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Abstract

We present a fast multipole algorithm for the evaluation of pairwise interaction through the radial basis functions such
as 1/ra,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
(with a > 0) in both two and three dimensions. Our algorithm is an extension of the kernel

independent fast multipole method presented in Ying et al. [L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive
fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196(2) (2004) 591–626]. Numerical results are pro-
vided to illustrate the accuracy and complexity properties of the algorithm.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Radial basis functions (RBFs) are widely used in various fields of computational sciences. Applications in-
clude image processing, scattered data interpolation, physical-interaction modeling and so on. A common
component of these applications is the evaluation of pairwise interaction through RBFs for a set of points:
given a set of source densities {/i} located at points {xi} in two or three dimensions and a RBF kernel G,
we want to compute for every xi the potential ui ¼

P
jGðjxi � xjjÞ/j. Some commonly used RBFs are power

functions (1/ra with a > 0), multiquadrics (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
) and Gaussian kernels ðe�ar2Þ. While hav-

ing infinite support is essential to many useful properties of these RBFs, it also makes the evaluation process
prohibitive for large data sets. For a problem with N points, the direct calculation is of order O(N2).

In the past two decades, a number of efficient approximation algorithms have been proposed. The original
fast multipole method (FMM) [6] by Greengard and Rokhlin was developed for the fast evaluation of the
interaction through the fundamental solutions of the Laplace equation. Gaussian kernels were addressed in
[7,8]. A series of papers [2,3,1,4] by Beatson and coauthors developed FMM type algorithms for polyharmonic
spline and multiquadrics. [5] proposed an algorithm for the kernel 1/r in 2D.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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A recent paper [9] proposes a kernel independent FMM type algorithm for a wide class of non-oscillatory
kernels originated from second-order elliptic partial differential equations (PDEs). This algorithm relies on the
results from the potential theory, such as the existence and uniqueness theorems for the boundary value prob-
lem of these PDEs. In the current paper, we extend this kernel independent algorithm to the kernels 1/ra,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
(with a > 0), which do not satisfy any second-order elliptic PDE.

2. Algorithm description

Given a set of N source densities {/i} located at points {xi} in Rd (d = 2, 3), and a RBF kernel G, the goal is
to compute efficiently and accurately the potentials {ui} defined by the following formula:
ui ¼
XN
j¼1

Gðjxi � xjjÞ/j.
In this section, we first review the kernel independent FMM algorithm of [9] for G being an elliptic PDE ker-
nel. Then we describe how to modify this algorithm to accommodate the situation where G is a RBF kernel.

2.1. Review of kernel independent FMM for PDE kernels

In the case where G is a kernel from the Laplace equation, the fast multipole method (FMM) [6] is an algo-
rithm which computes ui within a prescribed accuracy in linear time. To simplify the exposition, we assume
that the points xi are uniformly distributed inside the unit box centered at the origin of Rd (for the non-
uniform case, see [6,9]). The FMM starts by subdividing the unit box dyadically into an octree tree such that
the number of points in every leaf box is less than a fixed constant s. Since the point distribution is assumed to
be uniform, the resulting octree is full. For a box B, the near field N(B) is defined to be the region containing B

and its adjacent neighbors. The rest is the far field F(B). The interaction list of B, denoted as I(B), consists of
the boxes which are in the same level as B and, at the same time, belong to the region F(B) � F(P) where P is
the parent box of B.

The basic idea of FMM is to construct two representations for every box B: (1) the multipole expansion mB

which accurately approximates in the far field region F(B) the potential generated by the densities in B; (2) the
local expansion lB which accurately approximates in B the potential generated by the densities in F(B). Addi-
tionally, for a fixed error tolerance, the sizes of both expansions are independent of the number of densities con-
tained in the box. In the original FMM algorithm [6] for the Laplace equation, the multipole expansion is based
on the Laurent series in 2D and on the spherical harmonics in 3D. The algorithm proceeds in several stages.
First, the multipole expansions are constructed during a bottom-up traversal of the octree. The multipole
expansion of a leaf box is constructed directly from the densities in this box using analytic expansion of the
kernel G while the multipole expansion of a non-leaf box is constructed from the multipole expansion of its
children box using the multipole-to-multipole (M2M) translation. Next, the local expansions are generated dur-
ing a top-down traversal of the octree. For every box B, the local expansion is computed from the local expan-
sion of its parent box using the local-to-local (L2L) translation, and the multipole expansion of the boxes in its
interaction list I(B) using the multipole-to-local translation (M2L) translation. It is important to notice that the
sum of these two parts gives the potential in B induced by all the densities in F(B). All three translations (M2M,
M2L and L2L) are derived from the analytic expansion of the kernel G and have constant complexity. Finally,
for every leaf box B, we compute the potential at each of its point as the sum of the potential from the local
expansion lB and the potential generated by the original densities inN(B). For a fixed error tolerance, the linear
complexity of this algorithm follows from the facts that all expansions and translations have constant complex-
ity and the number of densities in N(B) is bounded by a multiple of the constant s.

In the classical FMM described above, the expansions and translations all depend on the kernel G in an
analytic way. For some kernels, these analytic expansions and translations can be quite difficult to obtain.
The main advantage of the kernel independent algorithm of [9] is that it removes such kernel dependency. This
algorithm has the same structure as the classical FMM. The differences between them concern which repre-
sentations are used and how the translations are carried out. First, the kernel dependent multipole expansion
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of a box B is replaced with an upwards equivalent density, denoted by /u
B, distributed on oB. This is justified by

the fact that this boundary density is capable of reproducing the potential in F(B) induced by the source den-
sities inside B. In order to compute it, we only need to match, on oF(B), the potentials generated by /u

B and by
the source densities inside B. The uniqueness theorem of the boundary value problems of the elliptic PDEs
guarantees that as long as the two potentials match on oF(B) they match everywhere inside F(B). This matched
potential is called the upwards check potential, and denoted by uuB. In actual numerical implementation, the
discretized upwards equivalent density is supported on an evenly sampled Cartesian grid of oB, while the check
potential is matched at an evenly sampled Cartesian grid of oF(B) (see Fig. 1(a)). The matching process to
solve for the upwards equivalent density /u

B is done by first evaluating the check potential uuB using the densities
inside B, and then multiplying it with the (regularized) inverse of the matrix which relates the /u

B to uuB.
Similarly, the kernel dependent local expansion of a box B is replaced with an downwards equivalent density

/d
B distributed on a Cartesian grid of oF(B). To compute /d

B, we match on a Cartesian grid of oB the potentials
generated by /d

B itself and by the source densities in the far field F(B) (see Fig. 1(b)). This matched potential is
called the downwards check potential and denoted by udB.

The M2M, M2L and L2L translations are replaced with procedures using the same matching idea. For
example, in the M2L translation from box A to box B, we first evaluate udB (the downwards checking potential)
induced by /u

A (the upwards equivalent density of A) and then solve for /d
B (the downwards equivalent density

of B) by matching its induced potential with udB (see Fig. 1(c)). All the matching processes use only the kernel
evaluation, thus freeing us from the tedious analytic expansions. We notice that both the evaluation step and
the inversion step of the matching processes can be represented as small matrices which are independent of the
specific locations of the boxes since the kernel is translation invariant. Therefore, these matrices can be pre-
computed. Moreover, by choosing the support of the upwards equivalent density and the downwards check
potential to be the same Cartesian grid of the box boundary, the fast Fourier transform (FFT) can be used to
speed up the M2L translation which is usually the most expensive step of the algorithm (see [9] for details).

2.2. New algorithm for RBFs

In general, the kernel independent FMM in [9] works well only for the kernels derived from the second-
order elliptic PDEs, since it relies on the results from the potential theory of these PDEs. However, the radial
basis functions, such as 1/ra (for arbitrary a > 0) and multiquadrics (such as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
) in gen-

eral do not satisfy any elliptic PDE. Therefore, for these kernels, the surface supported equivalent densities are
not capable of representing the true densities, and checking the potentials on a surface cannot guarantee the
validness of the equivalent density approximation. As a result, we propose the following changes for the equiv-
alent densities and translations to accommodate these RBF kernels.

Upwards equivalent density. For a box B, the upwards equivalent density /u
B in the new algorithm for RBFs

is supported on an evenly spaced Cartesian grid of the box B (instead of a grid of oB in the case of the PDE
B
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Fig. 1. The kernel independent FMM algorithm for PDE kernels in [9]. ‘‘+’’, ‘‘d’’ and ‘‘s’’ denote the locations of the source densities,
the equivalent density and the check potential, respectively. (a) The upwards equivalent density of B and its construction. (b) The
downwards equivalent density of B and its construction. (c) M2L translation from box A to box B. In every case, the computation of the
equivalent densities has two steps: (1) the evaluation step; (2) the inversion step.
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kernels). By increasing the size of the grid, we are able to achieve better approximations to the true densities in
box B. Since all RBFs under consideration are real analytic away from its center, the potential in F(B) induced
by the densities in B is a real analytic function as well. We know that if two real analytic functions are matched
on a set of non-zero measure, they are identical. This leads us to the following scheme to compute /u

B. Instead
of matching the potentials on oF(B), we require the potentials to agree on a corona in F(B) adjacent to oF(B).
In our implementation, this corona is sampled regularly by a Cartesian grid, and the potentials are matched on
these sampling points (see Fig. 2(a)). The numerical results in Section 3 show that this scheme computes the
equivalent density in an accurate and stable way.

Downwards equivalent density. For a box B, the new downwards equivalent density /d
B is supported on the

same corona used for the computation of /u
B. In our implementation, this region is sampled again by a Carte-

sian grid, and all the grid points inside the corona comprise the support of the downwards equivalent density
/d

B. To compute /d
B, the potentials induced by the true densities and by /d

B are matched on an evenly spaced
Cartesian grid of box B (see Fig. 2(b)). In fact, we choose this grid to be the same as the grid on which /u

B is
supported in order to accelerate the M2L translation.

Translations. The M2M, M2L and L2L translations remain essentially the same except the changes of the
support of the equivalent densities and the location to match the potentials. For example, for the M2L trans-
lation from box A to box B, /u

A is now supported on a Cartesian grid of box A, while the check potential udB is
located at a Cartesian grid of box B (see Fig. 2(c)). Since A and B are in the same level of the octree, these two
Cartesian grids have the same size. Therefore, we can still use FFT to accelerate the M2L translation as in [9].

3. Numerical results

The proposed algorithm is implemented in C++ for both 2D and 3D cases. All the tests are performed on a
PC with 2 GHz CPU. The numerical results are summarized in Tables 1–4.

2D accuracy test. Table 1 shows the accuracy test results of our algorithm on seven 2D RBF kernels. We fix
the number of source densities N to be 80,000. For each kernel, we perform three tests with the upwards equiv-
alent density supported on Cartesian grids of size 4 · 4, 6 · 6 and 8 · 8, where denser grid gives better accu-
racy. The support of the downwards equivalent density is refined accordingly. The column Tfmm gives the
running time of our FMM type algorithm in seconds, while Tdir shows the estimated running time if the direct
evaluation were used. The error is computed as follows. We randomly choose k points xti where i = 1, . . . ,k.
Suppose ~uti are the exact potentials computed from the direct evaluation, and uti are the ones from our FMM

algorithm. We estimate the error by E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1
juti�~uti j

2Pk

i¼1
j~uti j

2

s
. In all experiments, k is equal to 200. We observe that

our algorithm behaves well for all seven kernels with the accuracy improved by a factor of 20–80 between two
adjacent grid sizes.
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Fig. 2. The kernel independent FMM algorithm for RBFs. ‘‘+’’, ‘‘d’’ and ‘‘s’’ denote the locations of the source densities, the equivalent
density and the check potential, respectively. (a) The upwards equivalent density of B and its construction. (b) The downwards equivalent
density of B and its construction. (c) M2L translation from box A to box B.



Table 1
2D accuracy test

Kernel Grid Tfmm (s) Tdir (s) Error Error ratio

1/r2 4 · 4 0.93 200 9.688e � 05
6 · 6 1.69 1.266e � 06 76.536
8 · 8 2.15 2.660e � 08 47.582

1/r 4 · 4 1.29 300 5.099e � 05
6 · 6 2.78 8.862e � 07 57.535
8 · 8 3.31 3.270e � 08 27.099

1/r0.5 4 · 4 1.81 432 1.024e � 05
6 · 6 4.26 2.345e � 07 43.646
8 · 8 4.86 5.943e � 09 39.467ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 0:012
p

4 · 4 1.72 432 6.851e � 06
6 · 6 4.09 3.054e � 07 22.435
8 · 8 4.66 8.669e � 09 35.226ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 0:12
p

4 · 4 1.72 432 9.122e � 06
6 · 6 4.12 3.213e � 07 28.396
8 · 8 4.64 1.238e � 08 25.949

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
4 · 4 1.71 420 4.047e � 05
6 · 6 4.09 6.714e � 07 60.279
8 · 8 4.66 2.720e � 08 24.679

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:12

p
4 · 4 1.70 424 3.404e � 05
6 · 6 4.06 4.141e � 07 82.214
8 · 8 4.69 1.154e � 08 35.885

Table 2
2D complexity test

Kernel N Tfmm (s) Tfmm ratio Tdir (s) Error

1/r2 5000 0.05 0.8 7.160e � 05
40,000 0.43 8.60 50.0 6.058e � 05
320,000 3.21 7.47 3200.0 9.643e � 05

2,560,000 29.60 9.22 203,008.0 1.439e � 04

1/r0.5 5000 0.10 1.5 8.966e � 06
40,000 1.05 10.50 108.0 1.048e � 05
320,000 8.16 7.77 6896.0 2.345e � 05

2,560,000 69.69 8.54 442,240.0 3.418e � 05ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
5000 0.10 1.5 8.085e � 06

40,000 0.99 9.90 108.0 1.032e � 05
320,000 8.76 8.85 6864.0 2.164e � 05

2,560,000 66.67 7.61 437,504.0 2.201e � 05

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
5000 0.11 1.8 5.019e � 05

40,000 0.99 9.00 104.0 4.894e � 05
320,000 8.67 8.76 6688.0 1.224e � 04

2,560,000 66.06 7.62 426,112.0 1.221e � 04
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2D complexity test. Table 2 gives the results on problems with increasing size (N from 5000 to 2,560,000) for
four different 2D RBF kernels. We fix the Cartesian grid used for the upwards equivalent density to be 4 · 4.
We observe that the complexity of our algorithm is linear with respect to the data size. Moreover, the errors
remain at the same level of 10�4 for all runs.

3D accuracy test. Table 3 summarizes the accuracy test results of our algorithm on seven 3D kernels. Since
the kernel 1/r used in 2D test is now the fundamental solution of the Laplace equation, we replace it with
1/r1.5. The achieved accuracy is controlled again by the grid of the upwards equivalent density. We use the



Table 3
3D accuracy test

Kernel Grid Tfmm (s) Tdir (s) Error Error ratio

1/r2 4 · 4 · 4 7.22 208 9.916e � 05
6 · 6 · 6 11.35 1.352e � 06 73.348
8 · 8 · 8 19.45 2.477e � 08 54.589

1/r1.5 4 · 4 · 4 15.61 480 1.990e � 04
6 · 6 · 6 25.79 2.289e � 06 86.911
8 · 8 · 8 35.83 4.797e � 08 47.721

1/r0.5 4 · 4 · 4 14.68 456 1.455e � 04
6 · 6 · 6 24.24 2.758e � 06 52.748
8 · 8 · 8 34.13 5.357e � 08 51.485ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 0:012
p

4 · 4 · 4 9.30 276 9.260e � 05
6 · 6 · 6 13.35 1.115e � 06 83.052
8 · 8 · 8 17.84 1.261e � 08 88.386ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 0:12
p

4 · 4 · 4 9.27 276 8.735e � 05
6 · 6 · 6 13.47 1.100e � 06 79.390
8 · 8 · 8 17.83 2.131e � 08 51.630

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
4 · 4 · 4 10.76 320 2.131e � 04
6 · 6 · 6 15.96 2.246e � 06 94.896
8 · 8 · 8 20.50 4.968e � 08 45.198

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:12

p
4 · 4 · 4 10.72 320 2.198e � 04
6 · 6 · 6 15.96 3.243e � 06 67.781
8 · 8 · 8 20.53 6.321e � 08 51.313

Table 4
3D complexity test

Kernel N Tfmm (s) Tfmm ratio Tdir (s) Error

1/r2 5000 0.28 0.9 5.316e � 05
40,000 2.44 8.71 54.0 4.706e � 05
320,000 21.41 8.77 3328.0 5.594e � 05

2,560,000 179.04 8.36 212,736.0 6.213e � 05

1/r0.5 5000 0.60 1.8 7.646e � 05
40,000 5.67 9.45 114.0 2.774e � 05
320,000 50.06 8.83 7280.0 9.531e � 05

2,560,000 421.39 8.42 463,232.0 9.375e � 05ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
5000 0.36 1.1 4.441e � 05

40,000 3.34 9.28 72.0 1.978e � 05
320,000 29.09 8.71 4400.0 5.418e � 05

2,560,000 245.05 8.42 282,496.0 1.019e � 04

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 0:012

p
5000 0.41 1.5 1.454e � 04

40,000 3.97 9.68 80.0 9.611e � 05
320,000 34.79 8.76 5088.0 1.954e � 04

2,560,000 292.21 8.40 323,968.0 2.390e � 04
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Cartesian grids of size 4 · 4 · 4, 6 · 6 · 6 and 8 · 8 · 8. We observe that the error improves by a factor of 50–
90 between adjacent grid sizes.

3D complexity test. Table 4 gives the results on 3D problems with increasing size (N again from 5000 to
2,560,000). We fix the Cartesian grid used for equivalent density to be 4 · 4 · 4. The complexity of our algo-
rithm is proportional to the size of the problem, and the errors remain almost independent of the data size.
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