade.

For more general criteria w, it will still hold that the worst-case µB and µS are sepa-
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Figure 1: Worst-case negative-gains measures (criterion = gains from trade)

rated in terms of the ratio (b− p)/(b− s), which we will call the buyer-gains ratio since it

represents the share of gains from trade accruing to the buyer. In general, µB will place

all its weight in a region of (b, s)-space where the buyer-gains ratio is low, and µS will

place all its weight in a disjoint region where the buyer-gains ratio is high. But then,

within these respective regions, µB will consist of mass from µ for which (b − p)/w is as

low as possible, and µS will consist of mass for which (p− s)/w is as low as possible. All

of this will be illustrated through examples in Section 4 ahead.

The rest of this subsection will formalize these ideas in detail; it can be skipped on a

casual reading. We first show that the worst-case negative-gain measures µB and µS can

be separated by buyer-gains ratios as above. Explicitly, we show that there exists some

α ∈ [0, 1] such that µB puts weight only on value pairs (b, s) with (b − p) ≤ α(b − s),

and µS puts weight only on pairs with (b− p) ≥ α(b− s). Moreover, if equality holds for

a positive mass of value pairs (a detail omitted from the above description), then there

exists β ∈ [0, 1] such that these pairs all contribute at most a share β of their mass to µB

and at most 1− β of their mass to µS.

To state the separation lemma explicitly, given α, β ∈ [0, 1], we define the following

events in R
2:

Eα
< = {(b, s) | (b− p) < α(b− s)},

Eα
= = {(b, s) | (b− p) = α(b− s)},

Eα
> = {(b, s) | (b− p) > α(b− s)},
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and define two measures µα,β
B , µα,β

S by

µα,β
B (E) = µ(E ∩Eα

<)+βµ(E ∩Eα
=), µα,β

S (E) = µ(E ∩Eα
>)+ (1−β)µ(E ∩Eα

=) (3.2)

for any event E. Note that µα,β
B +µα,β

S = µ. (We may write these without the superscript

α, β.)

We will then say that a pair of measures (µB, µS) is (α, β)-separated if µB ≤ µα,β
B and

µS ≤ µα,β
S .

Lemma 3.4. Let (µB, µS) be a negative-gains pair. Then there exists a negative-gains

pair (µ̂B, µ̂S) that is (α, β)-separated, for some α, β, and such that µ̂B + µ̂S = µB + µS.

The proof is mechanical: With (µB, µS) given, any choice of parameters α, β specifies

a way of redividing the mass µ′ = µB + µS into µ̂B and µ̂S. There is some range of (α, β)

for which the needed inequality
∫
(b− p) dµ̂B < 0 is satisfied, and a corresponding range

for µ̂S; we just need to show that these two parameter ranges overlap. The details are in

Appendix A.

Lemma 3.4 shows that in our search for the supremum of
∫
w(b, s) dµ′ over measures

that have a negative-gains decomposition, we can restrict ourselves to decompositions

that are (α, β)-separated for some α, β.

So, for any given α, β, define Y (α, β) to be the supremum of
∫
w(b, s) d(µB +µS) over

negative-gains pairs that are (α, β)-separated. We just need a way to compute Y (α, β)

for given α and β, and then in a subsequent round we optimize over α, β.

It is evident that

Y (α, β) = sup
µB

∫
w(b, s) dµB + sup

µS

∫
w(b, s) dµS,

where the first supremum is over all measures µB ≤ µα,β
B satisfying

∫
(b − p) dµB < 0,

and the second is over all measures µS ≤ µα,β
S satisfying

∫
(p − s) dµS < 0: any two

measures satisfying these bounds do indeed form a negative-gains pair. We denote these

two separate suprema by YB(α, β), YS(α, β).

These separate suprema can be calculated by the greedy algorithm that takes mass

that (for µB) minimizes the ratio (b− p)/w, up until the point where the total integral of

b− p is zero; or (for µS) minimizes (p− s)/w, up until the integral of p− s is zero.

Let us give a precise statement. For γ > 0 and δ ∈ [0, 1], define

F γ
< = {(b, s) | b− p < γw(b, s)}, F γ

= = {(b, s) | b− p = γw(b, s)}.
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Then F γ
< is increasing in γ, and so

∫
F

γ
<
(b−p) dµB is also (weakly) increasing in γ, since the

pairs that are in F γ
< but not in F γ′

< for γ′ < γ must satisfy b−p ≥ 0. The integral is also left-

continuous in γ. Let γ∗
B ∈ (0,∞] be the supremum of values such that

∫
F

γ
<
(b−p) dµB < 0.

(This integral is negative for small enough γ > 0, so we are assured that γ∗
B > 0.) If

γ∗
B < ∞ then the expression

∫
F

γ∗
B

<

(b − p) dµB + δ
∫
F

γ∗
B

=

(b − p) dµB is weakly increasing in

δ ∈ [0, 1], and is nonnegative at δ = 1; let δ∗B be the supremum of values for which it is

< 0. The expression must be equal to 0 at δ = δ∗B.

To optimize the seller’s negative-gain measure µS, we perform a completely analogous

computation, substituting p− s for b− p and µS for µB, and defining events

Gγ
< = {(b, s) | p− s < γw(b, s)}, Gγ

= = {(b, s) | p− s = γw(b, s)}.

This gives values γ∗
S and δ∗S.

Lemma 3.5. If γ∗
B = ∞ then YB(α, β) =

∫
R2 w(b, s) dµB. Otherwise,

YB(α, β) =

∫

F
γ∗
B

<

w(b, s) dµB + δ∗B

∫

F
γ∗
B

=

w(b, s) dµB.

Similarly, if γ∗
S = ∞ then YS(α, β) =

∫
R2 w(b, s) dµS, and otherwise

YS(α, β) =

∫

G
γ∗
S

<

w(b, s) dµS + δ∗S

∫

G
γ∗
S

=

w(b, s) dµS.

The proof is in Appendix A.

Finally, we can summarize our work in the following procedure to compute the ob-

server’s maximum robust prediction, given the prior distribution µ.

1. For each choice of α, β ∈ [0, 1], split µ into µB and µS by (3.2).

2. Use the greedy algorithm on this µB and µS — taking the mass with the lowest

buyer-gains ratio (b− p)/w and (p− s)/w, respectively — to compute YB(α, β) and

YS(α, β), as described in Lemma 3.5. This determines Y (α, β) = YB(α, β)+YS(α, β)

for the given α and β.

3. Finally, as given by Corollary 3.3, the maximum robust prediction equals
∫
w(b, s) dµ−

supα,β Y (α, β).

We note that the brief description given earlier for the benchmark case w(b, s) = b− s

— where the measure µB is formed by restricting µ to the value pairs (b, s) with the lowest

13



ratio (b − p)/(b − s), and µS is formed by restricting to the value pairs with the highest

ratio — immediately follows as a special case.

3.3 Proofs of main results

We now turn to the proofs of the main results.

The proof of Proposition 3.1 — existence of a “good” equilibrium for any information

structure — is nonconstructive. We consider a sequence of constrained games, where some

of the possible signal realizations are “locked”; when a player receives a locked signal, we

require him to agree to trade. Initially, all values of the signals are locked. We then

gradually unlock the signal values one by one, and apply the Nash existence theorem to

each such constrained game. As long as the equilibrium of the constrained game is not

also an equilibrium of the unconstrained game, it must be that one player or the other

wishes to decline trade at a signal that is currently locked. This fact can be written as an

inequality. As we gradually unlock the signals, we obtain a succession of such inequalities,

and combining these inequalities leads to our result.

Proof of Proposition 3.1: We successively define sequences of signal sets J k
B ⊆

IB,J k
S ⊆ IS and functions λk

B, λ
k
S : IB × IS → [0, 1], for k = 0, 1, . . .. These sets and

functions will be made to satisfy the following conditions:

(a) λk
B(ηB, ηS) = 0 whenever ηB ∈ J k

B;

(b) λk
S(ηB, ηS) = 0 whenever ηS ∈ J k

S ;

(c) if (ηB, ηS) /∈ J k
B × J k

S , then λk
B(ηB, ηS) + λk

S(ηB, ηS) ≥ 1;

(d) if J k
B 6= IB, then

∫
λk
B(ηB, ηS) · (b− p) dν < 0;

(e) if J k
S 6= IS, then

∫
λk
S(ηB, ηS) · (p− s) dν < 0.

J k
B will be the set of signal realizations for the buyer that are locked in the kth

constrained game; similarly for the seller and J k
S . λ

k
B and λk

S will be weights derived from

the deviation inequalities along the way.

For the base case, we take J 0
B = IB, J 0

S = IS, and λ0
B, λ

0
S identically zero. It is clear

that (a) and (b) hold, and (c)–(e) are vacuous.

Now suppose these sets and functions have been defined for some k. Consider the

Bayesian game where each player learns his signal according to ν, and agrees or declines

to trade, with the constraint that the buyer must agree to trade whenever ηB ∈ J k
B, and
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likewise the seller must agree whenever ηS ∈ J k
S . That is, the (mixed) strategy space of

the buyer is the set of σB : IB → [0, 1] such that σB(ηB) = 1 whenever ηB ∈ J k
B, and

likewise for the seller; and the payoffs are given by (2.1). This game has a Bayesian Nash

equilibrium, call it (σB, σS).

Suppose that (σB, σS) is not an equilibrium of the original, unconstrained game. In this

case we will define J k+1
B ,J k+1

S , λk+1
B , λk+1

S . One of the players has a profitable deviation,

say the buyer (the argument if it is the seller is totally analogous). In particular, there

is at least one signal η∗B on which the buyer benefits from deviating. That is, there is σ′
B

that agrees with σB for all signals except η∗B, and such that

uB(σ
′
B, σS) > uB(σB, σS). (3.3)

We must have η∗B ∈ J k
B, because otherwise the deviation σ′

B would be allowed in the

constrained game, and (3.3) contradicts the assumption that (σB, σS) was an equilibrium

of the constrained game. Therefore, σB(η
∗
B) = 1, and σ′

B(η
∗
B) < 1. So (3.3) implies

∫

ηB=η∗
B

σS(ηS)(b− p) dν < 0. (3.4)

Define J k+1
B = J k

B \ {η∗B}, and define

λk+1
B (ηB, ηS) =

{
σS(ηS) if ηB = η∗B,

λk
B(ηB, ηS) otherwise.

Also define J k+1
S = J k

S and λk+1
S = λk

S.

We check that (a)-(e) are satisfied for step k + 1. It is straightforward to see that (a)

for k + 1 follows from (a) for k. For (c), we only need to check the cases where ηB = η∗B.

There are two possibilities. If ηS /∈ J k
S , then

λk+1
B (ηB, ηS) + λk+1

S (ηB, ηS) ≥ λk
B(ηB, ηS) + λk+1

S (ηB, ηS)

= λk
B(ηB, ηS) + λk

S(ηB, ηS)

≥ 1.

Here the first line is because λk
B(ηB, ηS) = 0 (by (a) for k); the second is because λk+1

S = λk
S;

the third is by (c) for k. If on the other hand ηS ∈ J k
S , then λk+1

B (ηB, ηS) = σS(ηS) = 1
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already. So (c) holds. For (d), we already know
∫
λk
B(ηB, ηS)(b− p) dν ≤ 0. And

∫
λk+1
B (ηB, ηS)(b− p) dν −

∫
λk
B(ηB, ηS)(b− p) dν

=

∫

ηB=η∗
B

(λk+1
B (ηB, ηS)− λk

B(ηB, ηS))(b− p) dν

=

∫

ηB=η∗
B

σS(ηS)(b− p) dν

< 0

by (3.4). Finally, (b) and (e) hold since J k+1
S = J k

S and λk+1
S = λk

S.

Now, at each step k of this construction, the sets J k
B,J k

S become weakly smaller, and

one of them becomes strictly smaller. By finiteness, the process must stop at some k.

This can only happen when the constrained equilibrium (σB, σS) is an equilibrium of the

unconstrained game. This will be the equilibrium claimed in the proposition, so we focus

now on this k and these strategies. We need to show that the no-trade measure is bounded

above by µB + µS, for some negative-gains pair (µB, µS).

First, we can change λk
B and λk

S if necessary so that the inequality in condition (c)

becomes an equality. To see this, consider any (η∗B, η
∗
S) /∈ J k

B × J k
S . At least one of

∫

(ηB ,ηS)=(η∗
B
,η∗

S
)

(b− p) dν,

∫

(ηB ,ηS)=(η∗
B
,η∗

S
)

(p− s) dν

is nonnegative, since their sum is nonnegative. If the former, we can replace λk
B(η

∗
B, η

∗
S)

by the lower value 1 − λk
S(η

∗
B, η

∗
S) (keeping all other values of λk

B the same); this will

make (c) hold with equality at this pair and will preserve (d) since the left side of the

inequality there becomes weakly smaller. Likewise, in the latter case we replace λk
S(η

∗
B, η

∗
S)

by 1 − λk
B(η

∗
B, η

∗
S). Doing this for each signal pair, we ensure that (c) is an equality for

each signal pair where it applies, without violating any of the other conditions.

Now suppose momentarily that J k
B 6= IB and J k

S 6= IS. Define our measures µB and

µS by

µB(E) =

∫
λk
B(ηB, ηS)1((b, s) ∈ E) dν,

µS(E) =

∫
λk
S(ηB, ηS)1((b, s) ∈ E) dν.

Then, ∫
(b− p) dµB =

∫
λk
B(ηB, ηS)(b− p) dν < 0
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by (d), and ∫
(p− s) dµS =

∫
λk
S(ηB, ηS)(p− s) dν < 0

by (e). Moreover, for any event E ⊆ R
2,

µB(E)+µS(E) =

∫
(λk

B(ηB, ηS)+λk
S(ηB, ηS))1((b, s) ∈ E) dν ≤

∫
1((b, s) ∈ E) dν = µ(E),

because the equality in (c), together with (a) and (b), ensures that λk
B+λk

S ≤ 1 everywhere.

Thus, µB + µS ≤ µ, and so (µB, µS) form a negative-gains pair.

We need to check that in our equilibrium, the resulting no-trade measure satisfies

µNT ≤ µB + µS. From the definitions, we can see that this is equivalent to checking

1− σB(ηB)σS(ηS) ≤ λk
B(ηB, ηS) + λk

S(ηB, ηS) (3.5)

for all ηB, ηS. If (ηB, ηS) ∈ J k
B×J k

S , then the left side is 0 by definition of the constrained

game, and the right side is also 0 by (a–b). Otherwise, the left side is ≤ 1 and the right

side is 1 by (c). So (3.5) indeed holds.

This proves the proposition if J k
B 6= IB and J k

S 6= IS.

Finally, if J k
B is all of IB or J k

S is all of IS, then we can use the same construction,

but then we will have
∫
(b−p) dµB = 0 or

∫
(p−s) dµS = 0, respectively, instead of < 0 as

needed. We can fix this using small adjustments. If
∫
(b−p) dµB = 0 but

∫
(p−s) dµS < 0,

we can take a small amount of probability mass from µ where b−p < 0, and either place it

in µB or, if this mass already belongs to µS, then move it from µS to µB. If
∫
(b−p) dµB < 0

and
∫
(p − s) dµS = 0, then we similarly place a small probability mass in µS. Finally,

if both of the gains integrals are zero, then J k
B = IB and J k

S = IS, so that µB and µS

as originally defined are identically zero; in this case we adjust them by just taking any

small amount of probability mass with b− p < 0 and placing it in µB, and likewise with

p − s < 0 for µS. In all cases, after the adjustment we will have both gains integrals∫
(b− p) dµB,

∫
(p− s) dµS strictly negative, and we still have µNT ≤ µB + µS ≤ µ, which

is what we need. �

It now remains to prove Proposition 3.2, on existence of an information structure

forcing some amount of no-trade. In contrast to the above proof, this one will consist of a

very simple construction: Let (µB, µS) be the negative-gains decomposition of the given

measure µ′. Then, for the signal structure, simply have both players observe whether they

end up in µB, µS, or neither.
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Proof of Proposition 3.2: Let (µB, µS) be the negative-gains decomposition of µ′,

and put µO = µ− µ′. Let IB = IS = {O,B, S} be the set of signals. Define the measure

ν on R
2 × IB × IS as follows: for any event E ⊆ R

2,

ν(E × {(O,O)}) = µO(E), ν(E × {(B,B)}) = µB(E), ν(E × {(S, S)}) = µS(E),

and ν puts zero mass on all other signal pairs. Evidently, ν is a probability measure whose

marginal on R
2 is µO + µB + µS = µ. Thus, we have an information structure, and it is

symmetric. For any equilibrium (σB, σS), we must have σB(B)σS(B) = 0: If σS(B) > 0,

then the buyer will strictly prefer not to trade when he receives signal B, since his gain

from agreeing is
∫
σS(B)(b − p)dµB < 0. Likewise, σB(S)σS(S) = 0. It follows that the

resulting no-trade measure satisfies µNT ≥ µB + µS = µ′. �

3.4 Comments on sign criteria

Now that we have those proofs finished, we briefly discuss the consequences of relaxing

some of the assumptions on signs.

Both parties’ gains uncertain. We have assumed that the events b − p < 0 and

p−s < 0 both have positive probability under µ. What happens when one has probability

zero? If, say, p − s ≥ 0 for certain, then the seller is always willing to accept trade. On

any information structure, constraining the seller to always accept, and having the buyer

choose a best response, gives an equilibrium. So Proposition 3.1 becomes simpler: there

exists a measure µB ≤ µ for which the integral of b− p is negative, and µNT = µB.

The converse, analogous to Proposition 3.2, says now that for any measure µB ≤ µ

for which
∫
(b− p) dµB is negative, there is a (symmetric) information structure for which

the no-trade measure is always at least as large as µB. Hence, to compute the maximum

robust prediction, we just need to compute the supremum of
∫
w(b, s) dµB over measures

with
∫
(b − p) dµB < 0 — which we do by the greedy algorithm — and then subtract it

from
∫
w(b, s) dµ.

Of course, if both b− p ≥ 0 and p− s ≥ 0 for certain, then it is always an equilibrium

for both agents always to trade.

Observer prefers trade. We have required the observer’s criterion w to be non-

negative. What if w could be negative — for example, the observer is concerned with

the buyer’s expected payoff in equilibrium? Then Corollary 3.3 no longer determines

exactly the maximum robust prediction, because of a gap between Propositions 3.1 and

3.2. Proposition 3.1 says that the no-trade measure µNT is bounded above by µ′ that has
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a negative-gains decomposition. If w is nonnegative, then for any given µ′, the worst

case is to have µNT actually equal to µ′, and Proposition 3.2 says there is an indeed

an information structure that forces this. However, if w can have negative values, then

the worst-case no-trade measure may be strictly smaller than µ′, picking out only the

realizations of (b, s) where w has positive values.

It is still possible to use Proposition 3.1 to give a nontrivial robust prediction for the

observer’s payoff, in many cases: an analogue to Corollary 3.3 implies the observer’s crite-

rion must be at least
∫
w(b, s) dµ− supµ′

∫
max{w(b, s), 0} dµ′. But this robust prediction

might not be best possible.

Aggregate gains from trade. We have also assumed common knowledge of gains

from trade — b−s ≥ 0 for sure. Nothing changes as long as we have the weaker assumption

that max{b−p, p−s} ≥ 0 for sure (and continue to require w(b, s) ≥ 0 everywhere, which

may require the observer’s criterion to be something other than gains from trade).

However, if it is possible that both b− p and p− s are negative, then we can no longer

ensure µB+µS ≤ µ in Proposition 3.1; instead we only have µB ≤ µ and µS ≤ µ separately.

This is because condition (c) in the proof may be satisfied with strict inequality, and unlike

before, we can no longer decrease one of the λ’s to make it become an equality. This again

gives us a gap between Propositions 3.1 and 3.2. So again, Proposition 3.1 may give us a

nontrivial robust prediction, but Proposition 3.2 no longer ensures that this prediction is

optimal.

4 Examples

Here we give a couple of examples illustrating the results of Section 3, as well as discussions

exploring some interpretive issues.

4.1 Computing the Maximum Robust Prediction

We start with a simple (perhaps too simple) application of our results, showing how to

compute the maximum robust prediction, in an example adapted from Morris and Shin

[14]. It is common knowledge that the the good is worth 2c more to the buyer than it is

to the seller. Most likely, it is worth p+ c to the buyer and p− c to the seller. However,

there is a small probability δ that the good is a lemon, with low value to both parties, and

probability δ that it is a peach, with high value to both parties. Specifically, the common
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prior distribution µ is that

(b, s) =





(p−M + c, p−M − c) with probability δ,

(p+ c, p− c) with probability 1− 2δ,

(p+M + c, p+M − c) with probability δ.

(Here M > c > 0.) We take w(b, s) = 1 everywhere, so we are interested in robustly

predicting the probability of trade; predicted gains from trade are just 2c times this

probability. Note that the numerical illustration at the beginning of the introduction is

an instance of this setup.

Since the criterion w(b, s) = 1 and the criterion w(b, s) = 2c are equivalent in this

example, the shortcut at the beginning of Subsection 3.2 applies: we form the buyer’s

negative-gain measure µB by carving out probability mass from µ with the lowest possible

buyer-gains ratios, up until the point where the buyer’s conditional expected value equals

the price p; and we form the measure µS by carving out probability mass with the highest

possible buyer-gains ratios, until the seller’s expected value equals p. If these regions end

up overlapping, then the best robust prediction is zero trade.

Specifically, there are two cases depending on parameters:

• If δM/c ≤ 1/2, then the maximal possible total mass of µB is δM/c — consisting

of the δ probability of lemon realizations, together with a δ(M − c)/c probability

mass of normal realizations. Likewise the maximal µS consists of the δ probability of

peach realizations and a δ(M−c)/c probability mass of normal realizations. (Again,

these are really suprema, not maxima, but we glide over this distinction.) Therefore,

by Corollary 3.3, the maximum robust prediction is 1 − 2δM/c. That is, for any

information structure, there is an equilibrium where trade occurs with probability

at least 1− 2δM/c; and this bound is sharp, even with the restriction to symmetric

information.

To be fully explicit, we describe an information structure approaching the bound:

Both parties receive the same signal, ηB = ηS = η ∈ {O,B, S}. The joint distribu-

tion of values and signals is as shown in Table 2. (Note that the formatting of this

table is different from Table 1; here rows are values and columns are signals.) Here

ǫ > 0 is arbitrarily small. Thus, under the signal B — which is a noisy signal of the

lemon state — trade cannot occur because the buyer’s expected value is less than

p. Under the peach signal S, trade cannot occur because the seller’s expected value

is greater than p. So trade occurs with probability at most 1− 2δM/c+ 2ǫ.
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Values η = B η = O η = S
(p−M + c, p−M − c) δ 0 0

(p+ c, p− c) δM−c
c

− ǫ 1− 2δM
c
+ 2ǫ δM−c

c
− ǫ

(p+M + c, p+M − c) 0 0 δ

Table 2: Distribution of values and (symmetric) signals

• If δM/c > 1/2, then the best possible robust prediction is 0: the information may

be structured so that no trade can occur in equilibrium.

One possible information structure that yields no trade (not the only one) is to have

a shared signal η ∈ {B, S}, jointly distributed with the values as shown in Table

3. Under signal B, the buyer’s expected value is less than p; under signal S, the

seller’s expected value is more than p.

Values η = B η = S
(p−M + c, p−M − c) δ 0

(p+ c, p− c) 1
2
− δ 1

2
− δ

(p+M + c, p+M − c) 0 δ

Table 3: Distribution of values and (symmetric) signals

4.2 A More Complicated Illustration

The example in the previous subsection was rather minimal. Here we briefly walk through

a more involved example, featuring a continuous and asymmetric distribution of values.

To avoid a flood of notation, we use specific numbers.

Let µ be the uniform distribution on the pentagon

P = {(b, s) ∈ R
2 | 3 ≤ b ≤ 8; 1 ≤ s ≤ 6; b ≥ s},

and let p = 5. This is shown in Figure 2(a), where the pentagon is shaded.

We first consider the gains-from-trade criterion, w(b, s) = b − s. In this case, again

following the method described in Subsection 3.2, the worst-case µB consists of all the

mass from µ lying in the region (b− p)/(b− s) < αB, for some threshold αB. The portion

of the pentagon P satisfying this inequality is shown horizontally hatched in Figure 2(b).
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Figure 2: Worst-case computation, in an example. (a) The observer’s µ. (b) Worst
case for the gains-from-trade criterion. (c) Computing Y (α) for the probability-of-trade
criterion. (d) Worst case for the probability-of-trade criterion.

Thus, µB consists of mass with the same density as µ, uniformly distributed on this

hatched region. (Unlike in the previous example, we need not worry about what happens

to mass lying exactly on the boundary line (b−p)/(b−s) = αB, since this line has measure

zero.) The relevant value of αB is determined by the condition that the integral of b− p

over this hatched region should equal zero. Likewise, the worst-case µS consists of all the

mass from µ lying in the region (b− p)/(b− s) > αS, shown diagonally hatched in Figure

2(b). The value of αS is determined by the condition that the integral of p− s over this

region is zero.

Thus, in the worst case (ignoring the ǫ adjustments needed to make the inequalities

strict), both players receive an (identical) signal telling them whether (b, s) is in the

horizontally-hatched, diagonally-hatched, or the gray region in Figure 2(b). Only in the

gray region does trade occur.
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To identify the value of the threshold αB, compute that the corresponding line in-

tersects the lower edge of P at point
(

5−αB

1−αB
, 1
)
. (This is assuming that the line does

indeed intersect the lower edge of P , as drawn, rather than the right edge; we later check

that this is indeed the case.) Thus the range of possible values of b in the horizontally-

hatched region is
[
3, 5−αB

1−αB

]
, and for each such b, the range of corresponding values of s is

[
1,min{b, b(αB−1)+5

αB
}
]
. Hence the condition pinning down αB is

∫ 5−αB
1−αB

3

∫ min{b,
b(αB−1)+5

αB
}

1

(b− 5) ds db = 0.

The left side is a rational function of αB ∈ [0, 1], and the resulting polynomial equation

has a unique solution in this range, which we compute to be αB =
√
2− 1. From this we

check that 5−αB

1−αB
= 5 + 2

√
2 < 8, so that the line does indeed intersect the lower edge of

P as shown.

By a similar argument, the value of αS is given by the condition

∫ 6

8− 3
αS

∫ 8

max{s,
5−αSs

1−αS
}

(5− s) db ds = 0

which gives the solution αS = 27
20

− 3
20

√
21. We check that the intersection of the line

(b− p)/(b− s) = αS with the vertical b = 8 is
(
8, 5− 1

3

√
21
)
, whose vertical coordinate is

> 1, so that the line does indeed intersect the right edge of P as shown.

This identifies the worst case for gains from trade. The maximum robust prediction

is then given by integrating b − s, multiplied by the density of µ, over the gray region.

This integral comes to approximately 0.772. Thus, we can robustly predict that for any

information structure, there is an equilibrium that realizes expected gains from trade of

at least 0.772, or 29.1% of the first-best gains from trade; and this bound cannot be

improved.

We now take the same µ and p, but consider the probability-of-trade criterion, w(b, s) =

1. In this case, we proceed as described at the end of Subsection 3.2. For each α ∈ [0, 1],

we separate µ into the mass below the line (b − p)/(b − s) = α and the mass above it.

(Our earlier description of the process also involves a choice of β, which tells us how to

divide up the mass exactly on the line; again, this is irrelevant in the present example

since this mass is zero.) Within the portion below the line, we form µB by taking all the

mass with sufficiently low values of (b − p)/w = b − p — that is, with b − p < γB for

some γB. This is shown by the horizontally-hatched region in Figure 2(c). The value of
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γB is determined by the constraint that the integral of b− p over this region should equal

0. Similarly, µS consists of all the mass above the α line with sufficiently low values of

p − s, as shown by the diagonally-hatched region; the integral of p − s over this region

should equal 0. If there is no choice of the threshold γB (or γS) that makes the integral

equal zero, then we come as close as possible by taking all of the available mass to form

µB (respectively, µS); this is shown for µS in the figure. Once µB and µS are constructed,

Y (α) consists of the sum of the integrals of w with respect to these two measures — that

is, the total area of the two hatched regions (times a constant, the density of µ). Finally,

whichever α maximizes Y (α) gives the worst case.

The thresholds γB and γS are functions of α that cannot be conveniently written

in closed form; they are solutions to cubic polynomials whose coefficients depend on

α. However, we can compute them, and maximize Y (α), numerically. The resulting

α is approximately 0.614, and the corresponding worst-case µB, µS consist of the mass

shown in the horizontally- and diagonally-hatched regions of Figure 2(d).2 The maximum

robust prediction is then given by integrating w, multiplied by the density of µ, over the

remaining, gray region. This gives us 0.165: thus, for any information structure, there

exists an equilibrium where trade occurs with probability at least 0.165.

4.3 No-Trade Equilibria

As mentioned in the introduction, it is hard to interpret our results as giving a positive

prediction about how much trade will happen, because there is always at least one other

equilibrium, in which neither agent ever accepts trade. One might try to get rid of

such bad equilibria using a standard refinement, such as elimination of weakly dominated

strategies, or more generally trembling-hand perfection. Unfortunately, this refinement

does not help. We now demonstrate this with an illustration, building on the simple

example from Subsection 4.1, in which there can be trembling-hand perfect equilibria

with no trade, even though the good equilibrium outcome involves trade most of the

time.

Let µ be as given in Subsection 4.1, for some parameter values with δM/c small, so that

for any information structure there is an equilibrium with a high probability of trade. Now

consider the following information structure. The signal sets are IB = IS = {L,N, P}.
The letters stand for “lemon, normal, peach,” and the first and last signals are perfectly

2Note that, as depicted, the lines given by γB and γS happen to intersect on the line (b−p)/(b−s) = α.
This is not coincidence: in general, with continuous distributions and the probability-of-trade criterion,
one can show that when this concurrency occurs, the first-order condition for maximizing Y (α) is satisfied.
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informative while the middle signal is imperfectly informative. Specifically, conditional on

the values (b, s), both players’ signals are independently drawn from the same distribution,

which is given by Table 4.

Values Pr(L) Pr(N) Pr(P )
(p−M + c, p−M − c) 1/2 1/2 0

(p+ c, p− c) 0 1 0
(p+M + c, p+M − c) 0 1/2 1/2

Table 4: Distribution of each player’s signal, conditional on values

There are some signal realizations for which the players have (weakly) dominant ac-

tions: If the buyer receives L, he knows the values are (p −M + c, p −M − c) for sure,

so he does not accept trade, in any trembling-hand perfect equilibrium. Similarly, if the

seller receives L, he does accept. If the buyer receives P , he accepts; if the seller receives

P , he does not accept.

Let (σB, σS) be the following strategy profile: the buyer accepts only when his signal is

P , and the seller accepts only when his signal is L. To check that this is a trembling-hand

perfect equilibrium, it suffices to check that each player is playing a strict best reply to

the other’s strategy when his own signal is N , since it follows that each player’s strategy

is a best reply to any sufficiently small tremble. Consider the buyer’s strategy when his

signal is N . From his point of view, any of the three value pairs — and any of the seller’s

signals — can occur with positive probability. But if he accepts trade, the trade will only

occur if the seller’s signal is L, in which case trade is definitely bad for him. So the buyer

strictly loses by agreeing to trade on signal N . Similarly for the seller.

In this equilibrium, trade only occurs if the buyer receives signal P and the seller

receives L; but this can never happen.

4.4 Alternative Mechanisms

As mentioned in the introduction, our results are dependent on the particular posted-price

mechanism we have assumed. In particular, a peculiar feature of this setup is that the

worst-case information structure is symmetric; this would not hold in general for other

trading mechanisms.

For example, consider instead a double auction mechanism: the buyer names a price

pB, and the seller names a price pS; if pB < pS then no trade takes place, and if pB ≥ pS
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then trade happens at price (pB + pS)/2. For any µ, and any symmetric information

structure, there is an equilibrium in which the parties always trade: For each realization

of the signal η, pick any price p(η) lying in between the buyer’s and seller’s expected

values conditional on η; then it is an equilibrium for both parties, after observing η, to

name the price p(η). This mechanism realizes all gains from trade.

In view of this observation, one might ask: is it possible that, no matter what the

information structure is, the buyer and seller can always come up with some suitable

mechanism — and an equilibrium of it — that realizes all (or at least most) of the gains

from trade? After all, we have assumed it is common knowledge that b ≥ s, so that, say,

the classic impossibility result of Myerson and Satterthwaite [15] does not apply.

However, there exist variants of this result in the literature that do apply, show-

ing that for certain value distributions and (asymmetric) information structures, no

(budget-balanced, individually rational) mechanism guarantees efficient trade. For exam-

ple, Fieseler, Kittsteiner, and Moldovanu [7] consider an information structure in which

each party receives a one-dimensional signal, and each party’s value is a function of both

signals; they give a necessary and sufficient condition for the nonexistence of a mecha-

nism guaranteeing efficient trade, generalizing Myerson-Satterthwaite. Moreover, Samuel-

son [18] considers a generalization of Akerlof’s [1] lemons model, in which one party is

perfectly informed about both parties’ values and the other is completely uninformed;

Samuelson shows that for some parameterizations, no mechanism can achieve any trade

in equilibrium, even though there is common knowledge of gains from trade.

In view of all this discussion, it is natural to ask what happens when we allow the

parties to choose the best mechanism, instead of simply assuming a posted-price mecha-

nism. In general, what would the maximum robust prediction then look like? And what

would the best mechanism (and the corresponding worst-case information structure) look

like? These questions, however, seem substantially more difficult than the analysis we

have given here for the posted-price mechanism.

5 Closing Discussion

5.1 Interpretation

Now it’s time to fulfill the promise in the introduction, to discuss possible economic

interpretations of our main results. We stress, however, that the question of economic

interpretation is basically separate from the methodological purpose of the paper, which

26



has already been discussed.

A key assumption is that the observer knows the distribution of buyer’s and seller’s

values for the good, but does not know the information structure and does not directly

observe the trading outcomes. Thus, it makes sense to think of the observer not as an

econometrician who has past trading data, but perhaps as a planner trying to orchestrate

future trades, with limited foresight of the relevant environment.

For example, one might imagine that a buyer and seller are considering contracting

on a specialized widget, which they may or may not actually wish to trade in the future,

but which requires some capital investment today in order to be able to trade later. Our

model applies if they can currently foresee the physical circumstances that affect each

party’s value for the widget, but cannot anticipate what each party will know when the

time comes to trade. A lower bound for the attainable gains from trade can potentially

provide an immediate guarantee that the investment is worthwhile.3

A related application might be to a regulator designing a financial market, in which

agents might be able to trade some security whose value depends on future events. If the

regulator can anticipate how the events will affect the security’s value but not the details

of what information the traders will have, a lower-bound result can potentially provide

assurance that there will still be enough trade in the market to warrant the fixed costs of

opening the market.

A different perspective is to fit our work in with the literature on design of information

structures [10, 16, 12], taking the worst-case information structure literally as a description

of how an adversary might best prevent two parties from trading. This might describe,

for example, a firm that tries to prevent its rival from successfully trading with a supplier

by putting in place a signalling system that reveals to them information relevant to their

trade.

Finally, one more economic interpretation of our results is as a counterpoint to the

literature on how trade breaks down in lemons markets. As discussed in the introduction,

recent work such as Morris and Shin [14] points to contagion in adverse selection, empha-

sizing the role played by higher-order beliefs. Although higher-order beliefs can indeed

be important for particular information structures, our results suggest that they are not

3In our model, there is common knowledge of gains from trade. In this case, our analysis seems
unnecessary: the parties simply could agree up front to trade with probability 1, at a price that splits
the ex-ante gains from trade. However, the model fits the following variant: The buyer will find out
tomorrow whether he wants the widget (in which case gains from trade are positive) or doesn’t want the
widget (gains are negative), and there may be additional information as well, of unknown structure. Ex
ante, the buyer is unlikely to want the widget, so that simply contracting to sell is inefficient. The model
then describes what happens conditional on the buyer wanting the widget.
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needed to tell a story about breakdown of trade. That is, given the known distribution

over values, the probability of trade breakdown that can be explained using higher-order

beliefs is no worse than may occur with very simple and indeed symmetric information

structures. This finding builds in a natural way on the earlier work of Kessler [11] and

Levin [13] showing that the extent of trade breakdown in lemons markets is generally

non-monotone in the amount of information asymmetry. However, an important caveat

to this interpretation is that it depends on our assumption of a posted-price mechanism

for trade. As discussed in Subsection 4.4 above, a different mechanism could lead to

different predictions.

More generally, a few words should be said about our assumption of a posted-price

mechanism and its importance. As we have seen, this assumption is limiting, both in

terms of the sharpness of our characterization — we show how to find the highest possible

robust prediction for gains from trade, but this is no longer sharp if the agents are allowed

to choose a different mechanism — and our observations about the nature of the worst-

case information structure. One modest defense is that we simply follow the literature

— e.g. [1, 8, 14] — in adopting this simple trading mechanism, in order to better focus

attention on the question of information structure. Another point is that our main result

is a lower bound on the attainable gains from trade; it would continue to hold a fortiori

if the parties were also allowed to use other mechanisms, instead of being restricted to

a posted price. In particular, imagine a double auction mechanism as in Subsection 4.4.

Any equilibrium of our posted-price mechanism can be translated into an equilibrium of

the double-auction mechanism: reinterpret “accepting price p” as a bid of p in the double

auction, and reinterpret “rejecting price p” as making an unacceptable bid in the double

auction (a bid outside the support of values, which the other party would never want

to accept). This produces the same outcome as the original equilibrium of the posted-

price mechanism. Thus our sharp lower bound on attainable trade in the posted-price

mechanism is also a valid lower bound for the double auction mechanism, which has the

advantage of being “parameter-free,” unlike the posted price mechanism which has the

pesky p exogenously given.

5.2 Future directions

We wrap up by quickly surveying directions for future exploration. On the technical

side, the sharp characterization of robust predictions of trade calls out to be extended to

allow for b < s, and more generally to allow negative values of the observer’s criterion
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w. The other major direction, already pointed out in Subsection 4.4, would be to ask

about the best equilibrium outcome of the best trading mechanism, rather than a specific

posted-price mechanism. Alternative extensions could keep the restriction to a very simple

trading mechanism, but consider trade in multiple units of a good, or multiple goods.

From the methodological point of view, the role of this paper is to ask what predictions

can be made about economic interactions without knowing the details of the information

structure. We have begun to think about this question by focusing on one of the simplest

possible economic transactions — exchange of a single indivisible good, between one buyer

and one seller. We should note, however, that our model already has other interpretations

beyond the exchange setting: more generally it describes any situation where two agents

can each approve or veto some proposal, which passes only if both approve, and where

there is common knowledge that at least one agent benefits from the proposal. (In our

exchange interpretation, the agents’ values for the proposal are b− p and p− s.) In any

case, it will be natural for future work to take the same question of informationally robust

prediction to other workhorse economic models — production, moral hazard, coordination

games, public good provision — and see where there are interesting answers.

A Omitted Details

Proof of Lemma 3.4: In keeping with the main text, write µ′ = µB +µS. As α ranges

over [0, 1], the event Eα
< is increasing in α. (This depends on the fact that b − s ≥ 0

everywhere.) Moreover, any pair (b, s) contained in one Eα
< but not another satisfies

b− p ≥ 0, since pairs with b− p < 0 are in every Eα
<. Therefore

∫
Eα

<
(b− p) dµ′ is weakly

increasing in α. Also, it is negative for small enough α > 0, and is left-continuous. Let

α ∈ (0,∞] be the supremum of values for which
∫
Eα

<
(b− p) dµ′ < 0.

Similarly,
∫
Eα

>
(p − s) dµ′ is weakly decreasing in α, negative at α = 1, and right-

continuous. Let α be the infimum of values for which
∫
Eα

>
(p− s) dµ′ < 0.

We show that α ≥ α. Suppose not. Then Eα
≤ = (Eα

< ∪ Eα
=) is disjoint from Eα

≥ =

(Eα
= ∪ Eα

>). We must have
∫
Eα

≤

(b − p) dµ′ ≥ 0, otherwise the maximality of α would be

violated. Similarly,
∫
E

α

≥

(p− s) dµ′ ≥ 0.

Define two new signed measures by

µ̃B(E) = µB(E)− µ′(E ∩ Eα
≤), µ̃S(E) = µS(E)− µ′(E ∩ Eα

≥).
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Note that µ̃B is nonpositive on Eα
< and nonnegative on Eα

>, hence

∫
((b− p)− α(b− s)) dµ̃B ≥ 0.

Similarly ∫
((p− s)− (1− α)(b− s)) dµ̃S ≥ 0.

Then we have

0 >

∫

R2

(b− p) dµB −
∫

Eα
≤

(b− p) dµ′ =

∫

R2

(b− p) dµ̃B ≥ α

∫

R2

(b− s) dµ̃B,

0 >

∫

R2

(p− s) dµS −
∫

E
α

≥

(p− s) dµ′ =

∫

R2

(p− s) dµ̃S ≥ (1− α)

∫

R2

(b− s) dµ̃S.

So
∫
R2(b− s) dµ̃B < 0 and

∫
R2(b− s) dµ̃S < 0, and therefore

∫

R2

(b− s) d(µ̃B + µ̃S) < 0.

However, µ̃B + µ̃S is a nonnegative measure since

(µ̃B + µ̃S)(E) = µ′(E)− µ′(E ∩ Eα
≤)− µ′(E ∩ Eα

≥) = µ′(E \ (Eα
≤ ∪ Eα

≥)) ≥ 0

for any event E. Since b− s ≥ 0 µ′-almost everywhere, we have a contradiction.

So indeed we have α ≥ α. If α > α, we can take α to be any number in between and

β to be arbitrary. Then define

µ̂B(E) = µ′(E ∩ Eα
<) + βµ′(E ∩ Eα

=), (A.1)

µ̂S(E) = µ′(E ∩ Eα
>) + (1− β)µ′(E ∩ Eα

=). (A.2)

Now

Eα
< ⊆ Eα

< ∪ Eα
= ⊆ Eα′

<

for any α′ ∈ (α, α) readily implies

∫

R2

(b− p) dµ̂B =

∫

Eα
<

(b− p) dµ′ + β

∫

Eα
=

(b− p) dµ′ < 0,
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and by a similar argument ∫

R2

(p− s) dµ̂S < 0.

Thus, (µ̂B, µ̂S) is a negative-gains pair. Since µ′ ≤ µ, we can see from the definitions

(A.1–A.2) that this pair is (α, β)-separated; and evidently µ̂B + µ̂S = µ′ = µB + µS. So

we are finished in this case.

We are left with the case α = α. In this case, we fix α = α = α and repeat the

argument with β.

Since b− p, p− s ≥ 0 everywhere on Eα
=, the expression

∫

Eα
<

(b− p) dµ′ + β

∫

Eα
=

(b− p) dµ′ (A.3)

is weakly increasing in β ∈ [0, 1]. Let β be the supremum of such values for which it is

< 0. (If it is ≥ 0 already at β = 0 then take β = 0.) Note that by continuity in β, (A.3) is

in fact ≥ 0 at β, except in the corner case where β = 1 and α = 1. But in this corner case,

the lemma is easily proven. Indeed, we can then take (α, β) = (1, 1), and define µ̂B and

µ̂S by (A.1–A.2), and the conclusion of the lemma holds: (b− p) dµ̂B < 0 by assumption,∫
(p− s) dµ̂S must be < 0 because µ̂S only places weight on E1

>, where p− s < 0 for sure,

and the rest follows as before. Thus, we may assume that the expression (A.3) is ≥ 0.

Similarly, the expression
∫
Eα

>
(p− s) dµ′ + (1− β)

∫
Eα

=
(p− s) dµ′ is decreasing in β; let

β be the infimum of values for which it is < 0, or β = 1 if no such values exist. The

expression is ≥ 0 there except if β = 0 and α = 0, and again this corner case can be

disposed of separately.

Now we show that β > β. Suppose not. Then take any β with β ≤ β ≤ β. Define

µ̃B(E) = µB(E)− µ′(E ∩ Eα
<)− βµ′(E ∩ Eα

=),

µ̃S(E) = µS(E)− µ′(E ∩ Eα
>)− (1− β)µ′(E ∩ Eα

=).

As before, µ̃B is nonpositive on Eα
< and nonnegative on Eα

>, hence

∫
((b− p)− α(b− s)) dµ̃B ≥ 0,

and similarly ∫
((p− s)− (1− α)(b− s)) dµ̃S ≥ 0.
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Now

0 >

∫

R2

(b− p) dµB −
(∫

Eα
<

(b− p) dµ′ + β

∫

Eα
=

(b− p) dµ′

)

(since the first integral is negative by assumption, and the expression in parentheses is

just (A.3) at β, which is ≥ 0 because we have assumed we are not in the corner case)

=

∫

R2

(b− p) dµ̃B ≥ α

∫

R2

(b− s) dµ̃B.

Thus,
∫
R2(b − s) dµ̃B < 0. By a similar argument,

∫
R2(b − s) dµ̃S < 0. Adding,

∫
R2(b −

s) d(µ̃B + µ̃S) < 0. But µ̃B + µ̃S = µ′ − µ′ = 0 identically — a contradiction.

Thus, β > β. So we can choose β ∈ (β, β). Now let (µ̂B, µ̂S) be defined by (A.1–

A.2). It is immediate that
∫
R2(b − p) dµ̂B, which is just (A.3), is < 0, and similarly∫

R2(p− s) dµ̂S < 0. Thus the new pair is a negative-gains pair, and the rest is checked as

before. �

Proof of Lemma 3.5: We only prove the formula for YB; the YS case is analogous.

First suppose γ∗
B = ∞. Then

∫
R2 w(b, s) dµB is clearly an upper bound for Y (α, β).

From the definition of γ∗
B, we have

∫
F∞
<
(b− p) dµB ≤ 0, where F∞

< is the event (w(b, s) >

0 or b− p < 0). If the inequality is strict, we can take µB = µB|F∞
<

(that is, the measure

defined by µB(E) = µB(E ∩ F∞
< ) for any E). Otherwise, since there is a positive prob-

ability of b − p < 0 under µ (by assumption) and so also under µB|F∞
<

(note that this

equals µ for events where b− p < 0), then there is also a positive probability of b− p > 0

under µB|F∞
<
. So we can form µB from µB|F∞

<
by removing an arbitrarily small probability

mass on such an event. In either case, we obtain µB with
∫
R2(b− p) dµB < 0 strictly, and∫

R2 w(b, s) dµB arbitrarily close to
∫
R2 w(b, s) dµB.

Now suppose γ∗
B is finite. Define the measure µ̂B by

µ̂B(E) = µB(E ∩ F
γ∗
B

< ) + δ∗BµB(E ∩ F γ∗
B

= ).

So the expression given as the value of Y (α, β) in the lemma statement is simply
∫
w(b, s) dµ̂B.

Also, we know that
∫
(b− p) dµ̂B = 0.

We first show that this value is an upper bound on Y (α, β). Otherwise, let µB be a

measure with higher value of
∫
w(b, s) dµB, still satisfying

∫
(b − p) dµB < 0 and µB ≤

µB. Define a signed measure by µ̃B = µB − µ̂B. Then µ̃B is nonpositive on F
γ∗
B

< , and
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nonnegative on F
γ∗
B

> (which we define in the obvious way). Therefore,

∫

R2

((b− p)− γ∗
Bw(b, s)) dµ̃B ≥ 0.

This implies

∫

R2

(b− p) dµB −
∫

R2

(b− p) dµ̂B ≥ γ∗
B

(∫

R2

w(b, s) dµB −
∫

R2

w(b, s) dµ̂B

)
.

But here the left side is negative, while the right side is positive — a contradiction.

So
∫
R2 w(b, s) dµ̂ is indeed an upper bound on Y (α, β). For the reverse direction, note

that, as in the γ∗
B = ∞ case, the measure µ̂B places some positive probability on the event

b − p < 0 (which is contained in F
γ∗
B

< ), and so it must also place positive probability on

b − p > 0. By removing an arbitrarily small amount of probability mass with b − p > 0,

we get a new measure µB such that
∫
R2(b− p) dµB < 0 and µB ≤ µB, and

∫
R2 w(b, s) dµB

is arbitrarily close to
∫
R2 w(b, s) dµ̂B. �
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