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Abstract. This paper introduces a new sweeping preconditioner for the iterative solution of the variable
coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of
constructing an approximate LDLt factorization by eliminating the unknowns layer by layer starting from an
absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement
matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the
domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded
LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case.
The resulting preconditioner has linear application cost, and the preconditioned iterative solver converges in a
number of iterations that is essentially independent of the number of unknowns or the frequency. Numerical
results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.
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1. Introduction. This is the second of a series of papers on developing efficient
preconditioners for the numerical solutions of the Helmholtz equation in two and three
dimensions. Let the domain of interest be the unit box D ¼ ð0; 1Þd with d ¼ 2, 3. The
time-independent wave field uðxÞ for x ∈ D satisfies the following Helmholtz equation:

ΔuðxÞ þ ω2

c2ðxÞ uðxÞ ¼ f ðxÞ;

where ω is the angular frequency, cðxÞ is the velocity field, and f ðxÞ is the external force.
Commonly used boundary conditions are the approximations of the Sommerfeld con-
dition which guarantees that the wave field generated by f ðxÞ propagates out of the
domain if cðxÞ is constant outside a sufficiently large ball and other boundary conditions
for part of the boundary can also be considered. By appropriately rescaling the system, it
is convenient to assume that the mean of cðxÞ is equal to 1. Then ω

2π is the (average) wave
number of this problem and λ ¼ 2π

ω
is the (typical) wavelength.

Equations of the Helmholtz type appear commonly in acoustics, elasticity, electro-
magnetics, geophysics, and quantummechanics. Efficient and accurate numerical solution
of the Helmholtz equation is a very important problem in current numerical mathematics.
This is, however, a very difficult computational task due to two main reasons. First, in a
typical setting, the Helmholtz equation is discretized with at least a constant number of
points per wavelength. Therefore, the number of samples n in each dimension is propor-
tional toω, the total number of samplesN is nd ¼ OðωdÞ, and the approximating discrete
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system of the Helmholtz equation is an OðωdÞ×OðωdÞ linear system, which is extremely
large in many practical high frequency simulations. Second, since the discrete system is
highly indefinite and has a very oscillatory Green’s function due to the wave nature of the
Helmholtz equation, most direct and iterative solvers based on the multiscale paradigm
are no longer efficient. For further remarks, see the discussion in [12].

1.1. Approach and contribution. In the previous paper [12], we introduced a
sweeping preconditioner that constructs an approximate LDLt factorization layer by
layer starting from an absorbing layer. An important observation regarding the sweep-
ing preconditioner is that the intermediate Schur complement matrices of the LDLt fac-
torization correspond to the restriction of the half-space Green’s function of the
Helmholtz equation to a single layer. In [12], we represented the intermediate Schur
complement matrices of the factorization efficiently in the hierarchical matrix frame-
work [16]. In 2D, the efficiency of this preconditioner is supported by analysis, has linear
complexity, and results in very small number of iterations when combined with the
GMRES solver. In 3D, however, the theoretical justification is lacking and constructing
the preconditioner can be more costly.

In this paper, we propose a new sweeping preconditioner that works well in both two
and three dimensions. The central idea of this new approach is to represent these Schur
complement matrices in terms of moving perfectly matched layers (PMLs) introduced in
the interior of the domain. Applying these Schur complementmatrices then corresponds to
inverting a discrete Helmholtz system with a moving PML. Since each moving PML is
typically only a few (8 to 12) grids wide, fast direct algorithms can be leveraged for this
task. In 2D, this discrete systemwith themoving PML layer is a quasi-1D problem and can
be solved efficiently using a banded LU factorization in an appropriate ordering. The con-
struction and application costs of the preconditioner are Oðn2Þ ¼ OðNÞ and Oðn2Þ ¼
OðNÞ, respectively. In 3D, the discrete Helmholtz system with the moving PML is a qua-
si-2D problem and can be solved efficiently using the multifrontal methods. The construc-
tion and application costs of the preconditioner are Oðn4Þ ¼ OðN 4 ∕ 3Þ and Oðn3 lognÞ ¼
OðN log NÞ, respectively. The construction complexity can be further improved to linear
scaling by applying either the hierarchical matrix approximation or the moving PML ap-
proximation recursively to each discrete Helmholtz system of the moving PML. Numerical
results show that inboth 2Dand 3Dthis new sweeping preconditioner gives rise to iteration
numbers that are essentially independent ofN when combinedwith theGMRES solver. As
a result, we have a linear solution method for the discrete Helmholtz system.

1.2. Related work. There has been vast literature on developing efficient algo-
rithms for the Helmholtz equation. A partial list of previous results includes [3], [4],
[6], [8], [10], [11], [14], [19], [23], [24], [27]. We refer to the review article [13] and our
previous paper [12] for detailed discussions. The brief discussion below is restricted
to those that are closely related to the approach proposed in this paper.

The most efficient direct methods for solving the discrete Helmholtz systems are the
multifrontal methods or their pivoted versions [9], [15], [22]. The multifrontal methods
exploit the locality of the discrete operator and construct an LDLt factorization based
on a hierarchical partitioning of the domain. The cost of a multifrontal method depends
strongly on the number of dimensions. For a 2D problem with N ¼ n2 unknowns, a
multifrontal method takes OðN 3∕ 2Þ flops and OðN log NÞ storage space. The prefactor
is usually rather small, making the multifrontal methods effectively the default choice
for most 2D Helmholtz problems. However, for a 3D problem with N ¼ n3 unknowns, a
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multifrontal method requiresOðN 2Þ flops andOðN 4 ∕ 3Þ storage space, which can be very
costly for large scale 3D problems.

The approach proposed here essentially reduces the dimensions of the problem by
working with n subproblems with one dimension lower. In the 3D case, for each sub-
problem, it leverages the effectiveness of the 2D multifrontal methods by solving a qua-
si-2D problem. The price of this reduction is that we end up with only an approximate
inverse. However, this approximate inverse is reasonably accurate and works very well
as a preconditioner when combined with standard iterative solvers in all our variable
coefficient test cases.

1.3. Contents. The rest of this paper is organized as follows. Section 2 presents the
new sweeping preconditioner in the 2D case, and section 3 reports the 2D numerical
results. We extend this approach to the 3D case in section 4 and report the 3D numerical
results in section 5. Finally, section 6 discusses some future directions of this work.

2. Preconditioner in 2D. We will first discuss the sweeping factorization in gen-
eral and then introduce the moving PML.

2.1. Discretization and sweeping factorization. Recall that our computational
domain in2D isD ¼ ð0; 1Þ2. In order to simplify thediscussion,weassumethat theDirichlet
zero boundary condition is used on the side x2 ¼ 1while an approximation to the Sommer-
feld boundary condition is enforced on the other three sides. One standardway of incorpor-
ating the Sommerfeld boundary condition is to use the PML [5], [7], [17]. Introduce

σ1ðtÞ ¼

8>>>>><
>>>>>:

C
η
·
�

t−η
η

�
2

t ∈ ½0;η�;
0 t ∈ ½η; 1− η�
C
η
·
�

t−1þη
η

�
2

t ∈ ½1− η; 1�;
; σ2ðtÞ ¼

8<
:

C
η
·
�

t−η
η

�
2

t ∈ ½0;η�;
0 t ∈ ½η; 1�;

ð2:1Þ

and

s1ðx1Þ ¼
�
1þ i

σ1ðx1Þ
ω

�
−1

; s2ðx2Þ ¼
�
1þ i

σ2ðx2Þ
ω

�
−1

:

Here η is typically around one wavelength, and C is an appropriate positive constant in-
dependent of ω. The PML method replaces ∂1 with s1ðx1Þ∂1 and ∂2 with s2ðx2Þ∂2, respec-
tively. This effectively provides a damping layer of width η near the three sides with the
Sommerfeld boundary condition. The resulting equation becomes�

ðs1∂1Þðs1∂1Þ þ ðs2∂2Þðs2∂2Þ þ
ω2

c2ðxÞ
�
u ¼ fx ∈ D ¼ ð0; 1Þ2;

u ¼ 0x ∈ ∂D:

We assume that f ðxÞ is supported inside ½η; 1− η�× ½η; 1� (away from the PML). Dividing
the above equation by s1ðx1Þs2ðx2Þ brings the result�

∂1
�
s1
s2

∂1
�
þ ∂2

�
s2
s1

∂2
�
þ ω2

s1s2c
2ðxÞ

�
u ¼ f :

Themainadvantageof this equation is its symmetry.Wediscretize thedomain ½0; 1�2witha
Cartesian grid with spacing h ¼ 1 ∕ ðnþ 1Þ. The number of points n in each dimension is
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proportional to the wave number ω since a constant number of points is required for each
wavelength. The set of all interior points of this grid is denoted by

P ¼ fpi;j ¼ ðih; jhÞ∶ 1 ≤ i; j ≤ ng

(see Figure 2.1(left)), and the total number of grid points is N ¼ n2.
We denote by ui;j, f i;j, and ci;j the values of uðxÞ, f ðxÞ, and cðxÞ at point

pi;j ¼ ðih; jhÞ. The 5-point stencil finite difference method writes down the equation
at points in P using central difference. The resulting equation at xi;j ¼ ðih; jhÞ is

1

h2

�
s1
s2

�
i−1

2;j

ui−1;j þ
1

h2

�
s1
s2

�
iþ1

2;j

uiþ1;j þ
1

h2

�
s2
s1

�
i;j−1

2

ui;j−1

þ 1

h2

�
s2
s1

�
i;jþ1

2

ui;jþ1 þ
�

ω2

ðs1s2Þi;j · c2i;j
− ð · · · Þ

�
ui;j ¼ f i;jð2:2Þ

with ui 0;j 0 equal to zero for ði  0; j 0Þ that violates 1 ≤ i 0, j 0 ≤ n. Here ð · · · Þ stands for the
sum of the first four coefficients. We order both ui;j and f i;j row by row starting from the
first row j ¼ 1 and define the vectors

u ¼ ðu1;1; u2;1; : : : ; un;1; : : : ; u1;n; u2;n; : : : ; un;nÞt;
f ¼ ðf 1;1; f 2;1; : : : ; fn;1; : : : ; f 1;n; f 2;n; : : : ; fn;nÞt:

Denote the discrete system of (2.2) byAu ¼ f . We further introduce a block version of it
by defining Pm to be the set of the indices in the mth row

Pm ¼ fp1;m; p2;m; : : : ; pn;mg

and introducing

um ¼ ðu1;m; u2;m; : : : ; un;mÞt and fm ¼ ðf 1;m; f 2;m; : : : ; fn;mÞt:

Then

u ¼ ðut
1; u

t
2; : : : ; u

t
nÞt; f ¼ ðf t1; f t2; : : : ; f tnÞt:

Using these notations, the system Au ¼ f takes the following block tridiagonal form:

FIG. 2.1. Left: Discretization grid in 2D. Right: Sweeping order in 2D. The dotted grid indicates the part
that has already been eliminated.
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0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
. .
.

. .
. . .

.
An−1;n

An;n−1 An;n

1
CCCCCCA

0
BBB@

u1

u2

..

.

un

1
CCCA ¼

0
BBB@

f 1
f 2
..
.

fn

1
CCCA;ð2:3Þ

where Am;m are tridiagonal and Am;m−1 ¼ At
m−1;m are diagonal matrices.

The sweeping factorization of the matrix A is essentially a block LDLt factorization
that eliminates the unknowns layer by layer, starting from the absorbing layer near x2 ¼
0 (see [12] for details). The result of this process is a factorization

A ¼ L1 · · · Ln−1

0
BBBBBB@

S1

S2

. .
.

Sn

1
CCCCCCA
Lt
n−1 · · · Lt

1;ð2:4Þ

where S1 ¼ A1;1, Sm ¼ Am;m − Am;m−1S
−1
m−1Am−1;m form ¼ 2; : : : ; n, and Lk is given by

LkðPkþ1;PkÞ ¼ Akþ1;kS
−1
k ; LkðPi;PiÞ ¼ I ð1 ≤ i ≤ nÞ; and zero otherwise:

This process is illustrated graphically in Figure 2.1(right). Inverting this factorization
for A gives the following formula for u:

u ¼ ðLt
1Þ−1 · · · ðLt

n−1Þ−1

0
BBBBBB@

S−1
1

S−1
2

. .
.

S−1
n

1
CCCCCCA
L−1
n−1 · · · L−1

1 f :

Algorithmically, the construction of the sweeping factorization of A can be summarized
as follows by introducing Tm ¼ S−1

m .

ALGORITHM 2.1.
Construction of the sweeping factorization of A.

1: S1 ¼ A1;1 and T 1 ¼ S−1
1

2: for m ¼ 2; : : : ; n do
3: Sm ¼ Am;m − Am;m−1Tm−1Am−1;m and Tm ¼ S−1

m

4: end for

Since Sm and Tm are in general dense matrices of size n× n, the cost of the con-
struction algorithm is of order Oðn4Þ ¼ OðN 2Þ. The computation of u ¼ A−1f is carried
out in the following algorithm once the factorization is ready.

ALGORITHM 2.2.
Computation of u ¼ A−1f using the sweeping factorization of A.

1: for m ¼ 1; : : : ; n do
2: um ¼ fm
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3: end for
4: for m ¼ 1; : : : ; n− 1 do
5: umþ1 ¼ umþ1 − Amþ1;mðTmumÞ
6: end for
7: for m ¼ 1; : : : ; n do
8: um ¼ Tmum

9: end for
10: for m ¼ n− 1; : : : ; 1 do
11: um ¼ um − TmðAm;mþ1umþ1Þ
12: end for

Obviously the computations of Tmum in the second and the third loops need only be
carried out once for each m. We prefer to write the algorithm this way for simplicity of
presentation. The cost of computing u with Algorithm 2.2 is of order Oðn3Þ ¼ OðN 3∕ 2Þ,
which is about OðN 1 ∕ 2Þ times more expensive compared to the multifrontal method.
Therefore, these two algorithms themselves are not very useful.

2.2. Moving PML. In Algorithms 2.1 and 2.2, the dominant cost is the construc-
tion and the application of the matrices Tm. Following [12], we consider the physical
meaning of the Schur complement matrices Tm of the sweeping factorization. Let us
restrict to the top-left m×m block of the above factorization.
0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
. .
.

. .
. . .

.
Am−1;m

Am;m−1 Am;m

1
CCCCCCA

¼ L1 · · · Lm−1

0
BBBBBB@

S1

S2

. .
.

Sm

1
CCCCCCA
Lt
m−1 · · · Lt

1;

ð2:5Þ
where the Lk matrices are redefined to their restriction to the top-leftm×m blocks. The
matrix on the left is in fact the discrete Helmholtz equation restricted to the half-space
below x2 ¼ ðmþ 1Þh and with zero boundary condition on this line. Inverting the fac-
torization (2.5) gives

0
BBBBBB@

A1;1 A1;2

A2;1 A2;2
. .
.

. .
. . .

.
Am−1;m

Am;m−1 Am;m

1
CCCCCCA

−1

¼ ðLt
1Þ−1 · · · ðLt

m−1Þ−1

0
BBBBB@

S−1
1

S−1
2

. .
.

S−1
m

1
CCCCCA
L−1
m−1 · · · L−1

1 :

The matrix on the left side is an approximation of the discrete half-space Green’s func-
tion of the Helmholtz operator with zero boundary condition. On the right side, due to
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the definition of the matrices L1; : : : ; Lm−1, the ðm;mÞth block of the product is exactly
equal to S−1

m . Therefore, we reach the central observation: Tm ¼ S−1
m approximates the

discrete half-space Green’s function of the Helmholtz operator with zero boundary at
x2 ¼ ðmþ 1Þh, restricted to the points on x2 ¼ mh.

In the previous paper [12], Tm is approximated using the hierarchical matrix frame-
work. Since the 3D Green’s function propagates oscillations in all directions even when
restricted to a plane, the numerical ranks of large off-diagonal blocks can be quite sig-
nificant, and the theoretical justification of that method is lacking in 3D. Here, we try to
approximate the matrix Tm in a different way.

As an operator, Tm∶ Cn → Cn maps an external force gm ∈ Cn loaded only on the
mth layer to the solution vm ∈ Cn restricted to the same layer. Therefore, the domain of
interest of Tm is a neighborhood of x2 ¼ mh. Let us recall that the main idea of the PML
approximation is to approximate an unbounded domain problem with a bounded one
that surrounds the domain of interest with PMLs. Therefore, it is natural to replace the
half-space Helmholtz problem associated with Tm with an approximate local subpro-
blem with a PML close to x2 ¼ mh. Therefore, the central idea is to push the PML from
x2 ¼ 0 to a location that is a few buffer layers away from x2 ¼ mh when approximating
Tm.We call this approach the moving PMLmethod, since these new PMLs do not exist
in the original problem as they are only introduced in order to approximate Tm effi-
ciently. The purpose of keeping a few extra buffer layers is that the resulting approx-
imation is more accurate. On the other hand, these extra layers increase the size and
solution cost of the local subproblem. However, since the goal is to construct a suffi-
ciently accurate preconditioner, it is reasonable to even move the PML right next to
x2 ¼ mh. As we will see in the numerical tests, the extra buffer layers provide little im-
provement on the approximation accuracy, and hence the moving PML is indeed placed
right next to x2 ¼ mh in all numerical examples.

To make this precise, let us assume that the width η of the PML is an integer multi-
ple of h, and let b ¼ η ∕ h be the number of grid points in the PML in the transversal
direction. Define

sm2 ðx2Þ ¼
�
1þ i

σ2ðx2 − ðm− bÞhÞ
ω

�
−1

;

and introduce an auxiliary problem on the domain Dm ¼ ½0; 1�× ½ðm− bÞh; ðmþ 1Þh�:
�
ðs1∂1Þðs1∂1Þ þ ðsm2 ∂2Þðsm2 ∂2Þ þ

ω2

c2ðxÞ
�
u ¼ fx ∈ Dm;

u ¼ 0x ∈ ∂Dm:ð2:6Þ

This equation is discretized with the subgrid

Gm ¼ fpi;j; 1 ≤ i ≤ n;m− bþ 1 ≤ j ≤ mg

of the original grid P, and the resulting bn× bn discrete Helmholtz operator is denoted
by Hm. Following the main idea mentioned above, the operator ~Tm∶ gm → vm defined
by
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0
BBB@

�
..
.

�
vm

1
CCCA ¼ H−1

m

0
BBB@

0
..
.

0
gm

1
CCCAð2:7Þ

is an approximation to the matrix Tm. Notice that applying ~Tm to an arbitrary vector
gm involves solving a linear system of matrix Hm, which comes from the local 5-point
stencil on the narrow grid Gm that contains only b layers. Let us introduce a new order-
ing for Gm,

p1;m−bþ1; p1;m−bþ2; : : : ; p1;m : : : pn;m−bþ1; pn;m−bþ2; : : : ; pn;m;

that iterates through the x2 direction first, and let us denote the permutation matrix in-
duced from this new ordering by Pm. Now the matrix PmHmP

t
m is a banded matrix with

only b− 1 lower diagonals and b− 1 upper diagonals. Since theLU factorizationLmUm ¼
PmHmP

t
m can be constructed efficiently, the application of ~Tm can be done rapidly.

The application of a PML right next to the layer to be eliminated corresponds to a
PML or absorbing boundary condition next to a Dirichlet boundary condition. This has
been used as an asymptotic technique for high frequency scattering under the name of
on-surface radiation boundary condition (OSRBC) [2], [18]. The OSRBC is an approx-
imation that is more accurate than physical optics but, of course, not as accurate as a full
boundary integral formulation.

2.3. Approximate inversion and preconditioner. Let us incorporate the mov-
ing PML technique into Algorithms 2.1 and 2.2. The computation at the first (bþ 1)
layers needs to be handled differently, since it does not make sense to introduce moving
PMLs for these initial layers. Let us call the first b layers the front part and define

uF ¼ ðut
1; : : : ; u

t
bÞt and fF ¼ ðf t1; : : : ; f tbÞt:

Then we can rewrite Au ¼ f as
0
BBBBBBBB@

AF;F AF;bþ1

Abþ1;F Abþ1;bþ1
. .
.

. .
. . .

.
An−1;n

An;n−1 An;n

1
CCCCCCCCA

0
BBB@

uF

ubþ1

..

.

un

1
CCCA ¼

0
BBB@

fF
f bþ1

..

.

fn

1
CCCA:

The construction of the approximate sweeping factorization of A takes the following
steps. Notice that since Tm are approximated directly there is no need to compute
Sm anymore.

ALGORITHM 2.3.
Construction of the approximate sweeping factorization of A with moving PML.

1: Let GF be the subgrid of the first b layers, HF ¼ AF;F , and let PF be the
permutation matrix induced by the new ordering (x2 first) of GF . Construct
the LU factorization LFUF ¼ PFHFP

t
F . This factorization implicitly de-

fines ~TF∶ Cbn → Cbn.
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2: for m ¼ bþ 1; : : : ; n do
3: Let Gm ¼ fpi;j; 1 ≤ i ≤ n;m− bþ 1 ≤ j ≤ mg, letHm be the discrete system of

(2.6) on Gm, and let Pm be the permutation induced by the new ordering of Gm.
Construct the LU factorization LmUm ¼ PmHmP

t
m. This factorization impli-

citly defines ~Tm∶ Cn → Cn.
4: end for

The cost of Algorithm 2.3 is Oðb3n2Þ ¼ Oðb3NÞ. The computation of u≈ A−1f
using the constructed sweeping factorization is summarized in the following algorithm.

ALGORITHM 2.4.
Computation of u≈ A−1f using the sweeping factorization of A with moving PML.

1: uF ¼ fF and um ¼ fm for m ¼ bþ 1; : : : ; n.
2: ubþ1 ¼ ubþ1 − Abþ1;F ð ~TFuF Þ. ~TFuF is computed as Pt

FU
−1
F L−1

F PFuF .
3: for m ¼ bþ 1; : : : ; n− 1 do
4: umþ1 ¼ umþ1 − Amþ1;mð ~TmumÞ. The application of ~Tmum is done by forming

the vector ð0; : : : ; 0; ut
mÞt, applying Pt

mU
−1
m L−1

m Pm to it, and extracting the va-
lue on the last layer.

5: end for
6: uF ¼ ~TFuF . See the previous steps for the application of ~TF .
7: for m ¼ bþ 1; : : : ; n do
8: um ¼ ~Tmum. See the previous steps for the application of ~Tm.
9: end for

10: for m ¼ n− 1; : : : ; bþ 1 do
11: um ¼ um − ~TmðAm;mþ1umþ1Þ. See the previous steps for the application of ~Tm.
12: end for
13: uF ¼ uF − ~TF ðAF;bþ1ubþ1Þ. See the previous steps for the application of ~TF .

The cost of Algorithm 2.4 is Oðb2n2Þ ¼ Oðb2NÞ. Since b is a fixed constant, the cost
is essentially linear. Algorithm 2.4 defines an operator

M∶ f ¼ ðf tF ; f tbþ1; : : : ; f
t
nÞt → u ¼ ðut

F ; u
t
bþ1; : : : ; u

t
nÞt;

which is an approximate inverse of the discrete Helmholtz operator A. In practice, in-
stead of generating the sweeping factorization of the original matrix A, it is more effec-
tive to generate the factorization for the matrix Aα associated with the modified
Helmholtz equation

ΔuðxÞ þ ðωþ iαÞ2
c2ðxÞ uðxÞ ¼ f ðxÞ;ð2:8Þ

where the damping parameter α is an Oð1Þ positive constant. We denote byMα∶ f → u
the operator defined by Algorithm 2.4 with this modified equation. We would like to
emphasize that (2.8) is very different from the equation used in the shifted Laplacian
approach (for example, [14], [19]): in the shifted Laplacian formulation the damping
parameter is OðωÞ while here it is Oð1Þ.

Since α is small, Aα and Mα are close to A and M , respectively. Therefore, we
propose to solve the preconditioner system

MαAu ¼ Mαf
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using the GMRES solver [25], [26]. As the cost of applying Mα to any vector is
Oðn2Þ ¼ OðNÞ, the total cost of the iterative solver scales like OðNINÞ, where NI is
the number of iterations. As the numerical results in section 3 demonstrate, NI depends
at most logarithmically on N , thus resulting in a solver with almost linear complexity.

The problem considered so far has zero Dirichlet boundary condition on x2 ¼ 1. A
common situation is to impose PML at all sides. In this case, the algorithms need a slight
modification. Instead of sweeping upward from x2 ¼ 0, the algorithm sweeps with two
fronts, one from x2 ¼ 0 upward and the other from x2 ¼ 1 downward (see Figure 2.2
(left)). Similar to uF and fF near x2 ¼ 0, we introduce near x2 ¼ 1,

uE ¼ ðut
n−bþ1; : : : ; u

t
nÞt and fE ¼ ðf tn−bþ1; : : : ; f

t
nÞt;

and we write Au ¼ f in the following block form:
0
BBBBBBBBB@

AF;F AF;bþ1

Abþ1;F Abþ1;bþ1
. .
.

. .
. . .

. . .
.

. .
.

An−b;n−b An−b;E

AE;n−b AE;E

1
CCCCCCCCCA

0
BBBBBB@

uF

ubþ1

..

.

un−b

uE

1
CCCCCCA

¼

0
BBBBBB@

fF
fbþ1

..

.

fn−b

fE

1
CCCCCCA
:

The upward sweep goes throughm ¼ F; bþ 1; bþ 2; : : : ; ðn− 1Þ ∕ 2, and the downward
sweep visits m ¼ E; n− b; n− b− 1; : : : ; ðnþ 3Þ ∕ 2. Finally, the algorithm visits the
middle layer m ¼ ðnþ 1Þ∕ 2 with moving PMLs on both sides.

Algorithm 2.3 eliminates one layer of unknowns in each iteration. We can also in-
stead eliminate several layers of unknowns together (see Figure 2.2(right)). The result-
ing algorithm spends more computational time within each elimination step, since the
discrete system Hm contains more layers in the x2 dimension. On the other hand, the
number of elimination steps goes down by a factor equal to the number of layers pro-
cessed within each elimination step. In practice, the actual number d of layers processed
within each step depends on the width of the moving PML and is chosen to minimize the
overall computation time and storage.

3. Numerical results in 2D. In this section, we present several numerical results
to illustrate the properties of the sweeping preconditioner described in section 2. The

FIG. 2.2. Different sweeping patterns. Left: For problems with PML at both x2 ¼ 0 and x2 ¼ 1, the algo-
rithm sweeps from both ends towards the center. Right: Instead of one layer, multiple layers of unknowns can be
eliminated within each iteration of the algorithm.
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algorithms are implemented sequentially in MATLAB and all tests are performed on a
16-core 2.6 GHz computer. We use GMRES as the iterative solver with relative residual
equal to 10−3.

3.1. PML. The examples in this section have the PML boundary condition spe-
cified at all sides. We consider three velocity fields in the domain D ¼ ð0; 1Þ2:

1. A smooth converging lens with a Gaussian profile at the center ðr1; r2Þ ¼
ð1 ∕ 2; 1 ∕ 2Þ of the domain (see Figure 3.1(a))

cðx1; x2Þ ¼
4

3

�
1−

1

2
exp ð−32ððx1 − r1Þ2 þ ðx2 − r2Þ2ÞÞ

�
.

2. A vertical waveguide with centralized Gaussian cross section (see Figure 3.1(b))

cðx1; x2Þ ¼
4

3

�
1−

1

2
exp

�
−32

�
x1 −

1

2

�
2
��

.

3. A randomly generated velocity field with values in (0.7,1.3) and correlation
length equal to 1 ∕ 16 (see Figure 3.1(c)).

For each velocity field, we test with two external forces f ðxÞ.
1. fðxÞ is a narrow Gaussian point source located at ðr1; r2Þ ¼ ð1 ∕ 2; 1 ∕ 8Þ:

fðx1; x2Þ ¼ exp

�
−
�
4ω

π

�
2

ððx1 − r1Þ2 þ ðx2 − r2Þ2Þ
�
:

The response of this forcing term generates circular waves propagating at all
directions.

2. fðxÞ is a Gaussian wave packet whose wavelength is comparable to the typical
wavelength of the domain. This packet centers at ðr1; r2Þ ¼ ð1 ∕ 8; 1 ∕ 8Þ and
points to direction ðd1; d2Þ ¼ 1ffiffi

2
p ð1; 1Þ:

f ðx1; x2Þ ¼ exp ð−4ωððx1 − r1Þ2 þ ðx2 − r2Þ2ÞÞ · exp ðiωðx1d1 þ x2d2ÞÞ:

The response of this forcing term generates a Gaussian beam initially pointing
towards the (1,1) direction.

First, we study how the sweeping preconditioner behaves when ω varies. For each
velocity field, we perform tests for ω

2π ¼ 16; 32; : : : ; 256. In these tests, we discretize each
wavelength with q ¼ 8 points and n ¼ 127; 255; : : : ; 2047. The damping parameter α of
the modified system (2.8) is set to be 2. The width of the moving PML is equal to 12h

FIG. 3.1. Test velocity fields.
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(i.e., b ¼ 12) and the number d of layers processed within each iteration of Algo-
rithms 2.3 and 2.4 is equal to 12. The sweeping pattern indicated in Figure 2.2(left)
is used in these tests.

The results of the first velocity field are summarized in Table 3.1. T setup denotes the
time used to construct the preconditioner in seconds. For each external force, N iter is the
number of iterations of the preconditioned GMRES iteration, and T solve is the overall
solution time. When ω and n double, N increases by a factor of 4 and the setup cost in
Table 3.1 increases roughly by a factor of 4 as well, which is consistent with the OðNÞ
complexity of Algorithm 2.3. At the same time, the number of iterations is essentially
independent of n. As a result, the overall solution time increases by a factor of 4 or 5
when N quadruples, exhibiting the linear complexity of Algorithm 2.4.

The results of the second and third velocity fields are summarized in Tables 3.2 and
3.3, respectively. The quantitative behavior of these tests is similar to the one of the first
velocity field. In all cases, the GMRES iteration converges in about 20 iterations with
the sweeping preconditioner.

Second, we study how the sweeping preconditioner behaves when q (the number of
discretization points per wavelength) varies. We fix ω

2π to be 32 and let q be 8, 16, 32, 64.
The test results for the three velocity fields are summarized in Tables 3.4, 3.5, and 3.6.
These results show that the number of iterations remains to scale at most logarithmi-
cally, and the running time of the solution algorithm scales roughly linearly with respect
to the number of unknowns.

Let us compare these numerical results with the ones from the previous paper [12].
The algorithms proposed in this paper are implemented in MATLAB, while the ones in
[12] are implemented in C++ with compiler optimization. Hence, direct comparison of
the running time is clearly in favor of the algorithms in the previous paper. We would

TABLE 3.1
Results of velocity field 1 with varying ω. Top: Solutions for two external forces with ω∕ ð2πÞ ¼ 64. Bot-

tom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

16 8 1272 2.86e− 01 14 4.73e− 01 15 3.81e− 01

32 8 2552 8.95e− 01 15 1.59eþ 00 15 1.57eþ 00

64 8 5112 3.78eþ 00 15 7.14eþ 00 15 7.12eþ 00
128 8 10232 1.61eþ 01 15 2.90eþ 01 13 2.54eþ 01

256 8 20472 6.85eþ 01 16 1.44eþ 02 11 9.42eþ 01
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TABLE 3.2
Results of velocity field 2 with varying ω. Top: Solutions for two external forces with ω ∕ ð2πÞ ¼ 64. Bot-

tom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

16 8 1272 3.03e− 01 18 5.13e− 01 16 3.94e− 01

32 8 2552 9.30e− 01 19 2.58eþ 00 16 2.17eþ 00

64 8 5112 3.76eþ 00 19 1.02eþ 01 15 7.61eþ 00
128 8 10232 1.61eþ 01 19 4.18eþ 01 13 2.75eþ 01

256 8 20472 6.78eþ 01 19 1.86eþ 02 12 1.10eþ 02

TABLE 3.3
Results of velocity field 3 with varying ω. Top: Solutions for two external forces with ω ∕ ð2πÞ ¼ 64. Bot-

tom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

16 8 1272 3.56e− 01 18 4.91e− 01 19 5.03e− 01

32 8 2552 9.31e− 01 18 2.42eþ 00 19 2.61eþ 00

64 8 5112 3.76eþ 00 17 8.66eþ 00 23 1.24eþ 01
128 8 10232 1.60eþ 01 19 3.90eþ 01 22 4.80eþ 01

256 8 20472 6.82eþ 01 17 1.54eþ 02 17 1.48eþ 02
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expect the running time of the algorithms in this paper to improve when implemented in
optimized C++ code. Even with this disadvantage, the setup time T setup of the current
approach is about 20 times faster. This is mainly due to the fact that the implementation
of the LU factorization is much more efficient compared to our implementation of the
hierarchical matrix algebra in [12]. On the other hand, the number of iterationsN iter and
solution time T solve of the current algorithms are higher mainly due to the fact that the
preconditioner is constructed based on the damped equation in (2.8).

3.2. Scattering problem. The sweeping preconditioner proposed in this paper
can also be extended to scattering problems. Let us consider a simple case where the
scatterer is a sound soft disk centered at the origin with radius r0. In polar coordinates,
the scattered field satisfies the following equations:

1

r
ðrurÞr þ

1

r2
uθθ þ

w2

c2ðr; θÞu ¼ f ;

uðr0; θÞ ¼ −uincðr0; θÞ;

TABLE 3.4
Results of velocity field 1 with varying q.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

32 8 2552 9.19e− 01 15 1.65eþ 00 15 1.61eþ 00

32 16 5112 3.91eþ 00 14 6.94eþ 00 15 7.22eþ 00
32 32 10232 1.59eþ 01 17 8.87eþ 01 17 9.39eþ 01

32 64 20472 6.68eþ 01 19 3.74eþ 02 20 4.15eþ 02

TABLE 3.5
Results of velocity field 2 with varying q.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

32 8 2552 9.28e− 01 19 2.14eþ 00 16 1.73eþ 00
32 16 5112 3.69eþ 00 17 1.29eþ 01 15 1.13eþ 01

32 32 10232 1.58eþ 01 24 1.13eþ 02 15 7.16eþ 01

32 64 20472 6.63eþ 01 26 5.29eþ 02 17 3.47eþ 02

TABLE 3.6
Results of velocity field 3 with varying q.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n2 T setup N iter T solve N iter T solve

32 8 2552 1.00eþ 00 16 1.73eþ 00 16 1.81eþ 00
32 16 5112 3.66eþ 00 14 1.34eþ 01 18 1.87eþ 01

32 32 10232 1.52eþ 01 18 8.16eþ 01 19 9.22eþ 01

32 64 20472 6.57eþ 01 19 3.99eþ 02 21 4.62eþ 02
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where uinc is the incident field and the Sommerfeld boundary condition is specified for r
goes to infinity. One way to solve this scattering problem is to truncate the domain at
r ¼ r1 for some r1 > r0 and apply the PML condition at r ¼ r1. We can then apply the
sweeping preconditioner in the radial direction from r ¼ r1 to r ¼ r0. In the following
example, cðr; θÞ ¼ 1, r0 ¼ 0.15, and r1 ¼ 0.5. The polar grid is determined so that each
wavelength is discretized with at least q ¼ 8 points in the Cartesian ðx1; x2Þ coordinates.
For each fixed ω, two incident fields are used: one is the Green’s function centered at
ð−0.2; 0.2Þ, and the other is the plane wave expð−iωx2Þ traveling towards the negative
x2 direction. We perform tests for w

2π ¼ 16; 32; 64; 128; 256, and the numerical results are
reported in Table 3.7.

4. Preconditioner in 3D. The presentation of the 3D preconditioner follows the
layout of the 2D case.

4.1. Discretization and sweeping factorization. The computational domain is
D ¼ ð0; 1Þ3. Similar to the 2D case, assume that the Dirichlet boundary condition is used
on the side x3 ¼ 1 and the PML boundary condition is enforced on other sides. Define

σ1ðtÞ ¼ σ2ðtÞ ¼

8>>>>>><
>>>>>>:

C
η
·
�

t−η
η

�
2

t ∈ ½0;η�;
0 t ∈ ½η; 1− η�
C
η
·
�

t−1þη
η

�
2

t ∈ ½1− η; 1�;
; σ3ðtÞ ¼

8<
:

C
η
·
�

t−η
η

�
2

t ∈ ½0;η�;
0 t ∈ ½η; 1�;

and

TABLE 3.7
Results of the scattering problem. Top: Scattered fields for two incident waves withω∕ ð2πÞ ¼ 64. Bottom:

Results for different ω.

Incident field 1 Incident field 2

ω ∕ ð2πÞ q N T setup N iter T solve N iter T solve

16 8 45× 403 6.11e− 01 7 3.61e− 01 7 2.25e− 01

32 8 90× 805 2.61eþ 00 7 1.11eþ 00 7 1.11eþ 00
64 8 180× 1609 1.17eþ 01 7 4.92eþ 00 7 4.90eþ 00

128 8 359× 3217 4.95eþ 01 7 2.10eþ 01 7 2.06eþ 01

256 8 717× 6434 1.99eþ 02 7 9.01eþ 01 7 9.00eþ 01
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s1ðx1Þ ¼
�
1þ i

σðx1Þ
ω

�
−1

; s2ðx2Þ ¼
�
1þ i

σðx2Þ
ω

�
−1

; s3ðx3Þ ¼
�
1þ i

σðx3Þ
ω

�
−1

:

The PML approach replaces ∂1, ∂2, and ∂2 with s1ðx1Þ∂1, s2ðx2Þ∂2, and s3ðx3Þ∂3, respec-
tively. This effectively provides a damping layer of width η near the sides with Som-
merfeld condition. The resulting equation takes the form

�
ðs1∂1Þðs1∂1Þ þ ðs2∂2Þðs2∂2Þ þ ðs3∂3Þðs3∂3Þ þ

ω2

c2ðxÞ
�
u ¼ fx ∈ ð0; 1Þ3;

u ¼ 0x ∈ ∂ð½0; 1�3Þ:

We assume that fðxÞ is supported inside ½η; 1− η�× ½η; 1− η�× ½η; 1� (away from the
PML). Dividing the above equation by s1ðx1Þs2ðx2Þs3ðx3Þ brings the result

�
∂1

�
s1
s2s3

∂1

�
þ ∂2

�
s2
s1s3

∂2

�
þ ∂3

�
s3
s1s2

∂3

�
þ ω2

s1s2s3c
2ðxÞ

�
u ¼ f :

The domain ½0; 1�3 is discretized with a Cartesian grid with spacing h ¼ 1 ∕ ðnþ 1Þ,
where the number of points n in each dimension is proportional to ω. The interior points
of this grid are

P ¼ fpi;j;k ¼ ðih; jh; khÞ∶ 1 ≤ i; j; k ≤ ng

(see Figure 4.1(left)), and the total number of grid points is N ¼ n3.
We denote by ui;j;k, f i;j;k, and ci;j;k the values of uðxÞ, f ðxÞ, and cðxÞ at point

xi;j;k ¼ ðih; jh; khÞ. The standard 7-point stencil finite difference method writes down
the equation at points in P using central difference. The resulting equation at
ðih; jh; khÞ is

FIG. 4.1. Left: Discretization grid in 3D. Right: Sweeping order in 3D, and the remaining grid shows the
unknowns yet to be processed.
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1

h2

�
s1
s2s3

�
i−1

2;j;k

ui−1;j;k þ
1

h2

�
s1
s2s3

�
iþ1

2;j;k

uiþ1;j;k þ
1

h2

�
s2
s1s3

�
i;j−1

2;k

ui;j−1;k

þ 1

h2

�
s2
s1s3

�
i;jþ1

2;k

ui;jþ1;k þ
1

h2

�
s3
s1s2

�
i;j;k−1

2

ui;j;k−1 þ
1

h2

�
s3
s1s2

�
i;j;kþ1

2

ui;j;kþ1

þ
�

ω2

ðs1s2s3Þi;j;k · c2i;j;k
− ð · · · Þ

�
ui;j;k ¼ f i;j;kð4:1Þ

with ui 0;j 0;k 0 equal to zero for ði 0; j 0; k 0Þ that violates 1 ≤ i 0, j 0, k 0 ≤ n. Here ð · · · Þ stands
for the sum of the six coefficients. We order ui;j;k and f i;j;k by going through the three
dimensions in order and define the vectors

u ¼ ðu1;1;1; u2;1;1; : : : ; un;1;1; : : : ; u1;n;n; u2;n;n; : : : ; un;n;nÞt;
f ¼ ðf 1;1;1; f 2;1;1; : : : ; fn;1;1; : : : ; f 1;n;n; f 2;n;n; : : : ; f n;n;nÞt.

The discrete system of (4.1) takes the form Au ¼ f . Define Pm to be the indices in the
mth row

Pm ¼ fp1;1;m; p2;1;m; : : : ; pn;n;mg;

and introduce

um ¼ ðu1;1;m; u2;1;m; : : : ; un;n;mÞt and fm ¼ ðf 1;1;m; f 2;1;m; : : : ; f n;n;mÞt:

Using these notations, we write

u ¼ ðut
1; u

t
2; : : : ; u

t
nÞt; f ¼ ðf t1; f t2; : : : ; f tnÞt;

and the systemAu ¼ f takes the block tridiagonal form of (2.3), where each block is now
of size n2 × n2 and the off-diagonal blocks are diagonal matrices. The sweeping factor-
ization takes the same form as the 2D one in (2.4). In order to design an efficient pre-
conditioner, the main task is to construct an approximation to the Schur complement
matrix Tm∶ Cn2

→ Cn2
, which maps an external force gm ∈ Cn2

loaded only on the mth
layer to the solution vm ∈ Cn2

restricted to the same layer. Following the idea of pushing
the PML near x3 ¼ mh, we define

sm3 ðx3Þ ¼
�
1þ i

σ3ðx3 − ðm− bÞhÞ
ω

�
−1

;

and we introduce an auxiliary problem on the domain Dm ¼ ½0; 1�× ½0; 1�×
½ðm− bÞh; ðmþ 1Þh�:

�
ðs1∂1Þðs1∂1Þ þ ðs2∂2Þðs2∂2Þ þ ðsm3 ∂3Þðsm3 ∂3Þ þ

ω2

c2ðxÞ
�
u ¼ fx ∈ Dm;

u ¼ 0x ∈ ∂Dm:ð4:2Þ

This equation is then discretized with the subgrid
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Gm ¼ fpi;j;k; 1 ≤ i; j ≤ n;m− bþ 1 ≤ k ≤ mg

of the original grid P. The resulting bn2 × bn2 discrete Helmholtz operator is denoted by
Hm. The operator ~Tm∶ gm ∈ Cn2

→ vm ∈ Cn2
defined by (2.7) is an approximation of

the Schur complement matrix Tm. Since Hm comes from the 7-point stencil with b
layers, this can be viewed as a quasi-2D problem, which can be solved efficiently using
a modified version of the multifrontal method [9], [15], [22].

Themain idea of themultifrontalmethod is simple yet elegant.Take ann× n 2Dgrid
as an example, and use M to denote the discrete operator resulting from a local stencil.
The multifrontal method reorders the unknowns hierarchically in order to minimize the
fill-ins of theLDLt factorization ofM . For the n× nCartesian grid, one possible ordering
is given in Figure 4.2 where the unknowns are clustered into groups and the groups are
ordered hierarchically. The construction of the LDLt factorization eliminates the
unknowns group by group. The dominating cost of the algorithm is spent in inverting
the unknowns of the last few groups, and the overall cost is Oðn3Þ, cubic in terms of
the size of the last group. Moreover, the Lmatrix is never formed explicitly in the multi-
frontal method. Instead it is stored and applied as a sequence of (block) row operations for
the sake of efficiency. ApplyingM−1 to an arbitrary vector using the result of the multi-
frontal algorithm takesOðn2 log nÞ steps. In the current setting, we adopt the same hier-
archical partitioning in the ðx1; x2Þ plane, while keeping the unknowns with the same x1
and x2 but different x3 indices in the same group. Since now the size of the last group is of
orderOðbnÞ, the construction phase of the multifrontal method takes Oðb3n3Þ steps and
applying to an arbitrary vector takes Oðb2n2 log nÞ steps.

4.2. Approximate inversion and preconditioner. Let us now combine the
multifrontal method into Algorithms 2.1 and 2.2 to build the approximate inverse of
H . Similar to the 2D case, we define

uF ¼ ðut
1; : : : ; u

t
bÞt fF ¼ ðf t1; : : : ; f tbÞt;

and we write

FIG. 4.2. Multifrontal algorithm on a 15× 15 2D Cartesian grid. Left: The unknowns are clustered into
groups hierarchically to minimize the boundary between different groups. Right: Elimination order of different
groups. The groups are eliminated in the increasing order of their indices.
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AF;F AF;bþ1

Abþ1;F Abþ1;bþ1
. .
.

. .
. . .

.
An−1;n

An;n−1 An;n

1
CCCCCCA

0
BBBB@

uF

ubþ1

..

.

un

1
CCCCA ¼

0
BBB@

fF
f bþ1

..

.

fn

1
CCCA:

The goal of the construction of the approximate sweeping factorization of A is to com-
pute the approximation ~Tm, and the algorithm consists of the following steps.

ALGORITHM 4.1.
Construction of the approximate sweeping factorization of A with moving PML.

1: Let GF be the subgrid of the first b layers and let HF ¼ AF;F . Construct the
multifrontal factorization of HF by partitioning GF hierarchically in the
ðx1; x2Þ plane.

2: for m ¼ bþ 1; : : : ; n do
3: Let Gm ¼ fpi;j;k; 1 ≤ i; j ≤ n;m− bþ 1 ≤ k ≤ mg and let Hm be the system of

(4.2) on Gm. Construct the multifrontal factorization of Hm by partitioning Gm

hierarchically in the ðx1; x2Þ plane.
4: end for

The cost of Algorithm 4.1 is Oðb3n4Þ ¼ Oðb3N 4∕ 3Þ. Though the complexity is
slightly higher than linear, it can be improved by building the inverses of Hm, applying
the hierarchical matrix framework used in [12] or the moving PML idea once again to the
solution of Hm. Either one of these two choices gives strictly linear complexity, and they
are of significant theoretical interest. However, we observe that, for many practical pro-
blems that are not extremely large, the current version is at least equally competitive
since the efficiency of the multifrontal implementation has been highly optimized due to
its simple structure.

The computation of u from this sweeping factorization is summarized in the follow-
ing algorithm.

ALGORITHM 4.2.
Computation of u≈ A−1f using the sweeping factorization of A with moving PML.

1: uF ¼ fF and um ¼ fm for m ¼ bþ 1; : : : ; n.
2: ubþ1 ¼ ubþ1 − Abþ1;F ð ~TFuF Þ. ~TFuF is computed using the multifrontal factor-

ization of HF .
3: for m ¼ bþ 1; : : : ; n− 1 do
4: umþ1 ¼ umþ1 − Amþ1;mð ~TmumÞ. The application of ~Tmum is done by forming

the vector ð0; : : : ; 0; ut
mÞt, applying H−1

m to it using the multifrontal factoriza-
tion of Hm, and extracting the value on the last layer.

5: end for
6: uF ¼ ~TFuF . See the previous steps for the application of ~TF .
7: for m ¼ bþ 1; : : : ; n do
8: um ¼ ~Tmum. See the previous steps for the application of ~Tm.
9: end for

10: for m ¼ n− 1; : : : ; bþ 1 do
11: um ¼ um − ~TmðAm;mþ1umþ1Þ. See the previous steps for the application of ~Tm.
12: end for
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13: uF ¼ uF − ~TF ðAF;bþ1ubþ1Þ. See the previous steps for the application of ~TF .

The cost of Algorithm 4.2 is Oðb2n3 log nÞ ¼ Oðb2N log NÞ.
For the reason mentioned in section 2, we apply Algorithms 4.1 and 4.2 to the dis-

crete operator Aα of the modified system

ΔuðxÞ þ ðωþ iαÞ2
c2ðxÞ uðxÞ ¼ f ðxÞ;ð4:3Þ

where α is an Oð1Þ positive constant. We denote byMα∶ f → u the operator defined by
Algorithm 2.4 for this modified equation. Since Aα is close to A when α is small, we
propose to solve the preconditioner system

MαAu ¼ Mαf

using the GMRES solver [25], [26]. Because the cost of applying Mα to any vector is
OðN log NÞ, the total cost of the GMRES solver is OðNIN log NÞ, where NI is the
number of iterations required. As the numerical results in section 5 demonstrate, NI

is essentially independent of the number of unknowns N , thus resulting in an algorithm
with almost linear complexity.

5. Numerical results in 3D. In this section, we present several numerical results
to illustrate the algorithms described in section 4. We use GMRES as the iterative solver
with relative residual equal to 10−3.

The examples in this section have the PML boundary condition specified at all sides.
We consider three velocity fields in the domain D ¼ ð0; 1Þ3.

1. A converging lens with a Gaussian profile at the center of the domain (see
Figure 5.1(a)).

2. A vertical waveguide with Gaussian cross section (see Figure 5.1(b)).
3. A random velocity field with values in (0.7,1.3) and correlation length equal to

1 ∕ 8 (see Figure 5.1(c)).
For each velocity field, we test with two external forces f ðxÞ.

1. fðxÞ is a Gaussian point source located at ðr1; r2; r3Þ ¼ ð1 ∕ 2; 1 ∕ 2; 1 ∕ 4Þ. The
response of this forcing term generates circular waves propagating at all di-
rections.

2. fðxÞ is a Gaussian wave packet whose wavelength is comparable to the typical
wavelength of the domain. This packet centers at ðr1; r2; r3Þ ¼ ð1 ∕ 2; 1 ∕ 4; 1 ∕ 4Þ
and points to direction ðd1; d2; d3Þ ¼ 1ffiffi

2
p ð0; 1; 1Þ.

First, we study how the sweeping preconditioner behaves when ω varies. For each
velocity field, we perform tests for ω

2π equal to 5, 10, 20. In these tests, each wavelength is

FIG. 5.1. Test velocity fields.
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again discretized with q ¼ 8 points, and the number of samples in each dimension is
n ¼ 39, 79, 159. The damping parameter α of (4.3) is set to 1. The width of the
PML is equal to 6h (i.e., b ¼ 6), and the number of layers processed within each iteration
of Algorithms 4.1 and 4.2 is equal to 3 (i.e., d ¼ 3). The preconditioner sweeps the do-
main with two fronts that start from x3 ¼ 0 and x3 ¼ 1.

TABLE 5.1
Results of velocity field 1 with varying ω. Top: Solutions for two external forces with ω ∕ ð2πÞ ¼ 16 on a

plane near x1 ¼ 0.5. Bottom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.80eþ 00 11 4.53eþ 00 11 4.63eþ 00

10 8 793 6.37eþ 01 11 4.92eþ 01 11 4.93eþ 01

20 8 1593 8.27eþ 02 12 5.53eþ 02 12 5.94eþ 02

TABLE 5.2
Results of velocity field 2 with varying ω. Top: Solutions for two external forces with ω ∕ ð2πÞ ¼ 16 on a

plane near x1 ¼ 0.5. Bottom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.83eþ 00 12 5.14eþ 00 12 5.03eþ 00

10 8 793 6.76eþ 01 13 5.70eþ 01 12 5.64eþ 01

20 8 1593 8.24eþ 02 14 6.32eþ 02 11 5.40eþ 02
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The results of the first velocity field are reported in Table 5.1. The two plots show
the solutions of the two right sides on a plane near x1 ¼ 0.5. T setup is the time used to
construct the preconditioner in seconds.N iter is the number of iterations of the precondi-
tioned GMRES iteration, and T solve is the solution time. The estimate in section 4 shows
that the setup time scales like OðN 4 ∕ 3Þ. When ω doubles, N increases by a factor of 8,
and T setup should increase by a factor of 16. The numerical results show that the actual
growth factor is even lower. A remarkable feature of the sweeping preconditioner is that
in all cases the preconditioned GMRES solver converges in at most 12 iterations. Final-
ly, we would like to point out that our algorithm is quite efficient: for the case with
ω ∕ ð2πÞ ¼ 20 with more than four million unknowns, the solution time is less than
600 seconds. The results of the second and the third velocity fields are reported in Ta-
bles 5.2 and 5.3, respectively. In all tests, the GMRES iteration converges in at most 13
iterations when combined with the new sweeping preconditioner.

Second, we study how the sweeping preconditioner behaves when q (the number of
discretization points per wavelength) varies. We fix ω

2π to be 5 and let q be 8, 16, 32. The
test results for the three velocity fields are summarized in Tables 5.4, 5.5, and 5.6, re-
spectively. These results show that the number of iterations remains roughly constant,

TABLE 5.3
Results of velocity field 3 with varying ω. Top: Solutions for two external forces with ω ∕ ð2πÞ ¼ 16 on a

plane near x1 ¼ 0.5. Bottom: Results for different ω.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.85eþ 00 12 5.26eþ 00 12 5.44eþ 00

10 8 793 6.69eþ 01 11 5.10eþ 01 13 5.99eþ 01

20 8 1593 8.42eþ 02 11 5.58eþ 02 13 6.28eþ 02

TABLE 5.4
Results of velocity field 1 with varying q.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.87eþ 00 11 4.91eþ 00 11 4.96eþ 00
5 16 793 6.59eþ 01 11 4.70eþ 01 12 5.55eþ 01

5 32 1593 8.07eþ 02 13 5.91eþ 02 13 6.31eþ 02
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and the running time of the solution algorithm scales roughly linearly with respect to the
number of unknowns.

Let us compare these numerical results with the ones from the 3D results from the
previous paper [12]. The setup time T setup of the current algorithms is much lower: for
the problem of 20 wavelengths across, the current setup time is in the hundreds of
seconds while the setup time in [12] is in the tens of thousands of seconds. This is mainly
due to the fact that our implementation of the multifrontal algorithm in this paper is
more efficient compared to our implementation of the 2D hierarchical matrix algebra in
[12]. The number of iterations N iter is about 5 times larger, again due to the introduction
of the damping parameter α. Notice that the solution time T solve is only about 3
times larger, and this is due to the efficiency of applying ~Tm using the multifrontal
factorization.

6. Conclusion and future work. In this paper, we proposed a new sweeping pre-
conditioner for the Helmholtz equation in two and three dimensions. Similar to the pre-
vious paper [12], the preconditioner is based on an approximate block LDLt factorization
that eliminates the unknowns layer by layer starting from an absorbing layer or bound-
ary condition. What is new is that the Schur complement matrices of the block LDLt

factorization are approximated by introducing moving PMLs in the interior of the do-
main. In the 2D case, applying these Schur complement matrices corresponds to solving
quasi-1D problems by an LU factorization with optimal ordering. In the 3D case, apply-
ing these Schur complement matrices corresponds to solving quasi-2D problems with
multifrontal methods. The resulting preconditioner has a linear application cost, and
the number of iterations is essentially independent of the number of unknowns or
the frequency when combined with the GMRES solver.

Some questions remain open. First, we tested the algorithms with the PML bound-
ary condition as the numerical implementation of the Sommerfeld condition. Many
other boundary conditions are available, and we believe that the current algorithms

TABLE 5.6
Results of velocity field 3 with varying p.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.82eþ 00 12 4.92eþ 00 12 5.08eþ 00
5 16 793 6.77eþ 01 12 5.17eþ 01 13 6.04eþ 01

5 32 1593 8.16eþ 02 13 6.26eþ 02 15 7.14eþ 02

TABLE 5.5
Results of velocity field 2 with varying q.

Test 1 Test 2

ω ∕ ð2πÞ q N ¼ n3 T setup N iter T solve N iter T solve

5 8 393 4.80eþ 00 12 5.36eþ 00 12 4.95eþ 00

5 16 793 6.74eþ 01 13 5.53eþ 01 12 5.51eþ 01
5 32 1593 8.18eþ 02 14 6.48eþ 02 14 6.45eþ 02
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should work for these boundary conditions. We presented the algorithms using the sim-
plest central difference scheme (5-point stencil in 2D and 7-point stencil in 3D). The
dispersion relationships of these schemes are rather poor approximations to the true
one. One would like to investigate other more accurate stencils and other types of dis-
cretizations such as finite element, spectral element, and discontinuous Galerkin.

Parallel processing is necessary for large scale 3D problems. In Algorithms 2.3 and
4.1, the computations for different Tm are fully independent, and therefore, the setup
stage is fully parallelizable. For the application stage (Algorithms 2.4 and 4.2), although
the overall structure is sequential by itself, the calculation of the multifrontal method
within each iteration can be well parallelized. Several efficient implementations are al-
ready available [1], [20] for this purpose. There is also an alternative to parallelize via a
coarse scale domain decomposition and apply our technique within each subdomain.

The approach of the current paper is readily applicable to nonuniform and even
adaptive grids. In fact, the restriction of the nonuniform or adaptive grid of the original
problem can be used for the subproblems associated with the moving PMLs, as long as
the grid can resolve the moving PML with sufficient accuracy. Since the multifrontal
methods for nonuniform and adaptive grids are readily available [1], [21], it makes the
current approach more flexible compared with the one based on the hierarchical matrix
representation in the previous paper [12].

Acknowledgment. The authors thank the reviewers for their comments and
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