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Abstract

We interpret an �equality matching�relationship as a chips mech-
anism, and we characterize the optimal chips mechanism in a repeated
favor-exchange game. We then compare the optimal chips mechanism
with a more sophisticated favor-exchange relationship in which the
size of a favor owed may decline over time. Abdulkadiro¼glu and Bag-
well (2012) show that the �highest symmetric self-generating line�of
payo¤s in the favor-exchange game is supported by such a relation-
ship. We �nd su¢ cient conditions for a sophsiticated favor-exchange
relationship of this kind to produce higher levels of cooperation and
exchange among players than they achieve in the optimal chips mech-
anism.

1 Introduction

Psychological and anthropological studies report that an important category
of human social interactions emphasizes trust and reciprocity. Fiske (1992)
surveys ethnographic �eld work and experimental studies and argues that
virtually all human social interactions can be described in terms of four
patterns, each with a distinctive psychological basis. One pattern is called
�equality matching�(EM). As Fiske (1992, p. 703) states, �The operating
principle is that when people relating in an EMmode receive a favor, they feel
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obligated to reciprocate by returning a favor.� In EM relationships, people
keep track of the imbalances between them and engage in score keeping, with
the restoration of balance being a primary aspiration. As Fiske (1992, p. 705)
puts it, �People think about how much they have to give to reciprocate or
compensate others or come out even with them. EM always entails some
kind of additive tally of who owes what and who is entitled to what.�
We study EM relationships in a repeated favor-exchange game with private

information. The game has two players. Players a and b play the following
stage game every period: either player a is given income, player b is given
income, or neither player is given income. Each player is privately informed
as to whether or not he has income. Thus, if a player does not receive
income, then the player does not observe whether neither player received
income or the other player received income. Next, if one player receives
income, then that player may choose to send some or all of his income to the
other player. If a transfer is made, then the level of the transfer is publicly
observed. Motivated by the trust game studied in the experimental literature
(Berg, Dickhaut and McCabe, 1995), we assume that the transfer is value
enhancing.; that is, the bene�t of the transfer to the recipient exceeds the
cost of the transfer to the sender.
Our game may be understood as a model of favors. When a player receives

income and makes a transfer to the other player, the former player provides
a favor to the latter player. An important feature of our game is then that
a player privately observes whether he has the capacity to provide a favor in
a given period. Our game is a discrete-time version of the continuous-time
game considered by Mobiüs (2001). Our stage game is essentially equivalent
to Mobiüs�with a di¤erent normalization of payo¤s. We choose this normal-
ization in order to compare our results with those in our companion paper
(Abdulkadiro¼glu and Bagwell, 2012).
We model an EM relationship as a chips mechanism. The players own

a certain number of chips, which are worthless on their own. The players
utilize chips only to keep an �additive tally of who owes what and who is
entitled to what.�When player i receives income and the other player j owns
some chips, i sends all of his income to the other player, who then gives one
chip to i in return. When a player has all of the chips in the game, he does
not send any income to the other player.
Our �ndings shed light on the mechanics and limitations of EM rela-

tionships. First, a chips mechanism with a positive number of chips can be
supported as an equilibrium if players are su¢ ciently patient. An (N + 1)-
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chips mechanism provides a player with n � N chips with higher expected
payo¤ than an N -chips mechanism does. The presence of private informa-
tion, however, imposes an upper bound on the number of chips that can
be used in equilibrium. Indeed, if a player had in�nitely many chips, he
would clearly not have an incentive to give his income to the other player in
exchange for an additional chip.
It is well known that repeated interaction can foster cooperation; how-

ever, our interpretation of EM relationships requires further that players are
privately informed. To see this point, suppose instead that both players
commonly observe when one of them receives income. Given that favors
are value enhancing, the players recognize a gain from cooperation: if in
all periods any player that receives income were to send all income to the
other player, then the players would both enjoy higher payo¤s in comparison
to the payo¤s that they would receive were instead they always to keep all
income. For su¢ ciently patient players, this cooperative behavior can be
enforced as a subgame perfect equilibrium, if the players threaten that any
deviation induces a reversion to the autarkic Nash equilibrium of the stage
game. The repeated favor-exchange game with full information thus pro-
duces a behaviorally simple cooperative equilibrium in which score keeping
an additive tallies play absolutely no role.
By contrast, when players are privately informed, a player must be given

incentive to reveal that he has received income and to make a corresponding
transfer. An EM relationship (or chips mechanism) can provide this incentive
by ensuring that such a player receives a future bene�t. In particular, in an
N -chips mechanism, a player�s expected utility increases with the number of
chips he owns. Thus, when a player gives up his current income in exchange
for a chip, he is entitled to a higher expected payo¤ next period than he
was at the beginning of the current period. We refer to this as the incentive
compatibility constraint (IC) for the player. For an N -chips mechanism to
be an equilibrium, IC must hold for every player with n < N chips. We refer
to such an equilibrium mechanism as incentive compatible (IC).
It turns out that the only binding incentive compatibility constraint is

the one for the player with N � 1 chips. That is, if the player with N � 1
chips has incentive to transfer all of his income, then so does any player with
a smaller number of chips. In fact, as we state above, the players�payo¤s
increase as the number of chips, N , in the game increases. However, the
maximum feasible payo¤, and therefore the payo¤ of a player with all of the
chips, is bounded from above. Also, as N increases, the payo¤ of a player
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with n chips, n � N�1, increases more than the payo¤of a player with n�1
chips. So it is the player with N � 1 chips whose IC constraint is likely to be
violated as number of chips increases. Furthermore, if an N -chips mechanism
is IC, then so is an (N � 1)-chips mechanism. And if an N -chips mechanism
fails to be IC, so does the (N +1)-chips mechanism. This observation yields
a simple algorithm to �nd the optimal equilibrium chips mechanism that is
characterized by the maximum number of chips. Start with N = 1:

� Given N -chips, write the expected payo¤s recursively. Then apply-
ing Blackwell�s theorem, obtain a contraction mapping. Calculate the
associated expected payo¤s as the unique �xed point of the mapping.

� If the IC constraint for the player with N � 1 chips is violated, then
the optimal number of chips is N � 1: Otherwise repeat the two steps
with N + 1:

Since the number of chips in equilibrium is bounded from above, the algo-
rithm converges in �nite time.
Understanding the limitations of an EM relationship is equally impor-

tant as understanding its mechanics. To this end, we provide a su¢ cient
condition on the discount factor for an N -chips mechanism to fail to be IC.
If the discount factor takes an intermediate value, then the optimal chips
mechanism utilizes only one chip. That is, when a player gives his income
to the other player, he does not send any additional income until the other
player pays back the favor. We will refer to the chip mechansim with one
chip (N = 1) as the simple EM relationship. In a more general model, Ab-
dulkadiro¼glu and Bagwell (2012) study equilibria that can be characterized
using symmetric self-generating lines of payo¤s, which correspond to lines
of payo¤s that have slope minus 1 and are symmetric around the 45o line.
The simple EM relationship can be represented as such a self-generating line.
In the equilibrium that characterizes a simple EM relationship, the players
switch between the end points of the associated self-generating line. Thus,
when a player provides a favor by sending all of his income to the other
player, the former player becomes the favored player in the next period. The
expected payo¤ for the favored player takes the highest value on the line. In
a simple EM relationship, the favored player makes no further transfers until
after the other player returns the favor by transferring all of his income. At
that point, the expected payo¤s of the players switch to the other extreme
of the line, which favors the other player.
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Abdulkadiro¼glu and Bagwell (2012) characterize the highest symmetric
self-generating line (HSSGL). This is the symmetric self-generating line that
gives the highest total expected payo¤ to the players. On the HSSGL, and
as in the simple EM relationship, when the disfavored player sends all of
his income, his expected payo¤ in the next period takes the highest value
on the line. In contrast the simple EM relationship, however, if the favored
player receives income, then he transfers a positive portion of this income (i.e.,
provides a partial favor) and thereby ensures that his payo¤in the next period
takes the highest value on the line. Furthermore, in the implementation of
the HSSGL, if no income transfer is observed in a period, then in the next
period the players� expected payo¤s move towards the center on the line.
To achieve this movement in payo¤s, the implementation requires that the
transfer from the disfavored (favored) player decreases (increases) following
a period with no income, although the required transfer from the disfavored
player is always larger than that required from the favored player. Thus, and
as Abdulkadiro¼glu and Bagwell (2012) discuss, in such a �sophisticated favor-
exchange relationship,�the size of the favor that is owed by the disfavored
player declines over time, as neutral (no-income) phases of the relationship
are experienced. Hauser and Hopenhayn (2008) independently observe the
same pattern, which they call �forgiveness,�in their simulations of the Pareto
frontier of the continuous-time version of our game that is analyzed byMobiüs
(2001). This �nding implies that a sophisticated favor-exchange relationship
may foster more cooperation than an EM relationship.
Mobiüs (2001) introduces the repeated favor-exchange game in continuous

time and discusses the chips mechanism. Hauser and Hopenhayn (2008) show
that the Pareto frontier of Mobiüs�game is self-generating. As noted, they
observe forgiveness in their simulations of the Pareto frontier and conjecture
that this property also holds on the frontier. In a discrete-time model, Nay-
yar (2009) reports parameter restrictions under which the implementation
of payo¤s on the Pareto frontier requires that continuation values are drawn
from the outer boundary of the equilibrium set, where the outer boundary
includes the Pareto frontier but is potentially larger. She also provides a
partial characterization of the strategies that support payo¤s on the Pareto
frontier. Kalla (2010) studies two important extensions in discrete time.1

1Lau (2011) also studies a model with favor exchange. In his model, the costs and
bene�ts of favors are stochastic, and a player may have private information as to the costs
of providing a favor.
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First, he introduces incomplete information regarding players�discount fac-
tors. He characterizes su¢ cient conditions under which patient players can
separate from impatient players and then implement a favor-exchange rela-
tionship. He shows that separation under symmetric equilibria has to take
place within a �nite time period, after which beliefs diverge and separation
becomes impossible. Second, in a complete-information setting, Kalla intro-
duces scope for risk sharing via concave utility functions. He shows that some
form of a favor-exchange relationship then becomes possible for all discount
factors. Finally, the chips mechanism has been studied in the context of
collusion by Skryzpacz and Hopenhayn (2004) and Olszewski and Safronov
(2012), while HSSGL�s are studied in the context of collusion by Athey and
Bagwell (2001).
We introduce the model in the next section. We characterize the optimal

chips mechanism in Section 3 and compare it in Section 4 with sophisticated
favor-exchange relationships. We conclude in Section 5.

2 Model

We follow the notation of Abdulkadiro¼glu and Bagwell (2012) for the sake
of comparability of our results. Otherwise, the stage game of our game is
isomorphic to Mobiüs (2001) via payo¤ normalization.
We study a stylized model with two players, a and b: In the stage game,

either player a is given an income of $1, player b is given an income of $1,
or neither player is given an income. The former two events each occur with
probability p 2 (0; 1=2) and the latter event thus occurs with probability
1 � 2p: Each player is privately informed as to whether or not he receives
income. Thus, if a player does not receive income, then the player does not
observe whether neither player received income or the other player received
income. If a player receives income, then that player may send any x 2 [0; 1]
to the other player. The transferred income becomes qkx. We assume qk > 1;
that is, the transfer is value enhancing. We assume risk neutral players in
order to abstract from insurance arrangements, and we let � 2 (0; 1) denote
the players�common discount factor.
One can interpret x as investment, q as the probability of success of

the investment and k as the productivity of a successful investment. Ab-
dulkadiro¼glu and Bagwell (2012) provide this interpretation and allow for
immediate reciprocity after a successful investment, the success of which is
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observed privately.
In this paper, we focus on EM relationships. When people interacting in

an EM mode receive a favor, they feel obligated to reciprocate by returning
a favor. In EM relationships, people keep track of the imbalances between
them and engage in score keeping, with the restoration of balance being a
primary aspiration. This kind of behavior is referred as a chips mechanism in
game theory. The players own a certain number of chips, which are worthless
on their own. The players utilize chips only to keep an �additive tally of who
owes what and who is entitled to what.�When player i receives income and
the other player j owns some chips, i gives his income to the other player,
who then gives one chip to i in return. When a player has all of the chips in
the game, he does not send any income to the other player.
In the following, we characterize the optimal chips mechanism and relate

it to the HSSGL�s of Abdulkadiro¼glu and Bagwell (2012).

3 Optimal Chips Mechanism

Consider an N -chips mechanism:

� Each player i holds ci 2 f0; 1; :::; Ng chips such that ca + cb = N:

� If player i gets an income of $1, i gives $1 to j if ci < N and j gives
one to i in return. If ci = N; i.e. i already holds all the chips, then i
consumes $1 himself. No chips are transferred in this case.

Payo¤s and Constraints
Let V Nn denote a player�s expected discounted payo¤ when the player

holds n chips. By symmetry, V Nn is also player b�s expected payo¤ when b
holds n chips. Furthermore, if a holds n chips then b holds N � n chips.
V N = (V N0 ; :::; V

N
N ) is the unique solution of the following equation system

(for existence and uniqueness see Lemma 1 below):

V N0 = p�V N1 + p�V N0 + (1� 2p)�V N0 (1)

V Nn = p�V Nn+1 + p(qk + �V
N
n�1) + (1� 2p)�V Nn for n = 1; :::; N � 1 (2)

V NN = p(1 + �V NN ) + p(qk + �V
N
N�1) + (1� 2p)�V NN (3)
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The individual rationality (IR) constraint for a player with n = 0; :::; N
chips is

IRn : V
N
n � p

1� �
The incentive compatibility (IC) constraint for a player with n = 0; :::; N �1
chips is

ICn : V
N
n+1 � V Nn � 1

�

Results

Lemma 1 There exists a unique solution V N to the equations system (1)-
(3). Furthermore, V Nn < V Nn+1 for all N and n = 0; :::; N � 1:
Proof. Given N � 1; de�ne a mapping � : RN+1 ! RN+1 as follows: For
any V = (V0; :::; VN) 2 RN+1; let V 0 = �(V ) 2 RN+1 be de�ned by

V 00 = p�V1 + p�V0 + (1� 2p)�V0
V 0n = p�Vn+1 + p(qk + �Vn�1) + (1� 2p)�Vn for n = 1; :::; N � 1
V 0N = p(1 + �VN) + p(qk + �VN�1) + (1� 2p)�VN

Then V N is a �xed point of �; i.e. V N = �(V N): Note that � is monotone,
i.e. V̂ � V ) �(V̂ ) � �(V ): Also �(V + �a) = �(V ) + ��a for any
�a = (a; :::; a) 2 RN+1: Therefore � is a contraction mapping by Blackwell�s
theorem (Stokey, Lucas and Prescott 1989) so that � has a unique �xed point.
De�ne �0 = � and �n = � � �n�1: Then V N = lim

n!1
�n(V ) for every

V 2 RN+1:
Now suppose that V = (V0; :::; VN) 2 RN+1 is such that Vn � Vn+1 for

every n = 0; :::; N � 1: Let V 0 = (V 00 ; :::; V
0
N) = �(V ): We will show that

V 0n � V 0n+1 for every n = 0; :::; N � 1:
First note that

V 00 = p�V1 + p�V0 + (1� 2p)�V0
< p�V1 + p(qk + �V0) + (1� 2p)�V0 (4)

� p�V2 + p(qk + �V0) + (1� 2p)�V1 = V 01
where the �rst inequality follows from pqk > 0 and the last inequality follows
from V0 � V1 � V2: Next note for n = 1; :::; N � 2 that

V 0n = p�Vn+1 + p(qk + �Vn�1) + (1� 2p)�Vn
� p�Vn+2 + p(qk + �Vn) + (1� 2p)�Vn+1 = V 0n+1 (5)
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where the last inequality follows from Vn�1 � Vn � Vn+1: Finally note that

V 0N = p(1 + �VN) + p(qk + �VN�1) + (1� 2p)�VN
> p�VN + p(qk + �VN�2) + (1� 2p)�VN�1 = V 0N�1 (6)

where the last inequality follows from VN�2 � VN�1 � VN and p > 0: So
V 0n � V 0n+1 for every n = 0; :::; N � 1:
Now pick some V 2 RN+1 such that Vn � Vn+1 for every n = 0; :::; N � 1:

Then the above result and V N = lim
n!1

�n(V ) together imply that V Nn � V Nn+1
for every n = 0; :::; N � 1:
Next, given that V Nn � V Nn+1 for every n = 0; :::; N � 1; repeating the

argument in (4) with V N0 � V N1 ; i.e. using V
N
0 and V N1 on the right hand

side of the �rst line of (4), proves that V N0 < V N1 : Repeating the argument
in (5) with V N0 < V N1 � V N2 proves that V N1 < V N2 : Then repeating it again
with V Nn�1 < V

N
n � V Nn+1 proves V Nn < V Nn+1 for all n = 1; :::; N � 2: Finally

V NN�1 < V
N
N follows from repeating the argument in (6) with V NN�1 � V NN :

Lemma 2 Consider an N-chips mechanism. Let V Nn denote a player�s ex-
pected discounted payo¤ when the player holds n chips. ThenXN

n=0
V Nn =

Npqk + p

1� � :

Proof. Summing up (1)-(3) for n = 0; :::; N gives the desired result.

The following lemma implies that we can ignore the individual rationality
constraints.

Lemma 3 IC0 implies IRn for every n = 0; :::; N
Proof. IC0 is equivalent to V N1 � V N0 + 1

�
: Combining this inequality with

V N0 = p�V N1 + p�V N0 + (1� 2p)�V N0 ; we obtain IR0: Since V Nn+1 > V Nn ; the
rest follows:

The following lemma gives an upper bound for V NN in an IC N -chips
mechanism:
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Lemma 4 If ICN�1 holds, then V NN � pqk
1�� :

Proof. ICN�1 is equivalent to V NN�1 � V NN � 1
�
: Combining this with V NN =

p(1 + �V NN ) + p(qk + �V
N
N�1) + (1� 2p)�V NN ; we obtain V NN � pqk

1�� :

This is intuitive because the largest symmetric payo¤ that the players
can achieve is pqk

1�� ; which obtains when the players always give their income
to the other. This provides an upper bound for V NN : Note that the upper
bound cannot be supported as an equilibrium outcome.
Using Lemmas 2 and 4, we may immediately establish the following corol-

lary.

Corollary 5 If ICN holds in an (N+1)-chips mechanism, then
XN

n=0
V N+1n �XN

n=0
V Nn :

The next lemma states we need to check ICN�1 only in order to check IC
of an N -chips mechanism.

Lemma 6 ICN�1 implies ICn for all n = 0; :::; N � 2
Proof. Suppose that ICN�1 holds. Then by Lemma 4, V NN � pqk

1�� : As an
inductive step, assume that ICn holds for 1 < n � N � 1: We will show that
ICn�1 holds as well.
Applying ICn; :::; ICN�1; we obtain V Nn � pqk

1���
N�n
�
which gives an upper

bound for V Nn�1 :

V Nn�1 < V
N
n � pqk

1� � �
N � n
�

(7)

Combining V Nn = p�V Nn+1+p(qk+�V
N
n�1)+(1�2p)�V Nn and ICn; we obtain

V Nn �
p(qk + 1) + p�V Nn�1
1� (1� p)�

Then ICn�1 is satis�ed if

p(qk + 1) + p�V Nn�1
1� (1� p)� � V Nn�1 +

1

�

equivalently

V Nn�1 �
�pqk � (1� �)
�(1� �) (8)
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Note that
pqk

1� � �
N � n
�

� �pqk � (1� �)
�(1� �)

is equivalent to n < N; which holds. So (7) and (8) imply ICn�1: The proof
is completed by induction.

The following lemma is another way of stating Lemma 6. It states that,
in an IC chips mechanism, the IC constraint becomes more relaxed for a
player if the player holds less chips.

Lemma 7 If an N-chips mechanism is IC for some N � 2, then V Nn+1 �
V Nn < V Nn � V Nn�1 for every n = 1; :::; N � 1:
Proof. De�ne�N

n = V
N
n+1�V Nn for n = 0; :::; N�1: Then�N = (�N

0 ; :::;�
N
N�1) 2

RN is solved from

�N
0 = �

qk

�
+ ��N

1

�N
n = ��

N
n�1 + ��

N
n+1 for n = 1; :::; N � 2

�N
N�1 = ��

N
N�2 + �

1

�

where � = p�
1�(1�2p)� <

1
2
: Since the the N-chips mechanism is IC, 1

�
� �N

n

for n = 0; :::; N � 1: Then

�N
N�1 = ��

N
N�2 + �

1

�
� 2��N

N�2 < �
N
N�2

Next suppose that �N
n+1 < �

N
n for some 0 < n < N � 1: Then

�N
n = ��

N
n�1 + ��

N
n+1 < ��

N
n�1 + ��

N
n

equivalently �N
n <

�
1���

N
n�1 < �N

n�1; where the last inequality follows from
�
1�� < 1 since � < 1

2
: This proves inductively that V Nn+1 � V Nn = �N

n <

�N
n�1 = V

N
n � V Nn�1 for every n = 1; :::; N � 2:
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Proposition 8 Suppose that an N-chips mechanism is IC for N � 2. Then
for every N

2
� n < N;

V Nn+1 + V
N
N�(n+1) < V

N
n + V NN�n

Proof. Suppose that an N-chips mechanism is IC for some N � 2. Let
N
2
� n < N; then n+ 1 > N � n so we have V Nn+1 � V Nn < V NN�n � V NN�(n+1);

equivalently V Nn+1 + V
N
N�(n+1) < V

N
n + V NN�n; by Lemma 7.

That is, the sum of expected utilities V Nn +V
N
N�n decreases as n increases,

in other words, as the discrepancy between the numbers of players�chips in-
creases. This is because one of the players becomes closer to holding all the
chips, which is the main cause of ine¢ ciency with the chips mechanism. A vi-
sual reading of this proposition will be instructive later: Plot the (V Nn ; V

N
N�n)

on a two dimensional graph for all n: Then the payo¤ pairs will follow a
concave curve.

The following is an immediate corollary to Lemma 6 and Lemma 7.

Corollary 9 If an N-chips mechanism is not IC, then the ICN�1 is violated
in the N-chips mechanism.

In addition to Corollary 5, the following lemma states that a player with
n chips achieves a higher payo¤ in an IC (N + 1)-chips mechanism than in
the N -chips mechanism.

Lemma 10 If an (N+1)-chips mechanism is IC, then V N+1n � V Nn for every
n = 0; :::; N:
Proof. If N = 0 then the claim follows trivially. Let N � 1: Suppose that
an (N + 1)-chips mechanism is IC. Let

V
~N
n = A

~N
n V

~N
0 �B ~N

n pqk for ~N = N;N + 1:

Then AN0 = AN+10 = 1; BN0 = BN+10 = 0; and from equation (1), AN1 =
1�(1�p)�

p�
= AN+11 and BN1 = 0 = BN+11 : Given V ~N

j = A
~N
j V

~N
0 � B ~N

j pqk for

every j = 1; :::; n�1 where 1 � n�1 < N; ~N = N;N +1; solve for V ~N
n from

V
~N
n�1 = p�V

~N
n + p(qk + �V

~N
n�2) + (1� 2p)�V

~N
n�1
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and obtain

V
~N
n = A

~N
n V

~N
0 �B ~N

n pqk =
(1� (1� 2p)�)V ~N

n�1 � p�V
~N
n�2 � pqk

p�

so that

ANn = A
N+1
n =

(1� (1� 2p)�)ANn�1 � p�ANn�2
p�

and

BNn = B
N+1
n =

(1� (1� 2p)�)BNn�1 � p�BNn�2 + 1
p�

(9)

Note that ANn = AN+1n and BNn = BN+1n follow from the fact that we solve
for A ~N

n and B ~N
n from the same set of equations since n < N + 1 for all

n = 0; :::; N:
Note that B ~N

0 = B
~N
1 = 0; so B ~N

2 = 1=p� from (9). Applying equation
(9), we obtain

B
~N
n+1 �B

~N
n =

1� (1� 2p)�
p�

(B
~N
n �B

~N
n�1)� (B

~N
n�1 �B

~N
n�2)

Then noting that (i) B ~N
2 � B

~N
1 > B

~N
1 � B

~N
0 = 0 and (ii) 1�(1�2p)�

p�
> 2 so

that B ~N
n+1 � B

~N
n > 2(B

~N
n � B

~N
n�1) � (B

~N
n�1 � B

~N
n�2); we recursively obtain

B
~N
n+1 � B

~N
n > B

~N
n � B

~N
n�1 > 0: Then B

~N
n > B

~N
n�1 follows for all n = 2; :::; N

and B ~N
1 = B

~N
0 = 0: Then A ~N

n > A
~N
n�1 > 0 for all n = 1; :::; N since V ~N

n >

V
~N
n�1 for all n = 1; :::; N and V ~N

n = A
~N
n V

~N
0 � B ~N

n pqk: Then apply Corollary
5, XN

n=0
V N+1n = (

XN

n=0
AN+1n )V N+10 � (

XN

n=0
BN+1n )pqk

�
XN

n=0
V Nn = (

XN

n=0
ANn )V

N
0 � (

XN

n=0
BNn )pqk

and simplify by using ANn = A
N+1
n > 0 and BNn = BN+1n to obtain V N+10 �

V N0 : Then applying V
~N
n = A

~N
n V

~N
0 �B

~N
n pqk; A

N
n = A

N+1
n > 0 and BNn = B

N+1
n ;

we obtain V N+1n � V Nn for every n = 0; :::; N:

The following lemma gives us a method to compute the optimal IC chips
mechanism. Namely, we increase the number of chips by one as long as the
resulting chips mechanism is IC; we stop when it fails to be IC.

13



Lemma 11 If N-chips mechanism is not IC, then (N +1)-chips mechanism
is not IC either.
Proof. Rewriting (3) for N + 1 and N;

V N+1N+1 = p(1 + �V
N+1
N+1 ) + p(qk + �V

N+1
N ) + (1� 2p)�V N+1N+1

V NN = p(1 + �V NN ) + p(qk + �V
N
N�1) + (1� 2p)�V NN

subtracting side by side and obtain and rearranging, we obtain

V N+1N+1 � V NN =
p�

1� (1� p)� (V
N+1
N � V NN�1)

Suppose to the contrary that the (N+1)-chips mechanism is IC. Then V N+1N �
V NN by Lemma 10: Also V NN > V NN�1 by Lemma 1. We thus obtain that
V N+1N � V NN�1 > V N+1N � V NN � 0: Then p�

1�(1�p)� < 1 implies

V N+1N+1 � V NN < V N+1N � V NN�1 , V N+1N+1 � V N+1N < V NN � V NN�1

By Corollary 9, ICN�1 is violated in the N-chips mechanism so that V N+1N+1 �
V N+1N < V NN � V NN�1 < 1

�
; which in turn implies that ICN is violated in

the (N + 1)-chips mechanism, a contradiction with IC of the (N + 1)-chips
mechanism.

The next is an immediate corollary.

Corollary 12 If an N-chips mechanism is IC, then for every N 0 = 1; :::; N�
1; the N 0-chips mechanism is IC.

These �ndings yield the following algorithm for �nding the optimal chips
mechanism: Start with N = 1:

� Given N -chips, write the expected payo¤s recursively. Then apply-
ing Blackwell�s theorem, obtain a contraction mapping. Calculate the
associated expected payo¤s as the unique �xed point of the mapping.

� If the IC constraint for the player with N � 1 chips is violated, then
the optimal number of chips is N � 1: Otherwise repeat the two steps
with N + 1:

14



Since the number of chips in equilibrium is bounded from above, the algo-
rithm converges in �nite time.
The following results provide further intuition.

Lemma 13 If V N+1N = V NN for some N; then the (N + 2)-chips mechanism
is not IC.
Proof. Suppose to the contrary that V N+1N = V NN for some N and the (N+2)-
chips mechanism is IC. Then the (N + 1)-chips mechanism is also IC by
Corollary 12. Then applying the same argument in the proof of Lemma 10,
we obtain V N+1n = V Nn for all n = 0; :::; N so thatXN

n=0
V N+1n =

XN

n=0
V Nn =

Npqk + p

1� �

where the last equality follows from Lemma 2. Applying Lemma 2 one more
time, we obtain V N+1N+1 =

pqk
1�� : Since the (N +2)-chips mechanism is assumed

to be IC, V N+2N+1 � V N+1N+1 =
pqk
1�� by Lemma 10 and V

N+2
N+2 �

pqk
1�� by Lemma 4,

which together imply the violation of ICN+1 in the (N +2)-chips mechanism,
a contradiction.

Let N opt be such that N opt-chips mechanism is IC but the (N opt+1)-chips
mechanism is not IC. We refer the N opt-chips mechanism as the optimal IC
chips mechanism.

The following is an immediate corollary to Lemma 13.

Corollary 14 V N+1n > V Nn for every N < N opt � 1 and n = 0; :::; N:

The next lemma states that the payo¤ of a player with more chips in-
creases more as N increases. This lemma and Lemma 4 together show us
where the di¢ culty is coming from in sustaining IC as the number of chips
increases. In particular, Lemma 4 states that the payo¤ of the player with
the maximum number of chips is always bounded from above. However, the
next lemma states that the payo¤ of the player with all of the chips but one
increases the most as the number of chips increases. So it is this latter player
whose IC constraint is violated as number of chips increases.

15



Lemma 15 If N < N opt � 1 , then V N+1n � V Nn � p�
1�(1�p)� (V

N+1
n+1 � V Nn+1) <

V N+1n+1 �V Nn+1 for all N; n = 0; :::; N�1: If N = N opt�1 , then V N+1n �V Nn �
p�

1�(1�p)� (V
N+1
n+1 � V Nn+1) � V N+1n+1 � V Nn+1 for all N; n = 0; :::; N � 1:

Proof. By Corollary 12, the N-chips mechanism is IC for every N < N opt:
First assume that N < N opt � 1: The inequality p�

1�(1�p)� (V
N+1
n+1 � V Nn+1) <

V N+1n+1 � V Nn+1 follows from p�
1�(1�p)� < 1 and Corollary 14. From (1), V N0 =

p�
1�(1�p)�V

N
1 for all N so that V N+10 � V N0 � p�

1�(1�p)� (V
N+1
1 � V N1 ): For the

inductive step, assume that V N+1n � V Nn � p�
1�(1�p)� (V

N+1
n+1 � V Nn+1) < V N+1n+1 �

V Nn+1 for some n = 0; :::; N � 2:Rewriting (2)

V N+1n+1 = p�V N+1n+2 + p(qk + �V
N+1
n ) + (1� 2p)�V N+1n+1

V Nn+1 = p�V
N
n+2 + p(qk + �V

N
n ) + (1� 2p)�V Nn+1

and subtracting side by side, we obtain

V N+1n+1 �V Nn+1 = p�(V N+1n+2 �V Nn+2)+p�(V N+1n �V Nn )+(1�2p)�(V N+1n+1 �V Nn+1)

Substituting V N+1n � V Nn < V N+1n+1 � V Nn+1 and rearranging, we obtain

V N+1n+1 � V Nn+1 <
p�

1� (1� p)� (V
N+1
n+2 � V Nn+2)

which proves the inductive step.
The proof for the case of N = N opt�1 follows the same arguments, except

now we only have V N
opt

Nopt�1 � V
Nopt�1
Nopt�1 by Lemma 10 so that

p�
1�(1�p)� (V

Nopt

n+1 �
V N

opt�1
n+1 ) � V N

opt

n+1 � V Nopt�1
n+1 follows from p�

1�(1�p)� < 1. Now substituting

V N
opt

n � V Nopt�1
n � V Nopt

n+1 � V N
opt�1

n+1 in

V N
opt

n+1 �V N
opt�1

n+1 = p�(V N
opt

n+2 �V N
opt�1

n+2 )+p�(V N
opt

n �V Nopt�1
n )+(1�2p)�(V Nopt

n+1 �V N
opt�1

n+1 )

we inductively prove that

V N
opt

n+1 � V N
opt�1

n+1 � p�

1� (1� p)� (V
Nopt

n+2 � V N
opt�1

n+2 )
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4 Comparison with HSSGL

We utilize the following cut-o¤ values:

�� =
1

1 + p(qk � 1) < �
�
N =

1

1 + 2
N(N+1)

p(qk � 1)
; N � 2

Note that �� is the cuto¤ that Abdulkadiro¼glu and Bagwell (2012) use. Also
�� = ��1 :

The following lemma gives a su¢ cient condition for an N -chips mecha-
nism to fail incentive compatibility.

Lemma 16 For any N � 2; if � < ��N then the N-chips mechanism is not
incentive compatible.
Proof. Suppose that an N-chips mechanism is IC. Then V NN � pqk

1�� by

Lemma 4 so that
XN�1

n=0
V Nn � (N�1)pqk+p

1�� by Lemma 2. Now we can �nd a

lower bound for V NN�1 by stacking as much value as possible to V
N
0 ; :::; V

N
N�2.

To do that, �rst note that IC0; :::; ICn imply V Nn � V N0 + n
�
: Then set V̂ Nn =

V̂ N0 + n
�
for n = 1; :::; N � 1, which gives

XN�1

n=0
V̂ Nn = NV̂ N0 + (N�1)N

2�
: Then

equating this value to (N�1)pqk+p
1�� ; we obtain V̂ N0 = 1

N
( (N�1)pqk+p

1�� � (N�1)N
2�

)
and

V̂ NN�1 = V̂
N
0 +

N � 1
�

=
(N � 1)pqk + p
N(1� �) +

N � 1
2�

Now we claim that V NN�1 � V̂ NN�1: If for any n < N � 1 it were the case
that V Nn � V̂ Nn ; then this inequality would also have to hold at n = N � 1;
since under IC the fV Nn ; V Nn+1; :::; V NN�1g sequence can rise no slower than the
fV̂ Nn ; V̂ Nn+1; :::; V̂ NN�1g sequence. Likewise, if for all n < N �1 it were the case
that V Nn � V̂ Nn ; then V NN�1 � V̂ NN�1 is implied by

V NN�1 �
(N � 1)pqk + p

1� � �
N�2X
n=0

V Nn

� (N � 1)pqk + p
1� � �

N�2X
n=0

V̂ Nn = V̂ NN�1

This completes the proof of V NN�1 � V̂ NN�1:
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Since also V NN � pqk
1�� ; we obtain V

N
N �V NN�1 � pqk

1�� � V̂
N
N�1 so that ICN�1

will be violated if
pqk

1� � � V̂
N
N�1 <

1

�

which is equivalent to � < ��N : This completes our proof.

Note that ��1 = �� so that, under the assumption that � > �� the suf-
�cient condition of Lemma 16 for the 1-chip mechanism does not hold. We
will refer to the 1-chip mechanism as a simple EM relationship.2 Then the
next result follows immediately.

Corollary 17 If � 2 (��; ��2); the simple EM relationship (i.e. the 1-chip
mechanism) is the optimal IC chips mechanism, and it is dominated by
HSSGL.

Abdulkadiro¼glu and Bagwell (2012) show that the simple EM relationship
can be implemented on a set of payo¤s that lie on a symmetric -45o line
around the 45o line. They also characterize the highest such line as a HSSGL.
The next proposition gives us a parameter space for which a HSSGL is more
e¢ cient in terms of long-run average investment than the optimal incentive
compatible chips mechanism.

Proposition 18 Suppose that � > �� and �(1� �) > 2��(1� ��): Then a
HSSGL is more e¢ cient than the optimal IC chips mechanism.

Proof. First note that there exists such � as long as �� < 1
2
(1�

q
1
2
):

By Lemma 16, � > ��N must hold for an N-chips mechanism to be IC.
This is equivalent to

N(N + 1) <
2�p(qk � 1)
1� �

Substituting N2 < N(N + 1); we obtain an upper bond for N;

N < N� =

s
2�p(qk � 1)
1� �

2In our companion paper (Abdulkadiro¼glu and Bagwell, 2012), we refer to the simple
EM relationship as a simple favor-exchange relationship.
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In an N-chips mechanism, investment loss occurs when one of the players
have all the N chips. Then, since every state is visited with probability 1

N+1

in the long-run, the average loss of investment is computed as 2p
N+1

:
x+ y is constant on HSSGL, therefore the average loss of investment can

be computed as the expected loss of investment at any corner, which is equal
to p(1� y) = 2p��

�+�� :
HSSGL is more e¢ cient than the N-chips mechanism if the investment

loss is smaller on HSSGL, i.e. 2p
N+1

> 2p��

�+�� ; equivalently

� > N��

Since IC implies an upper bound of N� for N; the above inequality holds if

� > N���

which is equivalent to �(1� �) > 2��(1� ��): This completes our proof.

In other words, forgiving may produce more cooperation and investment in
the long run.
This su¢ ciency condition implies that � is away from 1, which is consis-

tent with our small � analysis. However, a HSSGL can still be more e¢ cient
than the optimal chips mechanism as � goes to 1. Using Lemma 11, we can
provide some numerical examples for that. Also, as k gets bigger, �� gets
smaller so that the result holds.

5 Conclusion

We interpret an equality matching relationship as a chips mechanism, and
we characterize the optimal chips mechansim in a repeated favor-exchange
game. We also compare the optimal chips mechanism with a more sophis-
ticated favor-exchange relationship in which the size of a favor owed may
decline as the relationship passes through neutral periods. As we show in
a companion paper (Abdulkadiro¼glu and Bagwell, 2012), the highest sym-
metric self-generating line of payo¤s in the repeated favor-exchange game is
implemented by such a sophisticated favor-exchange relationship. We �nd
su¢ cient conditions for a sophisticated favor-exchange relationship of this
kind to produce higher levels of cooperation and exchange among players
than they achieve in the optimal chips mechanism.
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