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Abstract This paper is concerned with the fast iterative solution of linear
systems arising from finite difference discretizations in electromagnetics. The
sweeping preconditioner with moving perfectly matched layers previously
developed for the Helmholtz equation is adapted for the popular Yee grid
scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary
numerical results are presented for typical examples.
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1 Introduction

Medium-to-high frequency wave propagation in complex media is a problem
of great interest in many fields; in electromagnetics, these problems arise in
applications such as metamaterials and radar imaging. In order to compute
the electromagnetic fields in an arbitrary medium, one must solve Maxwell’s
equations numerically for the given permittivity and permeability tensors (r)
and p(r), respectively; the tensors here are functions of the spatial variable
r € R3. This paper is concerned with solving Maxwell’s equations with finite
difference methods in the frequency domain.

When the wavelength of the incident or incoming field is much smaller in
comparison to the size of the truncated domain, there are many oscillations in
the solution and interesting scattering effects can occur. In order to physically
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capture these details, it is a commonly accepted practice to use discretizations
with a constant number of samples s per A, where X\ is the operating wave-
length. For a 3-D problem in Cartesian coordinates that is K wavelengths in
diameter, the number of unknowns N grows as O((Ks)3). Thus, the number
of unknowns grows very quickly with the size of the problem; because of the
large memory requirements and long computational time, using a sparse
direct solver becomes impractical for 3D applications, so iterative methods are
employed. However, using iterative methods poses an alternative challenge:
the matrix resulting from finite difference or finite element discretization is ill-
conditioned and indefinite, hence rendering most existing multiscale techniques
inefficient. For high-frequency problems, a large number of iterations is
necessary for convergence even to a modest error tolerance; as the problem
grows, this number increases significantly.

We propose using the sweeping preconditioner presented in [6] to reduce
the prohibitively high number of iterations in the electromagnetics case.
Originally introduced for the Helmholtz equation, this approach constructs an
LDL" factorization by eliminating the unknowns layer by layer starting from
an absorbing boundary, and then approximates the Schur complement matrices
of the factorization using moving perfectly matched layers (PMLs) introduced
in the interior of the domain. This paper reports the current progress on
applying this idea to Maxwell’s equations. The rest of the paper is as follows.
In Section 2, we review the frequency-domain finite-difference method using
the Yee grid scheme in Cartesian coordinates. In section 3, we show how the
sweeping preconditioner can be adapted for Maxwell’s equations. In Section 4,
we provide some preliminary numerical results that show the complexity of the
algorithm and effectiveness of the preconditioner. Finally, we conclude with
some remarks and comments on future work in Section 5.

2 FDFD method for electromagnetics
2.1 Perfectly matched layers

We begin with the time-harmonic Maxwell equations for general media on an
infinite domain, which are

VXE=—-iwuH, VxH=iweE+J,

(2.1)

V- (eE)=p, V- (uH)=0,
‘ l‘im (Hxr—|r|E) =0, (2.2)
‘ l‘im (Exr+|r|H) =0, (2.3)

where i = v/—1, w is the angular frequency, J is the current distribution, and p
is the charge distribution; it should be noted that the current and charge satisfy
the continuity equation

V-J = —iwp.
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The last two limits are the Silver-Miiller radiation conditions, which enforce
the fields to radiate away from the current source and dissipate as |r| goes to
infinity. We take the permittivity and permeability tensors e(r) and pu(r) to
be measurable with respect to the spatial variable r € R3; the entries of these
matrices are

€xx Exy Eaz Hxx Hzy HMHzz
E=|Cyz Eyy Cyz |, M= | Hyz Hyy Hyz
Ezx Ezy Ezz Hzx  Hzy Hzz

Since it is impossible to numerically solve Maxwell’s equations in all of R3, the
computational domain is truncated and a boundary condition which emulates
the radiation condition is introduced; for our problem, the domain that we
consider is the unit cube D = [0,1]%. Absorbing boundary conditions [4,9]
have been very popular for the wave equation. Here, we choose to use the
perfectly matched layer derived by complex-stretched coordinates [3] because
of its ubiquity in computational electromagnetics.

Let us define the width of the PML as ¢, so that the non-PML region in D
is [¢,1 —£]3. Consider the complex stretching variables s¢ for § = x,y, z used in
the homogeneous, isotropic case. These functions are of the form

se(§) = a(§) +i0(§), (2.4)

with @ > 1 and ¢ > 0; in the physical space outside the PML, we have s¢ = 1.
Typically, we choose a = 1 everywhere, and ¢ as the ramp-like function

(50 eena

U(é‘) = 07 g € [57 - 6]7 (2.5)

0(#)2, cefl—o1],

where 6 is an optimal constant inversely proportional to frequency [7]. Now,
define the matrix

1/se 0 0
s={ o0 1/, o0 |, (2.6)
0 0 1/s,

therefore,

det(S) = (szsys.) .

It has been shown in [2] that Maxwell’s equations in complex stretched
coordinates can be written in terms of this operator; when these equations
are recast in the non-stretched coordinates, the material tensors take on the
form

&= (det(S))"1(SeS), 7= (det(S))"'(SuS).
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Explicitly, these matrix entries are

Ex25ySz/ Sz ExySz €228y
g = EyzSz EyySzSz/ Sy EyzSz ,
€225y €2y5z €22548y/5>
(2.7)
M:p:psysz/sx HxySz HaxzSy
= HyxSz Myysmsz/sy HyzSzx
Hzz Sy HzySx ,Ufzzsccsy/sz

Now, we can use (2.7) as the material tensors in the whole computational
domain, since s¢ = 1 in [(,1 — ¢]*> and the PML reduces to the actual material.
At the boundary of the domain 0D, we artificially use PEC boundary conditions
to close the system; because of the exponential decay of any plane wave entering
the perfectly matched layer, the field is so small that the reflections off of the
PEC outside of the PML are deemed insignificant. The infinite domain problem
is now reduced to the truncated problem:

VXxE=—-iwpH, VxH=iweE+J,
V-EB)=p V-@H)=0
nxE=0, nxH=0 ondD.
2.2 Yee grid discretization

For the scalar Helmholtz equation, standard central differencing methods are
sufficient and produce reasonably accurate results. In the case of Maxwell’s
equations, however, dispersion becomes a major problem if the components of
the electric field E and magnetic field H are all defined at the same locations.
The celebrated Yee grid, which was originally used for finite-difference time-
domain simulations [10], is also applicable to the frequency domain [1]. In this
scheme, the components of E and H are defined on a staggered grid. The
advantages to using the Yee grid are two-fold: the divergence equations in
(2.1) are implicitly satisfied, and boundary conditions between materials are
naturally handled.

Ee

i+1,j42,k+2

z 2
Ef;j4lc+l L 4 EL+2,]+2JC+1

Y
Elio i

Fig. 1 Yee grid on a cubic cell. Vectors perpendicular to faces are components of H and

vectors along edges are components of E.
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Figure 1 illustrates the locations of the field components in Yee’s scheme for
an orthogonal Cartesian grid; with this structure, the finite difference formulas
are

Y Y z z : ~ x _
E e = Biljipre B jyaner — B e T 2Wh(H)F; 4 4y = 0,
z z x T : ~ Yy _
Ef i1 — Bliojnr T Bt jrre — Elrjp + 2iwh(pH); Sy =0,

T T Y Yy : ~ z _
Ef k= Bl jion T Blajiie — Bl jiap +2Wh(H)7 54, =0,

Hf+1,j+1,k - Hz'z+1,j71,k + Hi‘yﬂ,j,k—l
—HY ) g — 2h(wEE)Y 1) = 2h(JF 5 p)s (2.8)
HZ

X z
itk — H e Y H ik
z : Yy _ Y
—H7 i1 — 2h(wEE)]; 5) = 2R(J) 1 1),
HY

Y _ T
Hi+1,j,k+1 i—1,7,k+1 + Hi,jfl,kJrl

~Hi g — 20 EE) 1) = 20T p40),
where
1
n+1

is the distance between two nodes in the grid, and the subscript notation for
each component follows the convention

EY . ~ Ey(ih, jh, kh).

In the derivation of the finite difference formulas, the tensor product terms
are the result of using the midpoint rule on the integrals

/ (FH)-7dd, [ (GE)-ad4,
D1 D2

where
Dy is a square face orthogonal to H,
Dy is a square face orthogonal to E, and
7 is the unit normal vector.

Observing the diagram in Fig. 1, we see that only one component of the
electric and magnetic fields is defined at each point. This creates a problem
when 1z and &€ have non-zero off-diagonal entries, as the individual components
of tH and €E will be summations of these terms; we must somehow define
a local approximation of the field components which are not defined at the
midpoints of Dy and Ds. To this end, we use the simple schemes introduced in
previous works on FDTD methods [11], which take the average of the nearest
four field values. The products gH and €E on the grids are then
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~xy

My
~rr\x ~ ~TT x J+LE+1 y Y
(EH)T 1 g1 = g1 g HE 1 g + — (Hiy e T H ok
ﬁxz k
+H e Y H o) T 1 (Hi1 1k
4 zZ 4
+Hi e Y HE e+ Hi g i1 geg2)s
(gE)i—i-l,j,k ~ Eiv1ielit e
CHERT
i+1,7, Y Y Y Y
T Bt Bl et Bk T Bl 1)
~rz
itlk

4 VA 4 VA
+ 1 (B k1 T Efg i + B o1+ Elio i 1)

for the x-components; the other components can be defined similarly. Now,
these approximations can be inserted into (2.8) to get the finite difference
formulas for fully anisotropic media.

2.3 Block tridiagonal structure and node ordering

Observe the finite difference equations given by (2.8) and (2.9), and consider
the unknowns on the layer z = kh. We see that each node on this layer of the
grid only interacts with nodes that satisfy

(k—1)h <z < (k+1)h.

Denoting uj, as the vector of unknowns on the layer z = kh, we can order
the unknowns within each layer lexicographically by the x-coordinate first and
y-coordinate second. We can then write the full vector of unknowns as u =

T T T\T
(uy,uy,...,u,)", where
uy = (HS, |, H¥ HY, . E H? HE )T
1 2,1,1> *54,1,10 - - - 251,210 22,10 - 0 Hn—=3n,1> “n—-1n,1/) >
_ z Yy T T Y z T
U2 = (H1,1,2’E2,1,2> e 7E1,2,2aE3,2,2a ce ’Enfl,n,Q’Hn,nQ) )
ey
_ z Yy T T Yy z T
Un—1 = (Hl,l,nfl? E2,1,n71> to 7E1,2,n71> E3,2,n71’ te 7En71,n,n71> Hn,n,nfl)

_ x T Yy z T
’LLn — (H2,1,’I’L’H4,1,7’L""’H1,277’L’E2,2,7’L"”7H H

T B )T

n—3,n,n’ “*n—1n,n

Similarly, the right-hand side f contains the information on the current source

and can be written as f = (f{f, f4,..., f;})T following the same ordering.
Given the full vector of unknowns u = (u7, uzT, ...,ur)T and the right-hand

side f = (f{, f&,..., DT, we can write the linear system Au = f in the block

tridiagonal form

A A U fi

Ay Any T | _ |5 .10
. . An—l,n : :
An,nfl An,n Un f"
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It is important to note that the off-diagonal blocks here are not square; because
of the staggered grid, there is a slightly different number of unknowns in each
layer.

3 Sweeping preconditioner

In [6], the sweeping preconditioner with moving PML was developed for the
scalar Helmholtz equation with variable media. Here, we present the precondi-
tioner adapted to Maxwell’s equations and the Yee grid.

3.1 Block LDL? factorization

After arriving at (2.10), we are in position to discuss the sweeping factorization.
Let P be the unknowns on the k-th layer. By eliminating the unknowns layer
by layer, the block LDL™ factorization for the matrix A can be written as

S1

s
A=Ly Ly 2 Lr Ll (3.1)

where
S1 = A1,17 S = Am,m - Am,m—lsygl_lAm—l,ma m=2...,n,
and Ly are the block lower triangular matrices given by

A1 ipSpty i=k+1, 5=k,
Ly(P;,Pj) =1 I, 1<i=j<n, (3.2)
0, otherwise.

Inverting this factorization and applying it to the right-hand side f, we can
arrive at the solution

St
-1
_ 7 Ty\—1 T -1 Sy 1 _1
u=(Ly)" - (Ly_y) . L,~y---Li f. (3.3)

n—1

Our goal is to find an approximate inverse M1 efficiently and solve the pre-
conditioned system M ~'Au = M~!f iteratively. Here, the main computational
task is constructing the inverse operators of Sy,...,5,, as these matrices are
dense; we will focus on this problem very shortly.

3.2 Main physical observation

To obtain an accurate approximation for the inversion of the Schur complement
matrices, we attempt to gain some physical intuition by restricting the problem
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to the first m layers. Let us observe the upper m x m blocks of the block
tridiagonal matrix A; if we only consider the degrees of freedom for layers

1,...,m, where layer m is outside the PML, we can obtain the smaller linear
system
A Aug uy fi
2 f2
A2,1 A272 . — ) (34)
Am—l,m
Am,mfl Am,m Um fm

Removing the degrees of freedom for layers m + 1 to n essentially strips the
domain of these layers and enforces PEC boundary conditions at layer m + 1;
that is, the matrix equation (3.4) corresponds to the discretization of the half-
space PEC plane problem for Maxwell’s equations on layers 1 to m, where the
PEC plane is located at layer m + 1. If we take the inverse of the operator on
the left-hand side, we have

—1
A Ao
Ax Ago

Amfl,m
Am,mfl Am,m

-1
1

= (L) (L) SIRERY (3.5)
St

We note that the inversion formula above is similar in structure to the inverse
of the full matrix A; this time, however, we only need the lower triangular
matrices Ly, ..., Ly and Schur complements Si,...,.5,,. The left-hand side
in equation (3.5) is Green’s function for the half-space problem, a dense matrix
which can be written in block form as

—1
A Aip Gii Gia - Gim
Ag1 Ags : _ G Gao -+ Gam (3.6)
. . Amt.m : : :
Am,mfl Am,m Gm,l Gm,2 o Gm,m

where the entries in each block G ; give the fields in layer i due to sources
in layer j. The crucial observation here is that S, ! remains untouched by the
left operator (LT)~'--- (L} _)~" and right operator L 1 | --- L*, due to the
definition of Ly,..., Ly_1; that is, if the matrix multiplications on the right-
hand side of (3.5) are carried out, then the matrix in the (m,m)-th block is just
S-1. Algebraically, this gives us the result Gmm = S—1. The physical knowledge
we have gained is that S;.! is approzimately the discrete half-space Green’s
function for Mazwell’s equations with PEC boundary conditions on layer m+1,
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restricted to degrees of freedom on the m-th layer. By solving the half-space
problem on a grid of the first m layers, we can construct an operator which
reproduces S,,,!. However, this becomes very costly as m approaches n, so our
goal is to approximate S;.! efficiently. The authors of [5,6] have proposed
two methods for this approximation: the hierarchical matrix approach and the
moving PML approach. Here, we will focus on the latter technique.

3.3 Moving PML method

The application of S;.! only involves the degrees of freedom on the m-th layer;
that is, the half space Green’s function matrix which we are trying to approxi-
mate (G, ) only maps the right-hand side on layer m to the solution on layer
m. Therefore, the solution of the half-space problem only needs to be accurate
in a small neighborhood of z = mh. Recall that the purpose of the PML is to
be an absorbing boundary; in the original problem, we were not concerned with
fields outside the cube [¢,1 — /3, so we placed a PML outside of this cube and
made the computational domain of the full problem to be [0,1]2. We can use
the same exact reasoning to truncate each half-space problem; if we are only
concerned with the layers in the immediate vicinity of the m-th layer, then we
can treat layers 1 to m — 1 as buffer layers or “white space”. Thus, we can
push the PML up to the edge of our domain of interest and still get a good
approximation of the solution on layer m. The computational advantage here is
that we need to solve a much smaller subproblem for each S;.!. The technique
of truncating the domain and pushing the PML closer is called the moving PML
method.

To be more precise, let b = ¢/h be the number of PML layers and consider
the domain

Dy, =1[0,1] x [0,1] x [(m — b)h, (m + 1)h].

Let us also define the shifted PML function

s7(z) =1+1io(z — (m —b)h), (3.7)

z

and shifted material tensors

m m
E225yST /S ExySy €225y
Em = EyzSy EyySzSa' /Sy Ey25a )
€225y €295z €22528y /87"
(3.8)
Nmsysln/sx HaySZ" HazSy
-~ _ m 'm/
Pm = HyzSz HyySazSz /Sy HyzSz
HzxSy HzySzx ,Ufzzsxsy/sgn

With the PML pushed to the edge, the subproblem to be solved for each S*

1S
VXE=—-wu,H, VxH=iwe,E+J,
in Dy,

V- (EnE)=p, V- (jinH) =0 (3.9)
nxE=0, anxH=0 ondD,,
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and the subgrid on which the above equations are discretized is
G = {(ih,jh,kh) |1 <i,7<n,m—b+1<k<m}. (3.10)

To solve each discretized subproblem, a version of the multifrontal method
[6,8] is utilized, with a modification that allows the Yee grid to be handled
naturally. Consider the matrix H,, resulting from the discretization of (3.9) on
Gp,. Essentially, each subproblem can be viewed as a quasi-2D problem, since
the number of PML and buffer layers is small. The first step of the algorithm
is to partition the nodes of G,, hierarchically in the x-y plane, i.e., nodes
with the same x and y indices remain in the same group. In the Helmholtz
case, every node is associated with a variable; in the Maxwell case, however,
the Yee grid does not have an unknown assigned to every node. To keep the
same efficiency of the method with the Helmholtz grid, we leave these empty
nodes in at the hierarchical partitioning stage; after each cluster is set, we
then remove any empty nodes, as they contain no information relevant to the
factorization. The unknowns associated with the full nodes are then reordered
according to their hierarchical groups to minimize the number of fill-ins in
the LDL" factorization of H,,. The costs of computing the factorization and
applying to a vector are O(b3n?) and O(b*n?logn), respectively; we refer to the
previous works for details.

Once the multifrontal factorization of H,, is constructed, we can approxi-
mate the application of S;,! to a vector as follows. Given a vector of values g,
defined on the grid points of layer m, we must construct a longer vector padded
with zeros, which will correspond to the grid points on layers m — b to m — 1;
the zeros are necessary to ensure that the solution is not corrupted by Green’s
function on these layers. After the vector is made long enough to match the
dimensions of H,,, we can compute the matrix-vector product

0 *

b =] (3.11)
0 *
9m Um

and extract the vector v,,; this will give us the approximation of S 'g,, = vy,
we need. We denote this combined process of concatenation, application of

H,.', and extraction as the operator

T Gm — Um.

We can finally summarize the moving PML preconditioner in two stages:
the construction of the approximate sweeping factorization, and the application
to an arbitrary vector. We stay consistent to [6] and define

UF:(U;I‘7...’U’5)7 fF:(fFa"wfl;r)’ (3'12)
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while rewriting A as

Arr  Arpi up fr
Aprir Appiprr wer | | o (3.13)
. - . ) .
i Anfl,n .
An,n—l An,n Un fn

where Ap r is the upper-left block of A for the first b layers.

Algorithm 3.1 Construct the approzimate sweeping factorization of A.
1. Let G'r be the subgrid of the first b layers and Hr = Ap r; construct
the multifrontal factorization of Hp.

2. form=b+1,...,ndo
Let G, be as defined in (3.10) and H,, be the matrix resulting from
the finite difference discretization of (3.9). Construct the multifrontal
factorization of H,,.
end for

Algorithm 3.2  Apply the approximate inverse to get u ~ A~ f.
1. up = fr and upy, = fi, form=5b+1,... n.
2. Upy1 = upy1 — App1,p(Hp'up), using the multifrontal factorization of
Hp.
3. form=0+1,...,n—1do _
U1 = Umt1 — Amt1.m(Tmtm ), where Ty, u,y, is computed by the
process described earlier in Section 3.3.
end for
4. up = Hglup, using the multifrontal factorization of Hp.
5. form=0b+1,...,ndo _
Uy, = Tiny,. See previous steps for the application of Th,.
end for
6. form=n-1,...,0+1do
Uy, = Uy — T (Apm+1Um+1). See previous steps for the application
of Tvm
end for
7. up = up — HEI(AF,b+1Ub+1), using the multifrontal factorization of Hp.
Because the total number of degrees of freedom is N = n? and there are n
layers, it is clear that the cost of Algorithms 3.1 and 3.2 are

o’n*) = OB*N*3),  O®*n®logn) = O(B*Nlog N),

respectively.

In practice, the approach is slightly different. First, the block LDLT
factorization is constructed so that multiple layers can be preconditioned for
each subproblem; that is, S,.! is not just applied to layer m, but layers m —d+1
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to m, where d is a specified number of buffer layers. The subproblem for each
S is instead defined on an expanded domain

D, =10,1] x [0,1] x [(m —b—d + 1)h, (m + 1)h].
Second, the perturbed matrix associated with the curl equations
VXE=-i(w+ia)pH, VxH=i(w+ia)cE+J (3.14)

is used instead of the true matrix A, for some small damping constant «; the
preconditioner produced from this matrix is much more stable and effective. We
will denote the approximate inverse operator constructed by Algorithm 3.1 with
constant « as M;'; we use this approximate inverse as a left preconditioner
and solve the preconditioned linear system

M Au= M f. (3.15)

4 Numerical results

In this section, we provide some preliminary results illustrating the effectiveness
of the sweeping preconditioner for the Yee grid. The general setup of our
problems is as follows. We have a point source oriented in the z-direction
with current magnitude |J| = 1, which is embedded in the material domain at
(0.5,0.25,0.5). As mentioned before, the domain is the unit cube [0,1]3, and
has a PEC boundary. We denote K as the size of the domain in terms of
wavelengths, so A = 1/K. For the Yee grid, we choose the number of points
per wavelength at 6 to attain reasonably accurate results; this implies that field
components of the same kind are separated by A/6, but the distance between
two nodes in the physical grid is h = A/12. We choose the PML width to be
¢ = \/2, and the number of buffer layers d = 12. For the damping constant,
we choose o« = 1. As for the iterative solver, we use GMRES iteration with a
relative residual tolerance of le — 3. For ease of implementation and generating
figures, all of the code is run serially in MATLAB.

We have chosen three example mediums. The first example is the converging
lens with a Gaussian profile centered at r. = (0.5,0.5,0.5) for both permittivity
and permeability; that is, the material is isotropic, with

E=c(mI ji=p)L
and
1 1

e(r) = eo ———v, K(r) = o —
3 (1 — e 32rrel?) 2(1— e 32rrel?)

Our second example is a random isotropic medium, which we form with a
random smooth perturbation function 6(r) which satisfies 0 < ¢ < 1; once
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again, the material tensors are formed by multiplying the identity tensor with
scalar functions

4

o) =eo s (1-50m), w)=pog (1-5000)).

Finally, for an anisotropic, inhomogeneous example, we have the medium

1.1 01i 0 1.1 01i 0
e(r)=¢eo | -01i 09 0 |, pr)=p|-01i 09 0 |,
0 0 ~(r) 0 0 ~(r)

where v is a smooth random perturbation function satisfying 0.7 < v < 1.3.
This medium is similar to gyrotropic mediums found in crystals, except the
z-component of the tensor is randomized.

To start, we must test how the preconditioner affects the eigenvalues and
condition numbers of the original matrix. Fig. 2 shows that the original problem
is indefinite and very ill-conditioned; a plot of the eigenvalues for the converging
lens media illustrates that the original matrix A has large eigenvalues which
can have a negative real part, as well as eigenvalues close to the origin. After
preconditioning, the spectrum is clustered around (1,0) in the positive real half
of the complex plane, which is conducive for the convergence of GMRES. Using
MATLAB’s condition number estimator condest, we have estimated the 1-norm
condition numbers for small problems (K = 2) before and after preconditioning;
the method reduces the condition number by several orders of magnitude.

10000 T T T 0.1 T T T
5000 - : % b 0.05 b
uvj“:‘ % " 3 *
& * x
< < *
£ s . - g O I -
~5000 - . -0.05F - .
(@) (b)
-10000 . . . -0.1 . . .
-5000 0 5000 10000 15000 0.9 1 1.1 1.2 1.3
Rel Rel
Medium cond(A) cond(Mi'A)
converging lens 1.875e+07 42.407
random isotropic 2.959e+-07 22.729
random anisotropic 3.305e+07 11.841

Fig. 2 Eigenvalues of coefficient matrix A in converging lens problem, (a) before and

(b) after preconditioning, along with condition number estimates for different media.
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For each medium, we have plotted the E, component in the z-y plane at
z = 0.5; because the source is aligned in the z-direction, the most significant
behavior in the isotropic case happens in this component. Figs. 3-5 give the
numerical results for each particular example. To illustrate the characteristics
of the material, we show the relative material parameters for the isotropic cases
and the relative ., for the anisotropic example. In the table, we list the size
of the problem K, number of unknowns N, preconditioner setup time Tietup,
iterative solver time Tgyve, and number of iterations Njier. It is observed that
even if the size of the problem is increased, the number of iterations remains
almost constant. We note that the preconditioner takes the same time for
the anisotropic medium as it does for the isotropic mediums; thus, there is no
dependency on the type of medium for the method to work.

Next, we test the accuracy of the preconditioning method by running
GMRES to a smaller residual tolerance and comparing with the numerical
solution of the linear system using MATLAB’s backslash operator; in these
examples, we set the tolerance to be le — 6. We denote the relative 2-norm
error between the direct solver and iterative solver result as €. For the converging
lens problem, Table 1 shows that the preconditioner agrees with numerically
stable direct solvers, as the relative error does not exceed the given residual
tolerance. We note that when the residual tolerance has decreased, the number
of iterations still remains essentially independent of frequency. For each digit
of accuracy, about one additional iteration is needed.

Table 1 Accuracy of preconditioning method for converging lens problem

K N Niter €
4 7.783¢+4 7 2.4572e—7
8 6.429e+5 7 3.5560e—7
16 5.225e+6 8 4.3398e—7

Finally, to show the complexities for the setup and apply stages, we have
plotted the setup time and apply time against the total number of degrees of
freedom. Fig. 6 illustrates the almost linear complexity of the sweeping pre-
conditioner. Since we are keeping the number of gridpoints per wavelength
constant, each time we double the frequency, the total number of DOF's should
increase by a factor of 8; this implies the setup time should increase by a factor
of 8%/3 = 16. However, we typically see an increase by a factor of 12 or 13;
this trends with O(NG/ %) complexity instead. The apply time, as stated, is
O(Nlog N).

5 Conclusions

In this paper, we have adapted the sweeping preconditioner originally used
for the Helmholtz equation to speed up the solution of Maxwell’s equations
through the Yee grid. We have shown that the setup time and solve time scale
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Fig. 3 Converging lens example.
(a) Re E. in z-y plane at z = 0.5; (b) relative € and p in medium.
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Fig. 4 Random isotropic media example.
(a) Re E. in z-y plane at z = 0.5; (b) relative € and p in medium.
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Fig. 5 Random anisotropic media example.
(a) Re E. in z-y plane at z = 0.5; (b) relative ¢, in medium.
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Fig. 6 (a) Setup and (b) apply times plotted against number of DOFs

as O(N*/3) and O(Nlog N), respectively, just as they did in the Helmholtz
case. Since there are roughly six times the number of unknowns in the Maxwell
case, the prefactor of these estimates is considerably larger; however, this is the
unavoidable nature of working with vector quantities.

Although we have presented some preliminary examples of anisotropic and
inhomogeneous media problems, there is a considerable amount of future work
that can be done to generalize the method.

First, for scattering problems with curved geometries, using the Yee grid in
Cartesian coordinates is not optimal because of the staircase approximation;
in this case, some special boundary condition must be implemented, or a more
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general method such as finite elements must be introduced. In either case, the
adaptation of the preconditioner is non-trivial.

Second, due to the six components of E and H, the number of unknowns
is very high even for a small problem; an alternative method that could be
implemented would be the vector Helmholtz formulation, where the two curl
equations are combined to eliminate either E or H. This would cut the number
of unknowns in half, but the multifrontal solver would have to be modified
because of the expanded stencil. In comparison to the Yee grid, there exist more
efficient higher-order discretizations such as the spectral element method; these
methods would decrease the degrees of freedom per wavelength significantly,
allowing us to solve much larger problems.

Third, numerical results have shown that the sweeping preconditioner is
an efficient approximate inverse of discretized Maxwell equations. A natural
question is whether its accuracy can be systematically improved. A possible
solution is to increase the width of the moving PML, however, it would also
increase the computational complexity significantly. It remains an interesting
question to see what the right balance is.

Finally, the structure of the algorithm and the use of the multifrontal
method suggests that a parallel implementation would be natural.
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