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Abstract. This paper introduces a new directional multilevel algorithm for solving N -body or
N -point problems with highly oscillatory kernels. These systems often result from the boundary
integral formulations of scattering problems and are difficult due to the oscillatory nature of the
kernel and the non-uniformity of the particle distribution. We address the problem by first proving
that the interaction between a ball of radius r and a well-separated region has an approximate low
rank representation, as long as the well-separated region belongs to a cone with a spanning angle of
O(1/r) and is at a distance which is at least O(r2) away from from the ball. We then propose an
efficient and accurate procedure which utilizes random sampling to generate such a separated, low
rank representation. Based on the resulting representations, our new algorithm organizes the high
frequency far field computation by a multidirectional and multiscale strategy to achieve maximum
efficiency. The algorithm performs well on a large group of highly oscillatory kernels. Our algorithm
is proved to have O(N logN) computational complexity for any given accuracy when the points are
sampled from a two dimensional surface. We also provide numerical results to demonstrate these
properties.
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1. Introduction. This paper is concerned with the rapid solutions to a class
of N -body problems. Let {fi, 1 ≤ i ≤ N} be a set of N densities located at points
{pi, 1 ≤ i ≤ N} in R3 with |pi| ≤ K/2, where | · | is the Euclidean norm and K is a
fixed constant K. Our goal is to compute the potentials {ui, 1 ≤ i ≤ N} defined by

(1) ui =
N∑
j=1

G(pi, pj) · fj

where G(x, y) = e2πı|x−y|/|x − y| is the Green’s function of the Helmholtz equation
and is usually called the Helmholtz kernel. Throughout this paper, we use ı to denote
the complex number

√
−1. We have scaled the problem such that the wave length

equals one and thus high frequencies correspond to problems with large computational
domains.

Such a computation comes mainly from applications in acoustic and electromag-
netic scattering, where the usual partial differential equation (PDE) formulations are
transformed into boundary integral equation (BIE) formulations. The advantages of
the BIE formulations are the convenience of handling the boundary conditions at
infinity and the decrease in the dimensionality of the problem. The integral equa-
tion formulations are often discretized using appropriate quadrature methods. The
resulting linear systems are always dense due to the fact that an integral formulation
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involves interaction between any two points or elements on the boundary. These dense
linear systems are further solved using iterative methods, at each step of which the
evaluation in (1) or closely related equations must be carried out.

Two observations are here in order. First, in scattering applications, the com-
plexity of a problem scales with the size of its boundary in terms of the wavelength.
For a prescribed accuracy, the complexity of (1) depends on the value of K because
the wavelength is equal to one in our setup. In many practical applications, K is
usually equal to a few hundred or even thousand. Assuming that the boundary sur-
face in R3 is discretized with a fixed number of points per wavelength, the number of
samples N is of order O(K2). Second, since the unknown field is supported only on
the boundary in a BIE formulation, the points {pi} are samples of a two dimensional
manifold. Consequently, the distribution of {pi} is highly nonuniform.

We would like to point out that, though the discussion in this paper mainly
focuses on the Helmholtz kernel, our approach is quite general. Since many PDE
kernels (e.g. the Green’s functions of the time-harmonic Maxwell equations [21] and
the linear elasticity equation [36]) are basically derivatives of the Helmholtz kernel,
our algorithm can be readily extended to address these cases.

1.1. Previous work. Direct computation of (1) requires O(N2) operations,
which can be intolerably slow for large values of N . During the last few decades,
much attention has been devoted to the development of algorithms which evaluate (1)
efficiently without compromising accuracy. An early class of algorithms (for example,
[7, 8]) use the fast Fourier transform (FFT) by exploiting the fact that the kernel
is translation invariant, and hence can be diagonalized through Fourier transform.
Though quite efficient for uniformly distributed point sets, they require O(N3/2 logN)
complexity in both computation time and storage space for a point set sampled from
a two dimensional manifold. This poses a difficulty for large scattering problems. A
recent improvement in [12] addresses this issue by using plane densities to reduce the
sizes of the required FFTs.

The second class of algorithms (see for example [1, 3, 6, 10, 16]) discretize the
boundary integral equations using the Galerkin approximation with either local Fourier
bases or wavelet bases as the approximation space. The resulting discrete systems of-
ten become approximately sparse in the sense that a majority of the entries are close
to zero with these bases. Such approaches have been shown to offer good theoretical
estimates. However, constructing the remaining non-negligible entries both efficiently
and accurately is non-trivial.

The third, and probably most popular, class of algorithms are the fast multipole
methods (FMMs). The original FMM (see for example [17, 32, 34]) was developed
for the kernel of the Laplace equation, and it evaluates the N -body problem in O(N)
operations for any fixed accuracy. Its success hinges on the observation that the
interaction via the kernel between well-separated sets of points is approximately of
low rank. Many other related developments, such as the panel clustering method
[35], the H-matrix framework [9] and the interpolation techniques [11], are based
on the same observation. In the low frequency regime where K is close to 1, this
low rank property still holds for the Helmholtz kernel and the FMM for the Laplace
equation can be applied to our problem with slight modifications (see [33]). In the high
frequency regime where K is much larger than 1, the situation is however drastically
different as the low rank assumption is not valid any more. In fact, the approximate
rank of the interaction grows linearly with the size of the point sets (in terms of the
wavelength). However, Rokhlin [42, 43] observed that the interaction between well-
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Fig. 1. Two sets Yr and Xr which satisfy the directional parabolic separation condition.

separated point sets, though of large rank, can be applied efficiently by focusing on the
far field signature of the potentials. In some sense, this is analogous to the fast Fourier
transform. Even if the matrix is dense and of full rank, it can be applied efficiently
in almost linear time. The resulting algorithm in the high frequency regime, often
named HF-FMM, has O(N logN) complexity for a given accuracy. Though efficient
and accurate, this algorithm is highly technical. It utilizes a large family of tools,
such as partial wave expansion, far field signature, exponential expansion, filtering,
and interpolation of spherical harmonics (see [37]). Many of these techniques have
been developed only recently, and some of them solely for the purpose of the HF-
FMM. Good descriptions of the HF-FMM include [18, 27, 41]. Other algorithms
using similar techniques are given in [20, 23, 24, 45].

In [40], Michielssen and Boag proposed an interesting development called multi-
level matrix decomposition. Their algorithm utilizes the idea of equivalent density,
which also serves as the basis of the approaches in [2, 47], and it plays an important
role in this paper. Even if their algorithm may not be as efficient as the HF-FMM,
its three stage multiplication algorithm is ingenious and reminds one of the FFT.

1.2. Contribution and significance. In this paper, we propose a new direc-
tional multilevel algorithm that has O(N logN) complexity for a given accuracy. The
starting point of our approach is a geometric consideration. Suppose Yr is a ball of
radius r centered at a point c, and Xr is the set of all points which are at a distance
r2 or greater from the origin and belong to a cone centered at c with spanning angle
1/r (see Figure 1 for an illustration). Whenever two sets Yr and Xr obey this geomet-
ric configuration, we say that Yr and Xr satisfy the directional parabolic separation
condition.

At the heart of our algorithm is a directional low rank property which states that
the interaction between Yr and Xr via the Helmholtz kernel G(x, y) is approximately
of low rank for any fixed accuracy, and more importantly, the rank has an upper
bound that is independent of r. To be more precise, the directional low rank property
guarantees the following directional separated representation which is valid for any
x ∈ Xr and y ∈ Yr: ∣∣∣∣∣∣G(x, y)−

T (ε)∑
i=1

αi(x)βi(y)

∣∣∣∣∣∣ < ε
where ε is the prescribed accuracy, T (ε) is a constant which depends only on ε (not
on r), and {αi(x)} and {βi(y)} are functions of x and y respectively.
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Fig. 2. For each box B, its far field is partitioned into multiple wedges. Our algorithm constructs
one low rank separated representation for each wedge. Each resulting representation can be used to
accelerate the interaction computation between B and all the boxes in that wedge.

The second contribution of this paper is to introduce a randomized procedure
for generating the directional separated representation {αi(x)} and {βi(x)} for the
interaction between Xr and Yr. This procedure only uses kernel evaluations and
stable numerical routines such as the singular value decomposition (SVD) and the
QR factorization. The resulting representation allows highly efficient computation of
the interaction between sets like Xr and Yr, and moreover, it can be stored in an
economic way.

Our algorithm starts by partitioning the domain recursively using an octree, which
is similar to the standard FMM. The top part of the octree that contains the boxes
with widths greater than or equal to 1 is called the high frequency regime, while the
bottom part that contains the boxes with widths less than 1 is called the low frequency
regime. In the low frequency regime, the interactions are computed using the kernel
independent FMM [47], which is a variant of the standard FMM. In the high frequency
region, the computation is organized in a multidirectional way. For a given box B, all
the boxes well separated from it are partitioned into a group of wedges, where each
wedge and the box itself follow the directional parabolic separation condition (see
Figure 2). The randomized procedure mentioned above is then used repetitively to
construct multiple low rank representations about B, one for each wedge. As a result,
the calculation of the interactions between B and all the boxes in a specific wedge
can be accelerated using the low rank representation associated with this wedge. This
framework is repeated recursively at all levels in the high frequency regime to achieve
maximum efficiency.

Our directional multilevel algorithm has the following properties. First, it is
highly efficient and accurate. A careful complexity analysis shows that, for a finite
point set on a two dimensional manifold, our algorithm uses O(N logN) operations,
which is the same as the complexity of the HF-FMM. Second, our algorithm is less
technical than the HF-FMM as it uses no analytic expansions and translations. The
computational steps of our algorithm only involve kernel evaluation and stable linear
algebra routines. Finally, our algorithm works for more general oscillatory kernels as
well (see the numerical results in section 5).

This paper is organized as follows. In section 2, we prove the directional low
rank property. Following that, we describe the randomized procedure for generating
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a directional low rank separated representations in section 3. Our main algorithm is
presented in detail in section 4 where also its computational complexity is analyzed.
After reporting the numerical results in section 5, we give conclusions and suggestions
for future work in section 6.

2. Directional low rank property. In this section, we prove the main theo-
retical result of this paper: the directional low rank property. Suppose r ≥

√
3 and

let

(2) Yr = B(0, r) and Xr = {x : θ(x, �) ≤ 1/r, |x| ≥ r2}

where � is a given unit vector and θ(a, b) is the spanning angle between vectors a and
b. The geometric relationship between Yr and Xr is illustrated in Figure 1.

Definition 2.1. Let f(x, y) be a function for x ∈ X and y ∈ Y . We say f(x, y)
has a T -term ε-expansion for X and Y if there exist functions {αi(x), 1 ≤ i ≤ T} and
{βi(y), 1 ≤ i ≤ T} such that∣∣∣∣∣f(x, y)−

T∑
i=1

αi(x)βi(y)

∣∣∣∣∣ ≤ ε
for all x ∈ X and y ∈ Y .

The importance of this definition is that {αi(x)} and {βi(y)} depend only on
x and y respectively. Expansions of this type are called separated. The following
theorem is a precise statement of the directional low rank property.

Theorem 2.2. For any ε > 0, there exists a number T (ε) which is indepen-
dent of r such that e2πı|x−y|/|x− y| has a T (ε)-term ε-expansion for any Xr and Yr
satisfying (2).

Results similar to Theorem 2.2 have been discovered before by researchers from
applied physics and electric engineering [13, 29, 40]. Their proofs involve special
functions such as spherical harmonics and Bessel functions, and give much sharper
estimates on the number of terms in the expansion. We believe that our proof in the
rest of this section is still of theoretical interest since one can easily adapt it to show
similar results for other oscillatory kernels such as e2πı|x−y|. The numerical results in
section 5 validate this assertion.

Our proof of Theorem 2.2 is based on the following lemmas.
Lemma 2.3. For any ε > 0, there exists a number T (ε) which is independent of

r such that |x− y| has a T (ε)-term ε-expansion for Xr and Yr.
Proof. Let us write

|x− y| = |x| · f(y/|x|)

where f(p) = |x̂−p| and x̂ is the unit direction x/|x|. Here we suppress the dependence
of f on x̂. Taylor expansion of f at p = 0 gives

f(p) =
∞∑
d=0


∑
|α|=d

f (α)(0)
α!

pα




where α is a multiindex. For any d ≥ 0, we use fd(p) to denote the quantity in
the square bracket. The series

∑∞
d=0 fd(p) is a convergent series with radius 1. This

implies that for any η with η ≥ 1 there exists an integerD1(η) such that fd(p) ≤ (η|p|)d
for every d ≥ D1(η). We assume, without loss of generality, that η ≤ 1.1.
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We argue that there exists a number D(ε) such that

|x| · fD(ε)(y/|x|) ≤ ε.

To show this, it is sufficient to find an integer d such that |x| · (η · |y|/|x|)d ≤ ε. Notice
that for d ≥ 2, |x| · (η · |y|/|x|)d is a decreasing function of |x|. Therefore, the function
reaches its maximum value when |x| = r2. Since |y| ≤ r,

|x| ·
(
η · |y||x|

)d
≤ r2 ·

(η
r

)d
=

ηd

rd−2 ≤
ηd
√

3
d−2 .

Since we have assumed that η ≤ 1.1, it is obvious that there exists a D2(η, ε)
such that for any d ≥ D2(η, ε) we have ηd/

√
3
d−2 ≤ ε. Therefore, setting D(ε) =

max(2, D1(η), D2(η, ε)) guarantees that

|x| ·
(
η · |y||x|

)D(ε)

≤ ε.

Since the series {|x| · (η · |y|/|x|)d : d ≥ 0} is geometric and fd(y/|x|) ≤ (η · |y|/|x|)d ,
we have the following estimate∑

d>D(ε)

|x| · fd(y/|x|) ≤ 4ε,

which is equivalent to

(3)

∣∣∣∣∣∣|x− y| −
D(ε)∑
d=0

|x| · fd(y/|x|)

∣∣∣∣∣∣ ≤ 4ε.

Notice that the number of terms D(ε) is independent of |x|. In fact, it is independent
of x̂ as well since the kernel is rotation invariant.

Now, each term fd(y/|x|) can be written as

(4) fd(y/|x|) =
∑
|α|=d

f (α)(0)
α!

· 1
|x||d| · y

α

where f (α)(0) depends on x̂ implicitly. Since (4) is a separated representation,

(5)
∑

d>D(ε)

|x| · fd(y/|x|)

has a separated representation as well. Now suppose T (ε) to be the total number
of terms after the expansion of (5). Then (3) states that |x − y| has a T (ε)-term
4ε-expansion.

Similarly, we have the following lemma for the function 1/|x − y|. In fact, the
proof is simpler than the one of Lemma 2.3 because 1/|x− y| is bounded for x ∈ Xr

and y ∈ Yr for r ≥
√

3.
Lemma 2.4. For any ε > 0, there exists a number T (ε) which is independent of

r such that 1/|x− y| has a T (ε)-term ε-expansion for Xr and Yr.
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Corollary 2.5. For any ε > 0, there exists a number T (ε) which is independent
of r such that |x− y| − x̂ · (x− y) has a T (ε)-term ε-expansion for Xr and Yr.

Proof. Since x̂ · (x− y) has a 2-term 0-expansion

x̂ · (x− y) = |x| − x̂ · y,

the corollary follows from Lemma 2.3.
The following lemmas show that certain functions are bounded by constants.
Lemma 2.6. There exists a constant G such that

|(x̂− �) · y| ≤ G

and

||x− y| − x̂ · (x− y)| ≤ G

for x ∈ Xr and y ∈ Yr.
Proof. For the first part, we observe

|(x̂− �) · y| ≤ |(x̂− �)| · |y| ≤ θ(x, �) · |y|.

From the definitions of Xr and Yr, we have |y| ≤ r and θ(x, �) ≤ 1/r. Therefore,

|(x̂− �) · y| ≤ r · 1
r

= 1.

For the second part, suppose that θ is the spanning angle between x and x− y. From
the definitions ofXr and Yr we have θ ≤ c1 ·r/|x−y|, |x−y| ≥ c2 ·r2, 1−cos(θ) ≤ c3 ·θ2

for constants c1, c2 and c3. Therefore,

|x− y| − x̂ · (x− y) = |x− y| · (1− cos(θ)) ≤ c3 · |x− y| · θ2 ≤ c3c21 ·
r2

|x− y| ≤
c3c

2
1

c2
.

Setting G = max(1, c3c21/c2) completes the proof.
The next lemma, which is quite elementary, is concerned with the accuracy of the

Taylor expansion of the exponential function. We reproduce the proof for complete-
ness (see [14]).

Lemma 2.7. For any Z > 0 and ε > 0, let N = 
max(4eπZ, log2(1/ε))�. Then∣∣∣∣∣e2πıx −
N−1∑
k=0

(2πıx)k

k!

∣∣∣∣∣ ≤ ε
for any x with |x| ≤ Z.

Proof. Truncated Taylor expansion of e2πıx at the origin gives

e2πıx =
N−1∑
k=0

(2πıx)k

k!
+

(2πıx̃)N

N !

where x̃ lies between 0 and x. Since |x̃| ≤ |x| ≤ Z,∣∣∣∣∣e2πıx −
N−1∑
k=0

(2πıx)k

k!

∣∣∣∣∣ ≤ (2πZ)N

N !
.
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We use the Stirling formula to estimate the last quantity. Since N ! ≥ (N/e)N ,

(2πZ)N

N !
≤
(

2πeZ
N

)N
.

Now, as N ≥ max(4eπZ, log2(1/ε)),(
2πeZ
N

)N
≤
(

1
2

)log2(1/ε)

= ε.

Lemma 2.8. Let ε > 0 and η > 0. Suppose that a function f(x, y) has a T f (ε)-
term ε-expansion on Xr and Yr, and |f(x, y)| ≤ Bf . Suppose also that a function
g(x, y) has a T g(η)-term η-expansion on Xr and Yr, and |g(x, y)| ≤ Bg. Then,
f(x, y) · g(x, y) has a T f (ε) · T g(η)-term (Bgε+Bfη + εη)-expansion.

Proof. By assumption, there exist functions {αfi (x)} and {βfi (x)} for f(x, y) such
that ∣∣∣∣∣∣f(x, y)−

T f (ε)∑
i=1

αfi (x)β
f
i (y)

∣∣∣∣∣∣ ≤ ε.
Similarly, there exist functions {αgi (x)} and {βgi (x)} for g(x, y) such that∣∣∣∣∣∣g(x, y)−

T g(η)∑
i=1

αgi (x)β
g
i (y)

∣∣∣∣∣∣ ≤ η.
Consider two sets of functions {αfi (x)α

g
j (x) : 1 ≤ i ≤ T f (ε), 1 ≤ j ≤ T g(η)} and

{βfi (y)β
g
j (y) : 1 ≤ i ≤ T f (ε), 1 ≤ j ≤ T g(η)}, each containing T f (ε) · T g(η) terms.∣∣∣∣∣∣f(x, y)g(x, y)−

∑
i,j

(αfi (x)α
g
j (x))(β

f
i (y)β

g
j (y))

∣∣∣∣∣∣
=

∣∣∣∣∣∣f(x, y)g(x, y)−
(∑

i

αfi (x)β
f
i (y)

)∑
j

αgj (x)β
g
j (y)



∣∣∣∣∣∣

≤
∣∣∣∣∣
(
f(x, y)−

(∑
i

αfi (x)β
f
i (y)

))
g(x, y)

∣∣∣∣∣+∣∣∣∣∣∣
(∑

i

αfi (x)β
f
i (y)

)g(x, y)−

∑

j

αgj (x)β
g
j (y)





∣∣∣∣∣∣

≤ ε ·Bg + (Bf + ε) · η
= (Bgε+Bfη + εη).

We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. Without loss of generality, we make the assumption that

ε < 1.
First, let us construct an expansion for e2πı(|x−y|−x̂·(x−y)). From Corollary 2.5,

|x− y| − x̂ · (x− y) has a T 1(ε)-term ε-expansion, i.e., there exist functions {α1
i (x)}
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and {β1
i (y)} such that∣∣∣∣∣(|x− y| − x̂ · (x− y))−

∑
i

α1
i (x)β

1
i (y)

∣∣∣∣∣ ≤ C1ε

Lemma 2.6 says that there exists a constant G such that

||x− y| − x̂ · (x− y)| ≤ G,

which implies ∣∣∣∣∣
∑
i

α1
i (x)β

1
i (y)

∣∣∣∣∣ ≤ G+ ε.

Applying Lemma 2.7 with Z = G+ε and N1(ε) = 
max(4eπ(G+ε), log2(1/ε))� gives∣∣∣∣∣∣e2πı
∑
i α

1
i (x)β1

i (y) −
N1(ε)−1∑
k=0

(2πı)k

k!

(∑
i

α1
i (x)β

1
i (y)

)k
∣∣∣∣∣∣ ≤ ε.

Expanding the
(∑

i α
1
i (x)β

1
i (y)

)k terms and absorbing the coefficients (2πı)k

k! , we find
that there exists a number T 2(ε) and two sets of functions {α2

i (x)} and {β2
i (y)} such

that ∣∣∣∣∣∣e2πı
∑
i α

1
i (x)β1

i (y) −
T 2(ε)∑
i=0

α2
i (x)β

2
i (y)

∣∣∣∣∣∣ ≤ ε,
or equivalently, that e2πı

∑
i α

1
i (x)β1

i (y) has a T 2(ε)-term ε-expansion. Since

∣∣∣e2πı(|x−y|−x̂·(x−y)) − e2πı
∑
i α

1
i (x)β1

i (y)
∣∣∣ ≤ 2π

∣∣∣∣∣(|x− y| − x̂ · (x− y))−
∑
i

α1
i (x)β

1
i (y)

∣∣∣∣∣
≤ 2πε,

it is obvious that e2πı(|x−y|−x̂·(x−y)) has a T 2(ε)-term (2π + 1)ε-expansion

(6)

∣∣∣∣∣∣e2πı(|x−y|−x̂·(x−y)) −
T 2(ε)∑
i=0

α2
i (x)β

2
i (y)

∣∣∣∣∣∣ ≤ (2π + 1)ε.

Second, we consider the term e2πıx̂·(x−y). From Lemma 2.6, we know that there
exists a constant G such that |(x̂− �) · y| ≤ G. Now applying Lemma 2.7 again with
Z = G and N3(ε) = 
max(4eπG, log2(1/ε))� gives∣∣∣∣∣∣e2πı(x̂−�)·y −

N3(ε)−1∑
k=0

(2πı)k

k!
((x̂− �) · y)k

∣∣∣∣∣∣ ≤ ε.
Expanding the ((x̂ − �) · y)k terms for all k and absorbing the coefficients (2πı)k

k! , we
have the expansion ∣∣∣∣∣∣e2πı(x̂−�)·y −

T 3(ε)∑
i=0

α3
i (x)β

3
i (y)

∣∣∣∣∣∣ ≤ ε,
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where T 3(ε) is an ε-dependent integer and {α3
i (x)} and {β3

i (y)} are two sets of func-
tions. That is to say, e2πı(x̂−�)·y has a T 3(ε)-term ε-expansion. Now exponentiating
the identity

x̂ · (x− y) = |x| − (x̂− �) · y − � · y

gives

e2πıx̂·(x−y) = e2πı|x| · e−2πı(x̂−�)·y · e−2πı�·y.

Then it is obvious that e2πıx̂·(x−y) has a T 4(ε)-term ε-expansion

(7)

∣∣∣∣∣∣e2πıx̂·(x−y) −
T 4(ε)∑
i=0

α4
i (x)β

4
i (y)

∣∣∣∣∣∣ ≤ ε,
with T 4(ε) = T 3(ε) and the functions {α4

i (x)} and {β4
i (y)} given by

α4
i (x) = e2πı|x| · α3

i (x) and β4
i (y) = e−2πı�·y · β3

i (y).

Next, Lemma 2.4 claims that 1/|x− y| has T 5(ε)-term ε expansion

(8)

∣∣∣∣∣∣
1

|x− y| −
T 5(ε)∑
i=0

α5
i (x)β

5
i (y)

∣∣∣∣∣∣ ≤ ε
with functions {α5

i (x)} and {β5
i (y)}.

Finally, since

e2πı|x−y|

|x− y| = e2πı(|x−y|−x̂·(x−y)) · e2πıx̂·(x−y) · 1
|x− y| ,

applying Lemma 2.8 twice to the product of (6), (7) and (8) shows that e2πı|x−y|

|x−y| has
a (T 2(ε) · T 4(ε) · T 5(ε))-term (12π + 10)ε-expansion. Here we use the facts that

∣∣∣e2πı(|x−y|−x̂·(x−y))
∣∣∣ < 1,

∣∣∣e2πıx̂·(x−y)
∣∣∣ < 1 and

∣∣∣∣ 1
|x− y|

∣∣∣∣ < 2

for x ∈ Xr and y ∈ Yr along with the assumption that ε < 1.
The message of Theorem 2.2 is that, for a fixed ε, the number of terms in an

ε-expansion is independent of r, as long as Xr and Yr satisfy the directional parabolic
separation condition, i.e., Xr belongs to a cone with spanning angle 1/r and it is an
order O(r2) distance away from Yr.

The proof given above is not optimal in the sense that (T 2(ε) · T 4(ε) · T 5(ε)),
the bound of the number of terms in the expansion, can be fairly large. In practice,
numerical results show that the actual number of terms grows linearly with log(1/ε),
see section 5.1.

So far in Theorem 2.2, we have assumed that Yr is centered at the origin. However,
as we have noticed in the proof, what is really important is the relative positions of
the sets Xr and Yr. Since the kernel e2πı|x−y|/|x− y| is translation invariant, shifting
Xr and Yr together by a constant vector would not change the result of Theorem 2.2.
We have also assumed � to be a fixed direction and suppressed the dependence of
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Xr on � in our notations. However, all the estimates are independent of the specific
choice of � as the kernel e2πı|x−y|/|x − y| is rotation invariant. Suppose we define
Fr = {x : |x| ≥ r2}. There exists a set of unit vectors {�} of size O(r2) such that
the union of the cones centered at {� ∈ L} with spanning angle 1/r cover the whole
space. Now let us define

X�
r = {x : θ(x, �) ≤ 1/r, |x| ≥ r2}

for each �. Clearly their union is equal to Fr. Applying Theorem 2.2 to eachX�
r results

in a different T (ε)-term ε-expansion for Yr and X�
r . Even though the expansions

are different from one X�
r to another, the bound T (ε) on the number of terms is

independent of �.

3. Randomized construction of separated representation. The expansion
for two setsX�

r and Yr introduced in section 2 is a directional separated representation.
It is directional since for a given direction � the expansion is valid only for X�

r that
belongs to a directional cone. It is separated since the two sets of functions {αi(x)} and
{βi(y)} depend only on x and y respectively. The proof of Theorem 2.2 is constructive
in the sense that it provides a way to compute the functions {αi(x)} and {βi(y)}.
However, the number of terms in the resulting expansion can be fairly large. In this
section, we introduce a procedure which in practice gives expansions with very few
terms. This procedure is accurate, efficient and based on random sampling.

In the rest of this section, r and � are not explicitly included in the notation. Our
randomized procedure consists of the following steps:

1. Sample Y randomly and densely to obtain a set of samples {yi}. By densely,
we mean a couple of samples per wavelength. Similarly, sample X to ob-
tain a set of samples {xi}. Suppose the numbers of samples in each set are
respectively Ny and Nx. Since our problem is confined to a ball of radius
K/2 where K is the number of wavelengths, there is no reason to sample
the part of X that is outside of this ball. As we allow a constant number
of samples per wavelength, Ny = O(vol(Y )) = O(K1.5). Similarly, Nx =
O(vol(X ∩B(0,K))) = O(K2). Let A be the Nx by Ny matrix defined by

Aij = e2πı|xi−yj |/|xi − yj |

for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. In the language of linear algebra, Theorem
2.2 states that A can be factorized, within error O(ε), into the product of two
matrices, the first of size Nx by T (ε) and the second of size T (ε) by Ny. In
the next few steps, we construct such a factorization.

2. Let A1 be the submatrix of A containing a set of N1 randomly selected
columns. Here N1 is set to be a constant multiple of T (ε). After obtain-
ing the pivoted QR factorization of A1, we have the decomposition

A1P1 = Q1R1

where P1 is a permutation matrix, Q1 is orthonormal and R1 is upper trian-
gular. Now, identify the diagonal elements of R1 which are less than ε and
truncate the associated columns of Q1 and rows of R1. Denote the resulting
matrices by Qc and Rc. Since A1, as a submatrix of A, has an approximate
factorization of T (ε), in practice the matrix Qc has only O(T (ε)) columns af-
ter truncation. It is clear from the algorithm of the pivoted QR factorization
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that the new matrices Qc and Rc satisfy the relationship

QcRc = Ac

where Ac is the submatrix containing the columns of A from which the ma-
trix Qc is generated. The samples (of Y ) associated with these columns are
denoted {yci }. In practice, the columns of Qc approximately span the col-
umn space of A (not just A1), producing an O(ε) error with overwhelming
probability.

3. Let A2 be a submatrix of A containing a set of N2 randomly selected rows.
Here N2 is again set to be a constant multiple of T (ε). Repeat the previous
step on A∗2. As a result, we have two matrices Qr and Rr. Qr is orthonormal
and has O(T (ε)) columns again, while Rr is upper triangular. They satisfy
the relationship

R∗rQ
∗
r = Ar

where Ar is a submatrix containing appropriate rows of A. We denote the
samples (of X) associated with these rows by {xci}. Similar to the previous
step, the rows of Q∗r approximately span the row space of A (not just A2),
producing an O(ε) error with overwhelming probability.

4. Since Qc and Q∗r span, respectively, the column and the row spaces of A with
error O(ε), the matrix M = Q∗cAQr satisfies the relationship

(9) |A−QcMQ
∗
r | = O(ε).

Notice that QcM and Q∗r already provide us with a factorization of the matrix
A with error O(ε). However, since A is huge, computing M = Q∗cAQr can be
very costly. To this end, we propose the following alternative. We randomly
pick a set S of Ns rows and a set T of Nt columns. Set A3 to be the minor
containing the elements from rows in S and columns in T , Qc,S to be the
submatrix of Qc containing the rows in S, and Q∗r,T to be the submatrix of
Qr
∗ containing the columns in T . Now the constraint (9) restricted to S and

T becomes ∣∣A3 −Qc,SMQ
∗
r,T

∣∣ = O(ε).

To satisfy this constraint, we choose

(10) M = (Qc,S)+A(Q∗r,T )+

where ( )+ stands for pseudo-inverse. In practice, we pick Ns and Nt to be
about ten times T (ε).

5. We claim that

|A−QcMQ
∗
r | = O(ε).

Moreover, since QcRc = Ac and R∗rQ
∗
r = Ar, we have∣∣A−Ac · (Rc)+ ·M · (R∗r)+ ·Ar

∣∣ = O(ε).

Let us define D to be the matrix (Rc)+ ·M · (R∗r)+ sandwiched between Ac

and Ar. We then have the approximation

(11)
∣∣A−Ac ·D · (R∗r)+ ·Ar

∣∣ = O(ε).
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(11) is often called a pseudoskeleton approximation of A in the literature (see
[30, 31]). Notice that the matrix D has only O(T (ε)) rows and columns. De-
noting the entries of D by dpq, we can rewrite the previous statement in the
form ∣∣∣∣∣e

2πı|xi−yj |

|xi − yj |
−
∑
p,q

e2πı|xi−y
c
p|

|xi − ycp|
· dpq ·

e2πı|x
c
q−yj |

|xcq − yj |

∣∣∣∣∣ = O(ε)

for all xi and yj .
6. Finally, since {xi} and {yj} sample the sets X and Y with a constant number

of points per wavelength, it is reasonable to expect

(12)

∣∣∣∣∣e
2πı|x−y|

|x− y| −
∑
p,q

e2πı|x−y
c
p|

|x− ycp|
· dpq ·

e2πı|x
c
q−y|

|xcq − y|

∣∣∣∣∣ = O(ε)

for any x ∈ X ∩B(0,K) and y ∈ Y .
In (12), both e2πı|x−y

c
p|/|x− ycp| and e2πı|x

c
q−y|/|xcq − y| can be computed directly

from the kernel formulae. Therefore, the only quantities that must be stored for (12)
are the locations {xcq} and {ycp} and the matrix D. This costs only O(1) in storage for
a fixed error threshold ε. In fact, for the Helmholtz kernel, one only needs to sample
the boundary of the domains X and Y densely in the first step. This improvement,
which is due to the uniqueness and existence properties of the Dirichlet boundary
value problem of the Helmholtz equation, significantly reduces the computational
complexity of our randomized procedure.

The randomized procedure presented here benefits from the existing approaches
for constructing low rank separated approximations. Kapur and Long [38] were among
the first to use the idea of random sampling to construct low rank representation for
electrostatic interaction. The adaptive cross approximation (ACA) by Bebendorf and
Rjasanow [4, 5] constructs the approximation in an incremental way. Recently, it has
been combined with the H-matrix framework [9] to address several problems in BIE
formulations, including the scattering problems in the low frequency regime [22]. The
idea of random sampling has been carefully studied in a series of papers by Drineas,
Kannan, and Mahoney [25, 26] for general matrices, and our approach shares some
similarities with the LinearTimeCUR algorithm [26] proposed by these authors. In
[14], a similar algorithm is used to speed up the numerical computation of the Fourier
integral operator. Finally, we would like to mention a recent algorithm proposed by
Martinsson, Rokhlin, and Tygert [39] which exploits the spectral properties of the
Gaussian random matrices and exhibits excellent numerical properties for matrices
equipped with fast multiplication algorithms.

Our randomized procedure works well numerically. In section 5, we see that this
procedure constructs low rank factorizations in a stable way for ε as small as 10−8.
The rank of the resulting factorization, i.e., the minimum of the cardinalities of the
sets {ycp} and {xcq}, is very close to the optimal rank obtained by factorizing A using
an SVD.

In most of the cases, we do know the separation rank of A. Since the value
of T (ε) from Theorem 2.2 can be significantly larger than the true separation rank.
Setting N1 and N2 to be a constant multiple of T (ε) could be quite wasteful. In our
implementation, we adopt the method proposed in [14]. The idea is to start with a
relatively small value for N1. If the columns of Qc constructed from the second step
fail to span the column space of A, we then double N1 and repeat the second step
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until the columns of Qc span the column space of A within the prescribed error ε.
The same strategy is applied to N2 in the construction of Q∗r . The time spent on the
unsuccessful attempts is bounded by that of the final successful attempt due to the
geometric growth rate.

Though we are not able to provide a rigorous proof for the accuracy of this
randomized procedure, we argue that its success is based on the following observations:

• For fixed y, the kernel e2πı|x−y|/|x − y| is a wave-like function of x. The
same is true if we fix x and regard e2πı|x−y|/|x − y| as a function of y. In
fact, as verified by numerical computation, the row and column bases of the
matrix A contain oscillatory vectors, each of which consists of sufficiently
dense samples of an oscillatory function in R3 with wavelength close to 1.
In this regard, one may assume these oscillatory vectors to be the Fourier
modes around the frequency 2π. Now, if the row basis contains the Fourier
modes, the column vectors of A are incoherent mixtures of the vectors of
the column basis. This incoherence property comes from the uncertainty
principle between the Fourier and the (canonical) delta bases [15, 44]. As
a result, sampling the columns of A with a moderate oversampling factor
ensures that the selected vectors contain significant contributions from all of
the vectors of the column basis. This is why we are able to construct the
column basis of A in a stable way by observing only N1 = O(T (ε)) of its
vectors.
• As the vectors of Qr are similar to the Fourier basis, the same incoherence

property [15, 44] suggests that, as long as the number of rows in S is signifi-
cantly larger than the number of columns of Qr, the matrix Qr,S is not too
far from an orthogonal matrix and thus has a small condition number. This
allows us to invert Qr,S robustly and the same is true for Q∗r,T . This allows
us to recover M from (10) in a stable way.

In order to prepare for the discussion of our main algorithm in section 4, it is
useful to introduce the following definitions. Suppose we have a set of densities {fi}
located at points {bi} in Y . Using the representation obtained from the randomized
procedure, we have∣∣∣∣∣

∑
i

e2πı|x−bi|

|x− bi|
fi −

∑
p

e2πı|x−y
c
p|

|x− ycp|
∑
q

dpq
∑
i

e2πı|x
c
q−bi|

|xcq − bi|
fi

∣∣∣∣∣ = O(ε).

This states that we can place a set of densities

(13)

{∑
q

dpq
∑
i

e2πı|x
c
q−bi|

|xcq − bi|
fi

}

at points {ycp} in order to reproduce the potential generated by the densities {fi}
located at points {bi}. To this end, the densities in (13) are called the directional
outgoing equivalent densities of Y in direction �, and the points {ycp} are called the
directional outgoing equivalent points of Y in direction �. Here the word outgoing
refers to the role of Y in the computation. In addition, we refer to the quantities

(14)

{∑
i

e2πı|x
c
q−bi|

|xcq − bi|
fi

}

as the directional outgoing check potentials of Y in direction � and the points {xcq} as
the directional outgoing check points of Y in direction �.
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Notice that in (14) the directional outgoing check potentials can be computed
using only kernel evaluation. In addition, as long as one has precomputed the matrix
D = (dpq), the directional outgoing equivalent densities can be evaluated using a
single matrix vector multiplication (i.e., (13)).

Now, let us reverse the situation. Suppose we have a set of densities {fi} located
at points {ai} in X so that∣∣∣∣∣

∑
i

e2πı|y−ai|

|y − ai|
fi −

∑
q

e2πı|y−x
c
q|

|y − xcq|
∑
p

dpq
∑
i

e2πı|y
c
p−ai|

|ycp − ai|
fi

∣∣∣∣∣ = O(ε).

This states that we can put a set of densities

(15)

{∑
p

dpq
∑
i

e2πı|y
c
p−ai|

|ycp − ai|
fi

}

at points {xcq} and they reproduce the potential generated by the densities {fi} lo-
cated at points {ai}. Therefore, we call the densities in (15) the directional incoming
equivalent densities of Y in direction � and the locations {xcq} the directional incoming
equivalent points of Y in direction �. In analogy to the previous terminology,

(16)

{∑
i

e2πı|y
c
p−ai|

|ycp − ai|
fi

}

are called the directional incoming check potentials of Y in direction � and the location
{ycp} are called the directional incoming check points of Y in direction �.

A couple of remarks are in order here. Let us fix the direction �. Since the kernel
e2πı|x−y|/|x− y| is translation invariant, the equivalent points and check points for a
set centered at an arbitrary point can be obtained from those of the set centered at
the origin by translation. However, the D matrix remains the same.

The kernel is also rotation invariant. For a fixed radius r, we only need to generate
the equivalent points and check points for a fixed direction �. These quantities for
any other direction can be obtained by rotation.

4. Algorithm description. Based on the results in the previous section, we are
ready to describe our new algorithm for the N -body problem with oscillatory kernels,
i.e., the computation of

ui =
N∑
j=1

G(pi, pj) · fj

for all 1 ≤ i ≤ N . Without loss of generality, we assume that K = 22L for a positive
integer L.

4.1. Data structure. Similar to the HF-FMM, our main data structure is an
octree. The top level box of width K contains all the points {pi}. In the rest of this
paper, B denotes a box in the octree and w for its width. We say a box B is in the
low frequency regime if w < 1 and B is in the high frequency regime if w ≥ 1.

In the high frequency regime of the octree, no adaptivity is used, i.e., every non-
empty box is further partitioned until the width of the box is less than 1. In the
low frequency regime, a box B is partitioned as long as the number of points in B is
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greater than a fixed constant Np. In practice, the value of Np is chosen to optimize
the computational complexity.

As we have mentioned already, an FMM algorithm for the Laplace kernel can be
easily modified to handle the low frequency case. For a box B in the low frequency
regime, its data structure follows the description of the kernel independent FMM in
[47]. We modify the notation slightly to accommodate the discussion of the current
algorithm.

• The near field NB is the union of the boxes A that satisfies dist(A,B) = 0,
where dist(A,B) = infx∈A,y∈B |x− y|.
• The far field FB is the complement of NB .
• The interaction list IB contains all the boxes in NP \NB on B’s level, where
P is the parent box of B.
• {yB,ok }, {f

B,o
k }, {xB,ok } and {uB,ok } are, respectively, the outgoing equivalent

points, equivalent densities, check points, and check potentials.
• {yB,ik }, {f

B,i
k }, {x

B,i
k } and {uB,ik } are, respectively, the incoming equivalent

points, equivalent densities, check points, and check potentials.
To simplify the notation, we have omitted the range of the running index k.

Now let us consider a box B in the high frequency regime. The following defini-
tions vary slightly from their low frequency counterparts:

• The near field NB is the union of all the boxes {A} that satisfy dist(A,B) ≤
w2.

• The far field FB is the complement of NB .
• The interaction list IB contains all the boxes in NP \NB on B’s level, where
P is B’s parent box.

In light of the preceding sections, we need to partition FB into a group of direc-
tional regions, each belonging to a cone with spanning angle O(1/w). To achieve this,
we first cut FB into six pyramids: V1+, V1−, V2+, V2−, V3+ and V3−. For example,
V1+ contains all the points whose first coordinate is positive and greater than the
absolute values of the second and third coordinates. The other pyramids are similarly
defined. Let us define C = 4w. Each part is further partitioned into C2 wedges. As
an example, for each point p = (p1, p2, p3) in V1+, we define

θ(p) = arctan(p2/p1) and φ(p) = arctan(p3/p1).

Notice |θ(p)| ≤ π/4 and |φ(p)| ≤ π/4 for p ∈ V1+. The C2 wedges of V1+ are{
p : −π

4
+
π

2C
i ≤ θ(p) ≤ −π

4
+
π

2C
(i+ 1),−π

4
+
π

2C
j ≤ φ(p) ≤ −π

4
+
π

2C
(j + 1)

}
for 0 ≤ i < C and 0 ≤ j < C. Clearly, the spanning angle for each of these wedges
is O(1/w). The wedges for other pyramids are generated in the same way. In total,
for a box B of width w, its far field FB is partitioned into 96 · w2 wedges. We index
these wedges using their center directions {�}. In Figure 3, we illustrate how these
wedges cut the unit sphere into 96 · w2 pieces for w = 1, 2, 4.

This construction has the advantage of ensuring a hierarchical structure of the
wedges across adjacent levels. Suppose w ≥ 2. For any directional index � of B, one
can always find an index �′ of the box with width w/2 such that the �th wedge of B is
contained in the �′th wedge of each of B’s children. On the other hand, these wedges
are not isometric anymore, i.e., one cannot obtain any other wedges by applying a
rotation to an existing wedge. This implies that the point sets {xqc} and {ypc} and
the matrix D can be very different for different wedges, even though the algorithm
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Fig. 3. The wedges cut the unit sphere into 96 · w2 pieces. From left to right, w = 1, 2, 4.

used to construct them remains exactly the same. Fortunately, one does not need to
construct the point sets {xqc} and {ypc} and the matrix D for each of these 96 · w2

wedges due to a discrete isometric group acting on them. To be more precise, suppose
one has a wedge with center direction � = (�1, �2, �3), then it is not difficult to see that
we can obtain wedges centered along the following 48 directions through rotations:

(±�1,±�2,±�3)(±�2,±�3,±�1)(±�3,±�1,±�2)
(±�3,±�2,±�1)(±�1,±�3,±�2)(±�2,±�1,±�3).

Therefore, one is only required to compute the point sets {xqc} and {ypc} and the
matrix D for about 2w2 wedges.

For each box B and each direction �, we summarize the relevant quantities as
follows:

• {yB,o,�k }, {fB,o,�k }, {xB,o,�k }, and {uB,o,�k } are the outgoing directional equiv-
alent points, equivalent densities, check points and check potentials respec-
tively.
• {yB,i,�k }, {fB,i,�k }, {xB,i,�k }, and {uB,i,�k } are the incoming directional equiv-

alent points, equivalent densities, check points and check potentials respec-
tively.

4.2. Translation operators. Similar to a standard FMM algorithm, our new
algorithm utilizes several translation operators. The translation operators for boxes
in the low frequency regime differs from those for boxes in the high frequency regime.
Following tradition, we name these operators M2M translation, L2L translation, and
L2L translation, though no multipole or local expansions are involved in our algorithm.

Low frequency regime. In the low frequency regime, the M2M, L2L, and M2L
translations are exactly the same as the ones introduced in the kernel independent
FMM. These operators are non-directional.

M 2M operator. For a box B, the M2M operator constructs {fB,ok }, the box’s
outgoing non-directional equivalent densities. We start from a set of source densities,
which are either the original densities inB ifB is a leaf box or the union of the outgoing
non-directional equivalent densities of B’s children if B is not. In this procedure,
we first calculate B’s outgoing non-directional check potentials {uB,ok } using kernel
evaluation, and perform a matrix-vector multiplication to obtain {fB,ok }.

L2L operator. For a box B, the L2L operator starts with {uB,ik }, the box’s incom-
ing non-directional check potentials. It first constructs the incoming non-directional
equivalent densities {fB,ik } via a matrix-vector multiplication. The second step de-
pends on whether B is a leaf box or not. If B is not a leaf, we evaluate the incoming
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non-directional check potentials of B’s children. If B is a leaf, then the potentials at
the original points inside B are calculated.

M 2L operator. The M2L operator works between two boxes A and B on the
same level. A and B need to be on each other’s interaction lists. The M2L operator
transforms the outgoing non-directional equivalent densities of A to the incoming
non-directional check potentials of B through kernel evaluation. This operator can
be accelerated by the FFT as the kernel is translation invariant.

High frequency regime. The operators in the high frequency regime are more
complicated. The main reason is that the computations are now directional.

M 2M operator. For a box B in high frequency regime, the M2M operator con-
structs the outgoing directional equivalent densities of B from the outgoing equivalent
densities of B’s children. There are two cases to consider. In the first case, w = 1.
The children boxes only have non-directional equivalent densities. The M2M operator
iterates over all the directional indices {�} of B and the steps for a fixed direction �
are:

1. Use
⋃
C{y

C,o
k } as source points in B and

⋃
C{f

C,o
k } as source densities. Here

the union is taken over all the children boxes of B.
2. Compute {uB,o,�k } at points {xB,o,�k } with kernel evaluation and then obtain
{fB,o,�k } by multiplying {uB,o,�k } with the matrix D associated with B and
direction �.

In the second case, w > 1. Now the children boxes have directional equivalent
densities as well. The M2M operator again iterates over all the directional indices {�}
of B. The steps for a fixed direction � are:

1. Pick �′, which is a direction associated with the boxes of width w/2, such that
the wedge of B indexed by � is contained in the wedge indexed by �′ of each
of B’s children. The existence of �′ is ensured by the way we partition F r.

2. Use
⋃
C{y

C,o,�′

k } as source points in B and
⋃
C{f

C,o,�′

k } as source densities.
Here the union is taken over all the children boxes of B.

3. Compute {uB,o,�k } at {xB,o,�k } with kernel evaluation and then obtain {fB,o,�k }
by multiplying {uB,o,�k } with the matrix D associated with B and direction �.

L2L operator. The L2L operator constructs the incoming check potentials of B’s
children from the incoming directional check potentials ofB. Again there are two cases
to consider. In the first case w = 1. The children boxes only have non-directional
check potentials. The L2L operator iterates over all the directional indices {�} of B
and the steps for a fixed direction � are:

1. Compute {fB,i,�k } from {uB,i,�k } by multiplying it with the appropriate D
matrix.

2. For each child C of the box B, add to {uC,ik } the potentials evaluated at
{xC,ik } using {fB,i,�k } as the source densities at {yB,i,�k }.

In the second case, w > 1. Now the children boxes have directional equivalent
densities. The L2L operator iterates over all the directional indices {�} of B. The
steps for a fixed direction � are:

1. Pick �′, which is a direction associated with the boxes of width w/2, such that
the wedge of B indexed by � is contained in the wedge indexed by �′ of each
of B’s children. The existence of �′ is ensured by the way we partition F r.

2. Compute {fB,i,�k } from {uB,i,�k } by multiplying it with the appropriate D
matrix.

3. For each children C of the box B, add to {uC,i,�
′

k } the potentials evaluated
at {xC,i,�

′

k } using {fB,i,�k } as the source densities at {yB,i,�k }.
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M 2L operator. Finally, the M2L operator is applied to pairs of boxes A and B
on the same level of the octree. They need to be on each other’s interaction lists.
Consider � and �′ such that B falls into the wedge of A indexed by � while A falls
into the wedge of B indexed by �′. The implementation of the M2L operator contains
only one step:

1. Add to {uB,i,�
′

k } the potentials evaluated at {xB,i,�
′

k } using the densities
{fA,o,�k } at points {yA,o,�

′

k }.
To summarize the discussion on the transition operators, we would like to em-

phasize that all these operators involve only kernel evaluation and matrix-vector mul-
tiplication with precomputed matrices. Therefore, they are simple to implement and
highly efficient.

4.3. Algorithm. Now we are ready to give the overall structure of our new
algorithm. It contains the following steps.

1. Construct the octree. In the high frequency regime the boxes are partitioned
uniformly. In the low frequency regime, a leaf box contains at most Np points.

2. Travel up in the octree and visit the boxes in the low frequency regime. These
boxes have width less than 1. For each box B, compute its outgoing non-
directional equivalent densities {fB,ok }. This is done using the low frequency
non-directional M2M operator.

3. Travel up in the octree and visit the boxes in the high frequency regime.
For every such box B, use the high-frequency directional M2M operator to
compute the outgoing directional equivalent densities {fB,o,�k } for each out-
going direction �. We skip the boxes with width greater than

√
K since their

interaction lists are empty.
4. Travel down in the octree and visit the boxes in the high frequency regime.

For every such box B and for each direction �, perform the following two
steps:
(a) Transform the outgoing directional equivalent densities {fA,o,�k } of all the

boxes {A} in B’s interaction list and in direction � via the high-frequency
directional M2L operator. Next, add the result to the incoming direc-
tional check potentials {uB,i,�k }.

(b) Perform the high-frequency directional L2L operator to transform {uB,i,�k }
to the incoming check potentials for B’s children.

Again, we skip the boxes with width greater than
√
K.

5. Travel down in the octree. For every box B in the low frequency regime, we
perform the following two steps:
(a) Transform the outgoing non-directional equivalent densities {fA,ok } of

all the boxes {A} in B’s interaction list via the low frequency non-
directional M2L operator. Next, add the result to the incoming non-
directional check potentials {uB,ik }.

(b) Perform the low frequency directional L2L operator. Depending on
whether B is a leaf box or not, add the result to the incoming check
potentials of B’s children or to the potentials at the original points in-
side B.

An illustration of the various components of the algorithm is given in Figure 4.
In the description of the algorithm, we have assumed that the octree is full.

This ensures that the M2L operator itself is sufficient to transform outgoing data to
incoming data. When the octree is constructed adaptively, the situation is much more
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Fig. 4. A small part of the octree used in the computation. Each rectangular region stands for
a box of the octree. The diagram shows how the outgoing non-directional equivalent densities from
a leaf box have been transformed into incoming non-directional check potentials at other leaf boxes.
Far field interaction involves directional computation in the high frequency regime. The text in each
box denotes the quantities involved, while the translation operators are shown in italics.

complicated as one needs to keep the so-called U , V , W , and X lists for each box
B in the low frequency regime. The necessary modifications to include this can be
found in [19, 34, 47].

4.4. Complexity. We will now discuss the computational complexity of our
algorithm assuming that the N points are sampled from a two dimensinoal surface.
This assumption implies that N = O(K2) and it is generally satisfied for almost all
applications which involve boundary integral formulations. In the following analysis,
we use K as the main parameter because all the points {pi} satisfy |pi| ≤ K/2 by
assumption.

Theorem 4.1. Let S be a surface in B(0, 1/2). Suppose that for a fixed K,
the points {pi, 1 ≤ i ≤ N} are samples of KS, where N = O(K2) and KS =
{K · p, p ∈ S} (the surface obtained by magnifying S by a factor of K). Then,
for any prescribed accuracy, the proposed algorithm has a computational complexity
O(K2 logK) = O(N logN).

Outline of the proof. We analyze the number of operations for each major step of
the algorithm.

• The first step of the algorithm has computational complexity O(N) = O(K2),
due to the efficiency of the octree construction.
• The second step takes O(N) = O(K2) operations, as there are at most O(N)

boxes in the low frequency regime and each one involves a constant number
of operations.
• We claim that the third step takes O(N logN) operations. To verify this, we

first look at a single box of a fixed width w (1 ≤ w ≤
√
K). Since there are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1730 BJORN ENGQUIST AND LEXING YING

O(w2) directions {�}, the M2M operator for this box takes O(w2) operations.
Next count the number of boxes of size w. Noticing that our points are
discrete samples from a two dimensional manifold inside B(0,K/2), it is not
difficult to see that there are only O(K2/w2) of them. This means that
the overall complexity of the M2M operator for all the boxes of size w is
O(w2 · K2/w2) = O(K2). Since we have totally O(logK) levels with w =
1, 2, 4, · · · ,

√
K, the complexity of this step is O(K2 logK) = O(N logN).

• We argue that the fourth step takes O(N logN) operations. The computation
here contains two parts: the M2L operators and the L2L operators. The
analysis for the L2L operators is exactly the same as the analysis of the third
step, resulting an O(N logN) operation count. For the M2L operators, we
know that, for a box B of width w, the boxes in its high frequency interaction
list are approximately located in a ball centered at B with radius (2w)2.
Again, the fact that our points are samples from a two dimensional manifold
implies that there are at most O(w4/w2) = O(w2) boxes in B’s interaction
list. Noticing that each M2L operator takes O(1) operations and there are at
most O(K2/w2) boxes with width w, we conclude that overall complexity of
the M2L operators for all the boxes of size w is O(w2 · 1 ·K2/w2) = O(K2).
This further implies that the total number of the operations in the M2L
operators is O(K2 logK) = O(N logN).

• Similar to the second step, the fifth step takes O(N) = O(K2) operations by
the same argument.

Summing these contributions, we reach the conclusion that the total complexity is
O(N logN), which is the same as the HF-FMM developed by Rokhlin and his collab-
orators (see, for example, [18]).

5. Numerical results. In this section, we provide some numerical results to
illustrate the properties of our new algorithm. Our implementation is written in C++
and all the computational results below are obtained on a desktop computer with a
3.0 GHz CPU. Due to the memory constraint, we restrict ourselves to problems which
are at most 256 wavelengths (i.e., K ≤ 256). The equivalent points, check points, and
the related D matrices are precomputed for boxes with width w = 1, 2, 4, 8.

5.1. Separation rank. Let us first study the performance of the randomized
procedure presented in section 3. In Table 1, we list the number of terms in the
separated representation for two sets Xr and Yr for different choices of accuracy ε
and box width w. Here r is set to be

√
3w so that the box of width w is contained

in Yr.
We can see from Table 1 that the separation rank is bounded by a constant which

is independent of the values of w. This is consistent with our theoretical estimate in
Theorem 2.2. In fact, as w grows, it seems that the separation rank decays slightly.
The results also show that the separation rank seems to increase linearly with respect
to log(1/ε). This is compatible with the results mentioned in [40].

Table 1

The separation rank of the directional separated representation for different choices of requested
accuracy ε and box size w.

w = 1 w = 2 w = 4 w = 8
ε=1e-4 45 45 45 45
ε=1e-6 85 82 81 81
ε=1e-8 121 114 113 111
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The actual running time of the high frequency part of our algorithm depends on
ε through the separation rank. In fact, the smaller ε, the larger the separation rank,
and the longer the running time. As we pointed out already, the low frequency part of
our algorithm is almost the same as the one described in [47]. For a prescribed value
of ε, we need to choose a value for p, which is the size of the Cartesian grid used for
the equivalent and check points. In our implementation, we pick p = 4 for ε =1e-4,
p = 6 for ε=1e-6 and p = 8 for ε =1e-8.

5.2. Applications to different geometries. We applied our algorithm, with
G being the Helmholtz kernel, to several objects. In our experiments, the surface of
each object is represented by a triangular mesh. The point set {pi} is generated by
sampling the triangular mesh randomly with 20 points per wavelength on average.
This implies that the number of points is roughly 400 times the total surface area.
Though these samples are far from optimal for a scattering application, they have
the right distribution and are perfectly suitable for studying the performance of our
algorithm.

In real applications, the actual sampling density often depends on the geometry
of the surface. For example, one often places many more points in regions with large
curvature. The result is to shift more computation towards the low frequency regime.
Since the computation in the low frequency regime has lower complexity than the one
for the high-frequency regime, our algorithm would generally perform better in these
cases. Before reporting the results, let us summarize some relevant notations: N is
the number of points, K is the size of the problem in terms of the wavelength, and
ε is the prescribed error threshold such that the final error of is to be bounded by a
constant multiple of ε.

In all experiments, the original densities {fi} are generated from a random dis-
tribution with mean 0. Use {ui} to denote the true potentials and {uai } to denote the
approximations obtained through our algorithm. We estimate the relative error by
picking a set S of 200 points from {pi}. The true potentials {ui, i ∈ S} are computed
by using direct evaluation. The error is then estimated to be√∑

i∈S |ui − uai |2∑
i∈S |ui|2

.

When reporting the numerical results, we use the following notations:
• Ta: the running time of our algorithm in seconds.
• Td: the running time of the direct evaluation in seconds. This quantity is

estimated by first calculating the time used for evaluating the true potentials
at 200 points in S and then multiplying it by N/200.
• Td/Ta: the speedup factor.
• εa: the error of our algorithm estimated using the method described above.

The first example is a sphere. The results are summarized in Table 2. The second
example is a simplified model of an F16. The results are shown in Table 3. The final
example is a submarine model. We summarize the computational results in Table 4.

From these tests, we can make the following observations about the performance
of our algorithm:

• The running time scales roughly as O(N logN) in terms of the number of par-
ticles, matching well with the complexity analysis. In our implementation,
most of the computation has been spent on computing {fB,o,�k } and {uB,i,�k }
in steps 3 and 4(a) of the proposed algorithm (see section 4.3). The con-
struction of one set of densities {fB,o,�k } (or equivalently one set of potentials
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Table 2

Results of the sphere with the Helmholtz kernel.

(K, ε) N Ta(sec) Td(sec) Td/Ta εa
(16,1e-4) 3.22e+5 9.50e+1 1.21e+4 1.28e+2 5.08e-4
(32,1e-4) 1.29e+6 4.28e+2 1.95e+5 4.55e+2 5.91e-4
(64,1e-4) 5.15e+6 1.97e+3 3.04e+6 1.54e+3 6.30e-4
(16,1e-6) 3.22e+5 2.42e+2 1.18e+4 4.86e+1 2.92e-6
(32,1e-6) 1.29e+6 1.21e+3 1.87e+5 1.54e+2 2.12e-6
(64,1e-6) 5.15e+6 5.95e+3 3.13e+6 5.27e+2 3.70e-6
(16,1e-8) 3.22e+5 5.11e+2 1.22e+4 2.39e+1 7.16e-8
(32,1e-8) 1.29e+6 2.62e+3 1.96e+5 7.51e+1 9.19e-8
(64,1e-8) 5.15e+6 1.25e+4 3.15e+6 2.52e+2 9.14e-8

{uB,i,�k }) requires a couple of matrix multiplications, where the dimensions of
the matrices involved are approximately equal to the separation rank. Since
the complexity of each matrix multiplication is quadratic in the dimension
of the matrix, the overall complexity of our algorithm scales quadratically in
terms of the separation rank (see Table 1).
• For a fixed threshold ε, the final error of our directional multilevel algorithm

seems to depend linearly on log2

√
K, i.e., the number of levels in the octree.

This is easy to understand: every time we compute the equivalent densities in
a higher level, we introduce some extra error proportional to ε. Since log2K
is a quite small number, for example K = 256 gives log2K = 8, we still have
very good control of the overall error.
• For objects on a fixed scale, our algorithm runs faster if the shape of an object

is elongated. For example, the results on the submarine are better than the
ones for the plane, which are better than the ones for the sphere. In other
words, the algorithm prefers slender objects. The reason is quite simple: for
an elongated object, the number of directions {�} a box needs to address is
much smaller than the number of directions for an isotropic object. In fact,
the sphere seems to be the most difficult surface to work with.
• A close look at the breakdown of the computation time shows that the al-

gorithm spends most of its time in the high frequency regime. This implies
that for real problems where certain parts need sub-wavelength sampling, our
algorithm would result a larger speedup factor compared with direct evalua-
tion.
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Table 3

Results of the F16 model with the Helmholtz kernel.

(K, ε) N Ta(sec) Td(sec) Td/Ta εa
(32, 1e-4) 1.87e+5 5.00e+1 4.17e+3 8.34e+1 6.13e-4
(64, 1e-4) 7.46e+5 2.27e+2 6.58e+4 2.90e+2 6.69e-4
(128,1e-4) 2.98e+6 1.04e+3 1.03e+6 9.87e+2 6.89e-4
(256,1e-4) 1.19e+7 5.04e+3 1.64e+7 3.25e+3 7.63e-4
(32, 1e-6) 1.87e+5 1.18e+2 4.06e+3 3.44e+1 2.72e-6
(64, 1e-6) 7.46e+5 6.12e+2 6.56e+4 1.07e+2 3.30e-6
(128,1e-6) 2.98e+6 3.07e+3 1.06e+6 3.45e+2 4.16e-6
(32, 1e-8) 1.87e+5 2.38e+2 4.07e+3 1.71e+1 6.34e-8
(64, 1e-8) 7.46e+5 1.29e+3 6.64e+4 5.14e+1 8.10e-8
(128,1e-8) 2.98e+6 6.42e+3 1.06e+6 1.64e+2 6.55e-8

5.3. Generalization. As we have alluded, our algorithm works well for other
oscillatory kernels as well. Here we provide some numerical results for the kernel,

e2πı|x−y|.

For this kernel, the proof in section 2 remains essentially the same, and the only
change is to remove the estimate on the 1/|x − y| term. The randomized procedure
in section 3 requires no modification as it only relies on the fact that the kernel has a
low rank separated representation. Hence, our algorithm remains exactly the same in
the high frequency regime. The only modification concerns the low frequency boxes.
Our implementation follows the discussion in [46] and we refer to that paper for the
details.

In Table 5, we report the results for the sphere with this new kernel. In Table 6,
the results of the F16 model are presented.

These results suggest that the overall error of our algorithm for this new kernel
with stronger far field oscillations is larger than the error for the Helmholtz kernel.
However, the running time still follows the O(N logN) complexity very closely.

6. Conclusions and future work. In this paper, we introduced a new direc-
tional multilevel algorithm for computing the N -body problem with highly oscillatory
kernels, and applied it to a boundary integral formulation of the Helmholtz equation.
Our algorithm is based on the following three main components:
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Table 4

Results of the submarine model with the Helmholtz kernel.

(K, ε) N Ta(sec) Td(sec) Td/Ta εa
(32, 1e-4) 1.47e+5 3.90e+1 2.52e+3 6.46e+1 5.35e-4
(64, 1e-4) 5.85e+5 1.83e+2 4.00e+4 2.19e+2 6.37e-4
(128,1e-4) 2.34e+6 8.26e+2 6.57e+5 7.95e+2 6.32e-4
(256,1e-4) 9.36e+6 3.87e+3 1.01e+7 2.61e+3 8.32e-4
(32, 1e-6) 1.47e+5 9.10e+1 2.49e+3 2.74e+1 2.64e-6
(64, 1e-6) 5.85e+5 5.22e+2 4.07e+4 7.80e+1 2.17e-6
(128,1e-6) 2.34e+6 2.55e+3 6.39e+5 2.51e+2 4.64e-6
(32, 1e-8) 1.47e+5 1.81e+2 2.50e+3 1.38e+1 6.37e-8
(64, 1e-8) 5.85e+5 1.08e+3 3.98e+4 3.68e+1 8.05e-8
(128,1e-8) 2.34e+6 5.41e+3 6.63e+5 1.23e+2 8.51e-8

Table 5

Results of the sphere with the kernel e2πı|x−y|.

(K, ε) N Ta(sec) Td(sec) Td/Ta εa
(16,1e-4) 3.22e+5 1.12e+2 1.14e+4 1.02e+2 5.09e-3
(32,1e-4) 1.29e+6 5.10e+2 1.83e+5 3.58e+2 5.40e-3
(64,1e-4) 5.15e+6 2.36e+3 2.85e+6 1.21e+3 5.74e-3
(16,1e-6) 3.22e+5 3.82e+2 1.11e+4 2.90e+1 7.83e-6
(32,1e-6) 1.29e+6 1.92e+3 1.77e+5 9.21e+1 7.23e-6
(64,1e-6) 5.15e+6 9.36e+3 2.93e+6 3.13e+2 5.48e-6

Table 6

Results of the F16 model with the kernel e2πı|x−y|.

(K, ε) N Ta(sec) Td(sec) Td/Ta εa
(32, 1e-4) 1.87e+5 5.70e+1 3.79e+3 6.64e+1 6.31e-3
(64, 1e-4) 7.46e+5 2.64e+2 6.25e+4 2.37e+2 6.45e-3
(128,1e-4) 2.98e+6 1.24e+3 9.81e+5 7.94e+2 6.75e-3
(32, 1e-6) 1.87e+5 1.81e+2 3.82e+3 2.11e+1 8.79e-6
(64, 1e-6) 7.46e+5 9.52e+2 6.12e+4 6.43e+1 9.00e-6
(128,1e-6) 2.98e+6 4.76e+3 9.45e+5 1.99e+2 7.79e-6

• The directional low rank property, i.e., the interaction between two sets that
follow the directional parabolic separation condition is approximately of low
rank.
• A randomized procedure which efficiently and accurately constructs low rank,

separated and stable representations.
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• A multilevel and multidirectional strategy for organizing the overall compu-
tation. The fact that the high frequency part of our algorithm is not only
multiscale but also multidirectional differs from the approach in the HF-
FMM.

Our algorithm has been proved to have O(N logN) complexity and the numerical
results show that it is also highly accurate. Furthermore, it can be adapted to handle
kernels other than the Helmholtz kernel quite easily, which is not true for most other
existing algorithms.

In future work, we plan to consider the following:
• It would be valuable to have a rigorous proof for the randomized procedure

presented in section 3. The discussion presented here provides a possible
outline of a proof.
• Currently, our implementation is capable of handling problems of up to about

256 wavelengths, however, many interesting scattering problems involve thou-
sands of wavelengths. One solution is to design a parallel version of our al-
gorithm. It is well-known that parallelizing standard FMMs is difficult since
the top part of the octree is a bottleneck (see [48]). Fortunately, this bottle-
neck is alleviated by our algorithm, as we never visit the boxes of size greater
than

√
K wavelengths. A trivial implementation of partitioning the work at

the level with boxes of size
√
K would provide an appealing and practical

solution.
• An FMM-type algorithm has been developed by Michielssen and his collabo-

rators for time-domain scattering problems (see [20, 28]). It utilizes some of
the techniques from the HF-FMM. It would be interesting to see whether our
algorithm can be extended to handle time-domain problems.
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