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FAST WAVE COMPUTATION VIA

FOURIER INTEGRAL OPERATORS

LAURENT DEMANET AND LEXING YING

Abstract. This paper presents a numerical method for “time upscaling” wave
equations, i.e., performing time steps not limited by the Courant-Friedrichs-
Lewy (CFL) condition. The proposed method leverages recent work on fast
algorithms for pseudodifferential and Fourier integral operators (FIO). This
algorithmic approach is not asymptotic: it is shown how to construct an ex-
act FIO propagator by 1) solving Hamilton-Jacobi equations for the phases,
and 2) sampling rows and columns of low-rank matrices at random for the
amplitudes. The setting of interest is that of scalar waves in two-dimensional
smooth periodic media (of class C∞ over the torus), where the bandlimit N
of the waves goes to infinity. In this setting, it is demonstrated that the al-
gorithmic complexity for solving the wave equation to fixed time T � 1 can
be as low as O(N2 logN) with controlled accuracy. Numerical experiments
show that the time complexity can be lower than that of a spectral method in
certain situations of physical interest.

1. Introduction

This paper is concerned with the rapid solution of the two-dimensional wave
equation with variable coefficient:

(1.1)

⎧⎪⎨⎪⎩
∂ttu(x, t) −∇ · (c2(x)∇u(x, t)) = 0 t > 0, x ∈ [0, 1)2,

u(x, 0) = u0(x) x ∈ [0, 1)2,

∂tu(x, 0) = u1(x) x ∈ [0, 1)2,

where the boundary conditions are taken to be periodic. We assume that c(x) is
positive and smooth–essentially bandlimited.

The initial condition (u0(x), u1(x)) is typically discretized on a uniform N ×N
grid. For a fixed final time T � 1, we seek an algorithm for computing the time-T
solution u(x, T ) in almost linear time.

Standard methods for solving this system use finite difference or spectral differ-
entiation in the spatial domain and forward marching in the time domain. Suppose
that the initial conditions (u0(x), u1(x)) are discretized with an N ×N Cartesian
grid. The CFL condition restricts the time step to be of order O(1/N). Hence, in
order to compute the solution u(x, T ) at a time T = O(1), the order of N applica-
tions of the small-time propagator is needed, for a total complexity of O(N3) – or
more if an accuracy estimate is desired.
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In this paper, we propose to lower complexity by representing the propagator
as a Fourier integral operator. This approach permits time upscaling, namely, that
much larger O(1) time steps are now allowed. As a result, evaluating the solution
u(x, T ) using an upscaled time step τ takes only T/τ = O(1) steps. Moreover,
each evaluation of the Fourier integral operator representation can be performed
efficiently in a time complexity as low as O(N2 logN). Therefore, this new approach
requires only O(N2 logN) steps to compute the solution u(x, T ).

Preparing the Fourier integral operator representation of the solution, however,
may have complexity greater than O(N2 logN). Our proposed solution to this
problem has complexity O(N3).

1.1. General strategy. Our approach is based on the Fourier integral operator
representation of the solution of (1.1). Since L := −∇ · (c2(x)∇) is a positive
semidefinite operator, we define P := L1/2 to be the positive semidefinite square
root of L. Using this operator notation, we can rewrite (1.1) as

∂ttu + P 2u = 0.

Factorizing this operator equation gives

(∂t + iP )(∂t − iP )u = 0.

Therefore, the general solution of (1.1) is given by

u(x, t) = (eiP tf+)(x) + (e−iP tf−)(x),

where f± are two arbitrary functions. Matching with the initial conditions gives

(1.2) f± =
1

2
(u0 ± (iP )−1u1).

The theory of Fourier integral operators states that for a given c(x) > 0, assumed
to be of class C∞, there exists a time t∗ that depends only on c(x) such that for
any t < t∗, eiP tf+ and e−iP tf− have the following Fourier integral operator (FIO)
representation:

(1.3) (e±iP tf±)(x) =
∑
ξ∈Z2

e2πıΦ±(x,ξ,t)a±(x, ξ, t)f̂±(ξ).

Here the Fourier transforms of f±(x) are defined by

f̂±(ξ) =

∫
[0,1)2

e−2πıx·ξf±(x)dx.

Φ±(x, ξ, t) are called the phase functions and they are smooth in x and ξ �= 0 with
homogeneous degree one in ξ. a±(x, ξ, t) are called the amplitude functions, and
for any given t, a±(x, ξ, t) have a separated approximation in x vs. ξ with a small
number of terms. Equation (1.3) is exact; its justification is given in Section 3.

It is important to notice that the medium c(x) needs not only to be of class C∞,
but of small “numerical” bandwidth for the FIO representation to be numerically
advantageous. In particular, the smoother c(x) the larger the cut-off time t∗ before
caustics develop in the evolution of initially plane waves.

The natural spatial discretization for smooth functions on the torus involves
sampling functions on the N ×N Cartesian grid

X :=
{(n1

N
,
n2

N

)
: n1, n2 ∈ Z, 0 ≤ n1, n2 < N

}
.
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For the discretization in time, a large time step τ < t∗ is chosen. For x ∈ X, the
solution at time τ is approximated as

u(x, τ ) ≈
∑
ξ∈Ω

e2πıΦ+(x,ξ,τ)a+(x, ξ, τ )f̂+(ξ) +
∑
ξ∈Ω

e2πıΦ−(x,ξ,τ)a−(x, ξ, τ )f̂−(ξ).

Here f̂±(ξ) = 1
N2

∑
x∈X e−2πıx·ξf±(x) are now discrete Fourier transforms of

{f±(x), x ∈ X} and both sums are taken over

Ω := {(ξ1, ξ2) : ξ1, ξ2 ∈ Z,−βN/2 < ξ1, ξ2 < βN/2},

where 0 < β < 1. In the case of constant coefficient c(x), we can choose β = 1.
However, for variable coefficient c(x), β is chosen to be adequately bounded away
from 1 to avoid an unwanted aliasing effect.

For t = nτ an integer multiple of τ , the solution at t = (n − 1)τ is taken as
an initial condition and the procedure is repeated to obtain an approximation of
u(x, nτ ). In order to carry out this procedure algorithmically, we need to address
the following questions:

• How to construct the square root operator P and its inverse P−1, and how
to apply them efficiently to functions? Discrete symbol calculus (DSC) is a
natural answer to this question [DY11]. With the help of DSC, constructing
P and P−1 takes only a number of steps that are polylogarithmic in N .
Applying P to any vector defined on X can also be performed efficiently in
only O(N2 logN) steps.

• How to compute the phase functions Φ±(x, ξ, τ )? It is well known that they
satisfy the Hamilton-Jacobi equations:

(1.4)

{
∂tΦ±(x, ξ, t)∓ c(x)|∇xΦ±(x, ξ, t)| = 0,

Φ±(x, ξ, 0) = x · ξ.

Since c(x) is a C∞ function whose (numerical) bandwidth is small compared
to N , we can solve Φ±(x, ξ, τ ) up to a very high accuracy on a much smaller
grid with spectral differentiation in space and an accurate time stepping
scheme in time (such as Runge-Kutta).

• How to compute the amplitude functions a±(x, ξ, τ )? When viewed as a
matrix, (a±(x, ξ, τ ))x∈X,ξ∈Ω is numerically low-rank. The construction of
a low-rank separated approximation of a±(x, ξ, τ ) is the main contribution
of the current paper. The method adopted here is based on the random-
ized sampling algorithm for constructing factorizations for low-rank ma-
trices. This procedure only requires sampling a constant number of rows
and columns of the matrix randomly. In our setting, sampling the rows and
columns of a±(x, ξ, τ ) reduces to solving (1.1) with special initial conditions
that correspond to plane waves and Dirac deltas. We solve these special
initial value problems with the standard spectral differentiation and time
stepping algorithm. As a result, the construction of a±(x, ξ, τ ) is treated
as a precomputation that takes about O(N3) steps.

• Finally, how to evaluate the Fourier integral operator (1.3) for given
f±(x, ξ, τ ), a±(x, ξ, τ ) and Φ±(x, ξ, τ )? Along with E. Candès, the authors
have already developed two efficient algorithms for this problem, one with a
small constant and complexity O(N2.5 logN) [CDY07] and the other with a
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slightly larger constant and the optimal complexity O(N2 logN) [CDY09].
Here, we simply resort to these algorithms.

1.2. Applications. The main application for fast wave computation in variable
media might be seismic imaging, where wave speed in the subsurface (among other
parameters, possibly) is inferred from recorded wave echos [Sym98]. The modern,
more accurate imaging algorithms all involve wave propagation on a very large
computational scale. Slow execution and large memory imprints limit the size of
problems that seismologists can currently consider, and even for small problems,
limit the number of iterations that can be done in an inversion loop. Time-stepping,
(or depth-stepping, or looping over all frequencies) is the main culprit.

The assumption of a two-dimensional smooth periodic medium for the numerical
experiments presented in this paper should be put in perspective.

• Nothing prevents the application of the algorithms to three spatial dimen-
sions. This is in contrast with some of our previous work on wave atoms
[DY09], where the separation technique was intrinsically two-dimensional.

• Absorbing layers such as the perfectly matched layer (PML) are compatible
with periodic boundary conditions: it suffices to let the absorption coeffi-
cient be maximal at the edges where the periodic stitching is done. If in
addition this coefficient is smooth, it should not affect the smoothness and
separability properties of the amplitude in the FIO representation. If a
seismologist is willing to surround all sides of his or her domain with PML,
then periodic boundary conditions are not an issue. If some water-air or
rock-air interface demands a Neumann boundary condition, it is not in-
conceivable that a FIO approach may work, but new ideas such as Fourier
continuation [BL10] would be needed.

• Smooth background media are not physical in the Earth, but they are the
simplified model that arises from inversion processes such a traveltime to-
mography. It is a great “discovery” of seismologists that the high-frequency
singularities that produce scattering are well treated by linearization and
need not be part of the model velocity, in which waves are simulated. In
fact, they should not be part of the model velocity: it is well documented
that the output least-squares objective of full-waveform inversion becomes
quite nonconvex in the presence of oscillatory or singular model velocities
[Sym90].

Other applications may include certain ultrasound techniques in medical imag-
ing, where the goal is to image contrasts in the shear stiffness of different organs.
Transient elastography may be one such technique [JMRY03]. Current method-
ologies mostly deal with traveltimes rather than waveforms, but if the progress in
seismology is any indication, a full modeling of the background shear wave speed
may one day prove useful.

1.3. Previous work. The first attempt to solve the one-dimensional wave equa-
tion accurately using large time steps is probably the work of Engquist, Osher
and Zhong [EOZ94]. They constructed the wavelet representation of the solution
operator, a sparse matrix that can then be applied to the initial condition in the
wavelet domain. Although no estimate of complexity and accuracy was given, their
algorithm runs in near linear-time complexity.
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Their work was generalized to two spatial dimensions by Candès and the au-
thors, with complexity and accuracy estimates. In [CD03, CD05] it was shown
that curvelets provide a suitably sparse representation of the wave propagator. In
[DY09], the agenda of fast wave computation was operationalized with wave atoms,
another transform that achieved a greater flexibility at obtaining a sparse represen-
tation. Genuine time upscaling and advantageous time complexity were obtained
in [DY09], but at the expense of a complex code that only handled certain special
smooth media well.

Other approaches have been proposed for realizing time upscaling of wave equa-
tions. This includes the work of Beylkin and Sandberg, where an economical rep-
resentation of the propagator is obtained via low-rank separation in the prolate
spheroidal wavefunction domain [BS05]. Stolk proposed to couple the geometrical
optics asymptotic formulas with wavelets in one spatial dimension [Sto09].

Concerning fast computation of general pseudodifferential and Fourier integral
operators (FIO), Candès and the authors have reported on different ideas in [DY11,
CDY07, CDY09]. Many of the algorithmic tools used in those papers are present
in different forms or different contexts; let us for instance mention work on angular
decompositions of the symbol of pseudodifferential operators [BS96], work on the
butterfly algorithm and its applications in [MB96, OWR10, YF09, Yin09, Tyg09],
work on fast “beamforming” methods for filtered backprojection for Radon and
generalized Radon transforms (a problem similar to wave propagation) in [UHS03,
NA98, BB00], work on the plane-wave time-domain fast multipole method summa-
rized in Chapters 18 and 19 of [CMSJ01], and work on “phase-screen” methods in
geophysics [dHlRW00].

Note that the idea of using FIO for solving the wave equation is a pillar of mi-
crolocal analysis. It dates back to at least Lax in 1957 [Lax57], and ultimately to
geometrical optics and the WKB expansion schemes in 1930s quantum mechan-
ics. The modern, careful study of propagation of singularities with FIO is due
to Hormander and Duistermaat [Hö85, Dui96]. Important analytical estimates on
FIO and wave equations are due to Cordoba and Fefferman [CF78], Stein et al.
[SSS91, Ste93], and more recently Smith [Smi98].

1.4. Contents. The rest of this paper is organized as follows. In Section 2, we
briefly review the numerical tools that are used in these papers. They include
discrete symbol calculus, randomized sampling method for low-rank factorizations,
and fast algorithms for applying Fourier integral operators. Section 3 includes
the proofs that justify our approach theoretically. In Section 4, we describe our
algorithm in detail. Several numerical experiments are provided in Section 5.

2. Background

2.1. Discrete symbol calculus. This section is a summary of [DY11]. We use
the discrete symbol calculus (DSC) framework to represent the operators P = L1/2

and P−1 = L−1/2. In short, discrete symbol calculus is concerned with efficiently
representing, manipulating, and applying pseudodifferential operators

(Af)(x) =
∑
ξ∈Z2

e2πıx·ξa(x, ξ)f̂(ξ).
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Here we assume that the symbol a(x, ξ) belongs to the standard symbol class Sd,
i.e.,

∂α
ξ ∂

β
xa(x, ξ) ≤ Cαβ 〈ξ〉d−|α| , 〈ξ〉 := (1 + |ξ|2)1/2.

The degree of a(x, ξ) is defined to be the minimum d such that a(x, ξ) ∈ Sd. In what
follows, we use ΛK to denote the grid {(n1, n2) : n1, n2 ∈ Z,−K < n1, n2 < K}.

Representations. Let a(x, ξ) be a symbol of class Sda , where da is the degree of
a(x, ξ). Expanding a(x, ξ) in the x variable using Fourier basis eλ(x) := e2πıλ·x

gives

a(x, ξ) =
∑
λ

eλ(x)aλ(ξ),

where aλ(ξ) are the Fourier coefficients (in the x variable) of a(x, ξ). If a(x, ξ) is
essentially bandlimited in λ ∈ ΛB for a constant B in the x variable, one only needs
to keep the terms associated with these λ values in the sum. The x-Fourier coeffi-
cients aλ(ξ) can be computed from the samples of a(x, ξ) on a 2B × 2B Cartesian
grid in x variable for each ξ.

The representation of the symbol in the ξ variable is slightly more complicated.
The x-Fourier coefficients aλ(ξ) inherits the same smoothness property in the ξ

variable from a(x, ξ), i.e., the normalized term aλ(ξ) 〈ξ〉−da gains smoothness as ξ

goes to infinity. Due to this consideration, it is natural to approximate aλ(ξ) 〈ξ〉−da

with basis functions gμ(ξ) that exhibit the same behavior:

aλ(ξ) 〈ξ〉−da ≈
∑
μ

aλμgμ(ξ).

Two choices of gμ(ξ) give good theoretical and numerical results:

• Rational Chebyshev interpolation. This approach starts by studying

aλ(ξ) 〈ξ〉−da in polar coordinates ξ = (r, θ). We first map the half line
r ∈ [0,∞) to the interval s ∈ [−1, 1) with rational functions

s(r) =
r + L

r − L
, r(s) = L

1 + s

1 − s
,

where L is a fixed constant. Within the (s, θ) coordinate, aλ(ξ) 〈ξ〉−da

becomes aλ(s, θ)
〈
L 1+s

1−s

〉−da

. We interpolate it with basis functions that

are tensor products of Fourier bases in θ and Chebyshev functions in s.
This corresponds to choosing

gμ(ξ) = g(m,n)(s, θ) = eımθTn(s)

where Tn(s) are Chebyshev functions. Due to its smoothness property, only
a small number of basis functions are required to interpolate

aλ(s, θ)
〈
L 1+s

1−s

〉−da

accurately. The interpolation coefficients aλμ can be

computed from sampling aλ(s, θ)
〈
L 1+s

1−s

〉−da

on the tensor product grid

with equal spacing in θ and a one-dimensional Chebyshev grid in s ∈ [−1, 1].
It has been shown that, for a fixed accuracy ε, the number of grid points
required is of order 1 (see Figure 1(a)).
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• Hierarchical spline interpolation. This approach starts by partitioning the
ξ domain into a hierarchy of squares. The size of a square grows linearly
with respect to its distance from the origin. Within each box, we embed

a local Cartesian grid and the function aλ(ξ) 〈ξ〉−da restricted to this box
is approximated using a cubic spline. The basis functions gμ(ξ) are then
the union of the spline basis functions over all boxes. It is clear from the
spline construction that the computation of aλμ only requires the values of

aλ(ξ) 〈ξ〉−da at the local Cartesian grid within each box. It has been shown
that, for a fixed ε, one needs O(logN) hierarchical spline basis functions to
approximate aλ(ξ) on the domain ξ ∈ [−N/2, N/2]2 (see Figure 1(b)).
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Figure 1. (a) Sampling points for the rational Chebyshev inter-
polation. (b) Sampling points for the hierarchical spline interpola-
tion, where each box is equipped with a local Cartesian grid.

To summarize, in both approaches, we can approximate a(x, ξ) at x ∈ X and
ξ ∈ Ω with

a(x, ξ) ≈
∑
λ∈ΛB

eλ(x)

(∑
μ

aλμgμ(ξ) 〈ξ〉da

)

and the computation of the coefficients aλμ can be reduced to sampling aλ(ξ) 〈ξ〉−da

(or equivalently aλ(ξ)) at at most O(logN) locations in ξ for each λ ∈ ΛB .

Operations. We can carry out the standard operations of the pseudodifferential
operators in the DSC framework. From the above discussion, we know that ap-
proximating an operator with symbol a(x, ξ) reduces to sampling aλ(ξ) at a few
locations in ξ for each λ ∈ ΛB. Therefore, we focus on this task in the following
discussion.

The symbol c(x, ξ) of the sum of two operators with symbols a(x, ξ) and b(x, ξ),
respectively, is given by

c(x, ξ) = a(x, ξ) + b(x, ξ).

To approximate c(x, ξ), we set dc = max(da, db) and

cλ(ξ) = aλ(ξ) + bλ(ξ).
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The symbol c(x, ξ) of the product of two operators with symbols a(x, ξ) and
b(x, ξ), respectively, is equal to

c(x, ξ) = a(x, ξ)	b(x, ξ) :=
∑
η

∫
e−2πı(x−y)(ξ−η)a(x, η)b(y, ξ)dy.

In order to approximate c(x, ξ), we let dc = da + db and

cλ(ξ) =
∑

κ,�∈ΛB :κ+�=λ

aκ(ξ + �)b�(ξ).

Once we know how to multiply two operators, computing the inverse of an opera-
tor A can be done via a simple Schulz iteration.

1: Pick α so that ‖αA‖ < 1.
2: Set X0 = I.
3: For k = 0, 1, . . . until convergence, set Xk+1 = 2Xk −Xk(αA)Xk.
4: The inverse is set to be αXk.

The square root and inverse square root of an operator A are computed using the
following Schulz-Higham iteration [Hig97].

1: Pick α so that ‖αA‖ < 1.
2: Set Y0 = αA and Z0 = I.
3: For k = 0, 1, . . . until convergence, set

Yk+1 =
1

2
Yk(3I − ZkYK), Zk+1 =

1

2
(3I − ZkYk)Zk.

4: α−1/2Yk is the square root and α1/2Zk is the inverse square root.

In these two algorithms, ‖αA‖ < 1 makes sense since all operators become bounded
after discretization. For all operators A discussed in this paper, α is of order
O(1/NO(1)) and both algorithms converge in O(logN) iterations.

Applying the operator. Once the DSC representation of an operator with sym-
bol a(x, ξ) is ready, applying it to an arbitrary function f(x) consists of the following
steps: ∑

ξ∈Ω

a(x, ξ)e2πıx·ξf̂(x) =
∑
ξ∈Ω

∑
λ∈ΛB

eλ(x)aλ(ξ)e2πıx·ξf̂(ξ)

=
∑

λ∈ΛB

eλ(x)

⎛⎝∑
ξ∈Ω

e2πıx·ξ
(
aλ(ξ)f̂(ξ)

)⎞⎠ .

As the formula in the parentheses is a Fourier transform and the cardinality of ΛB

is a constant, this computation can be performed in O(N2 logN) steps.

2.2. Randomized algorithm for low-rank factorization. The ε-rank of an
m×n matrix M , denoted by rε(M) or just rε if M is fixed, is the number of singular
values of M that are greater than or equal to ε. We say M to be numerically low-
rank if rε is much smaller than n even for ε very small. As we pointed out earlier, the
symbols a±(x, ξ, τ ) viewed as a matrix indexed by x ∈ X and ξ ∈ Ω is numerically
low-rank when τ < t∗. The algorithm described below aims to construct a separated
approximation of the form

M ≈ CDR
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with accuracy O(ε), where the number of columns in C and the number of rows in
R are roughly rε. Here, we adopt the standard notation for submatrix: given a row
index set I and a column index set J , M(I, J) is the submatrix with entries from
rows in I and columns in J .

(1) Sample randomly a set of βrε rows and denote the index set by S = (si).
Here β is the oversampling factor. Perform pivoted QR decomposition to
the matrix M(S, :) and obtain

M(S, P ) = QR,

where P = (pi) is the resulting permutation vector of the columns and
R = (rij) is upper triangular. Let k be the largest index such that rkk ≥ ε.
Define the index set Sc to be {p1, . . . , pk}.

(2) Sample randomly a set of βrε columns and denote the index set by S = (si).
Perform pivoted LQ decomposition on the rows of M(:, S):

M(P, S) = LQ,

where P is the resulting permutation vector of the rows and L = (�ij) is
lower triangular. Let k be the largest index such that �kk ≥ ε. Define the
index set Sr to be {p1, . . . , pk}.

(3) Perform pivoted QR decomposition on the columns of M(:, Sc) and pivoted
LQ decomposition the rows of M(Sr, :), respectively:

M(:, Sc) · Pc = QcRc, Pr ·M(Sr, :) = LrQr,

where Pc and Pr are the resulting permutation matrices that reorder the
columns of M(:, Sc) and the rows of M(Sr, :), respectively.

(4) We seek for a factorization of form M ≈ Qc ·D · Qr. In order to do that
efficiently, we restrict ourselves to the rows in Sr and columns in Sc and
solve the following problem:

min
D

‖M(Sr, Sc) −Qc(Sr, :) ·D ·Qc(:, Sc)‖F .

A simple linear square solution gives D=(Qc(Sr, :))
+M(Sr, Sc)(Qr(:, Sc))

+,
where (·)+ stands for the pseudoinverse. Therefore, the resulting factoriza-
tion is

M ≈ Qc ·
(
(Qc(Sr, :))

+ ·M(Sr, Sc) · (Qr(:, Sc))
+
)
·Qr.

Clearly this process provides us with a separated approximation M ≈ CDR with

C = Qc, D = (Qc(Sr, :))
+ ·M(Sr, Sc) · (Qr(:, Sc))

+, R = Qr.

In practice, setting oversampling factor β to 5 is sufficient for an accurate approxi-
mation. Notice that the most computationally intensive steps of this algorithm are
pivoted QR decompositions on matrices of size m×O(rε) and pivoted LQ decom-
positions on matrices of size O(rε)× n. When ε is fixed and rε can be treated as a
constant, the cost of this algorithm is only linear in max(m,n).

For matrices (a±(x, ξ, τ ))x∈X,ξ∈Ω of this paper, one may replace the random
samplings in the first two steps with deterministic sampling in X and Ω because of
the smoothness of a±(x, ξ, τ ) both in x and in ξ. However, we prefer the random
sampling approach since it works for more general scenarios where the rows and
columns of the matrices are not smooth and the deterministic alternatives might
require careful adaptive sampling such as the divide-and-conquer strategy.
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2.3. Fast algorithms for applying FIOs. Given a function f(x) defined on a
Cartesian grid X = {(n1

N , n2

N ) : n1, n2 ∈ Z, 0 ≤ n1, n2 < N}, the discrete Fourier

transform f̂(ξ) is defined by

f̂(ξ) =
1

N2

∑
x∈X

e−2πıx·ξf(x)

for ξ ∈ Ω = {(ξ1, ξ2) : ξ1, ξ2 ∈ Z,−N
2 ≤ ξ1, ξ2 < N

2 }. The discrete Fourier integral
operator with phase function Φ(x, ξ) and amplitude a(x, ξ) is defined by

u(x) = (Af)(x) :=
∑
ξ∈Ω

a(x, ξ)e2πıΦ(x,ξ)f̂(ξ)

for x ∈ X. We assume that Φ(x, ξ) is smooth in x and in ξ away from the origin,
and a(x, ξ) has a low-rank separated approximation. Along with E. Candès, we
have developed two efficient algorithms for computing u(x) in [CDY07] and later
in [CDY09].

Approach 1: Angular partitioning of the frequency domain. This approach
[CDY07] is based on a parabolic angular partitioning of the frequency domain. Let

arg(ξ) be the angle between ξ and the horizontal vector (1, 0). Assuming that
√
N

is an integer, we partition the frequency domain into a family of angular wedges
{W�} defined by

W� = {ξ : (2�− 1)π/
√
N ≤ arg(ξ) < (2� + 1)π/

√
N}

for 0 ≤ � <
√
N (see Figure 2).

Figure 2. The frequency domain [−N/2, N/2)2 is partitioned into√
N equiangular wedges {W�}.

For each wedge W�, we define χ�(ξ) to be the indicator function of W� and ξ̂�
to be the (unit) center direction of W�. For a fixed �, the phase function can be
written as the sum of two parts:

Φ(x, ξ) = ∇ξΦ(x, ξ̂�) · ξ + Φ�(x, ξ),

where the term Φ�(x, ξ) is called the residual phase of W�. Using this decomposition,
we can write

a(x, ξ)e2πıΦ(x,ξ) =
(
e2πı∇ξΦ(x,ξ̂�)·ξ

)
·
(
a(x, ξ)e2πıΦ�(x,ξ)

)
.
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When ξ ∈ W�, it turns out that Φ�(x, ξ) is of order O(1) and thus e2πıΦ�(x,ξ) is
non-oscillatory. Since a(x, ξ) is also assumed to have a separated approximation,
one can show that the term a(x, ξ)e2πıΦ�(x,ξ) also has a separated approximation:

(2.1) a(x, ξ)e2πıΦ�(x,ξ) ≈
∑
t

α�t(x)β�t(ξ).

This approximation further implies that

(Af)(x) ≈
∑
�

∑
ξ

e2πıΦ(x,ξ)a(x, ξ)χ�(ξ)f̂(ξ)

=
∑
�

∑
ξ

e2πı∇ξΦ(x,ξ̂�)·ξa(x, ξ)e2πıΦ�(x,ξ)χ�(ξ)f̂(ξ)

=
∑
�

∑
ξ

e2πı∇ξΦ(x,ξ̂�)·ξ
∑
t

α�t(x)β�t(ξ)χ�(ξ)f̂(ξ)

=
∑
�

⎛⎝∑
t

α�t(x)

⎛⎝∑
ξ

e2πı∇ξΦ(x,ξ̂�)·ξ
(
β�t(ξ)χ�(ξ)f̂(ξ)

)⎞⎠⎞⎠ .

In the last formula, the sum over ξ is in fact a Fourier transform of (β�t(ξ)χ�(ξ)f̂(ξ))

at locations ∇ξΦ(x, ξ̂�) for x ∈ X. This can be computed easily using the non-
uniform fast Fourier transform [DR93] in O(N2 logN) steps. The sum over t in-
volves only a constant number of terms since the rank of the separated approx-
imation is constant. Finally, since there are only N1/2 wedges W�, the overall
complexity of the algorithm is O(N2.5 logN).

Approach 2: Butterfly strategy. This approach [CDY09] starts with parame-

terization ξ = (ξ1, ξ2) with polar coordinates p = (p1, p2): (ξ1, ξ2) =
√
2
2 Np1e

2πıp2 .
Using this transformation, we introduce a new phase function Ψ(x, p) in the polar
coordinates:

Ψ(x, p) :=
1

N
Φ(x, ξ) =

√
2

2
Φ(x, e2πıp2)p1.

Denote by P ⊂ [0, 1]2 the set of all possible points p generated by ξ ∈ Ω. The
Fourier integral operator then takes the following equivalent form

u(x) =
∑
p∈P

a(x, ξ(p))e2πıNΨ(x,p)f̂(ξ(p)).

The main observation is that the kernel e2πıNΨ(x,p) is approximately low-rank
when restricted to appropriate spatial and frequency regions. More precisely, sup-
pose that A and B are two squares in x and p, respectively, with widths wA and
wB and centers cA and cB. We assume that wAwB ≤ 1/N and define

RAB(x, p) = Ψ(x, p) − Ψ(cA, p) − Ψ(x, cB) + Ψ(cA, cB).

Using the smoothness of Ψ(x, p) in both x and p, one can show that RAB(x, p) =

O(1/N) for x ∈ A and p ∈ B. As a result, e2πıR
AB(x,p) is not oscillatory and has a

low-rank separated approximation in x and p. Similarly, using the identity

e2πıΨ(x,p) = e2πıΨ(cA,p)e2πıΨ(x,cB)e−2πıΨ(cA,cB)e2πıR
AB(x,p),

we see that the kernel e2πıΨ(x,p) also enjoys a similar low-rank separated approx-
imation in x vs. p. The actual separated approximation is implemented based
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on the idea of oscillatory Chebyshev interpolations. For a fixed ε, we define {xA
t }

and {pBt } to be the Chebyshev grids adapted to A and B, respectively. We also
denote the standard Lagrange interpolants of these grids by {LA

t (x)} and {LB
t (p)},

respectively. It is proved in [CDY09] that the size of the Chebyshev grids grows at
most polylogarithmically in O(1/ε). Consider an admissible pair of squares (A,B)

with wAwB ≤ 1/N . When wB ≤ 1/
√
N , we have

|e2πıNΨ(x,p) −
∑
t

e2πıNΨ(x,pB
t )SAB

t (p)| ≤ ε,

where SAB
t (p) relate to the standard Chebyshev interpolant LB

t (p) on the grid pBt
via

SAB
t (p) = e−2πıNΨ(cA,pB

t )LB
t (p)e2πıNΨ(cA,p).

Similarly, when wA ≤ 1/
√
N , we have

|e2πıNΨ(x,ξ) −
∑
t

TAB
t (x)e2πıNΨ(xA

t ,p)| ≤ ε,

where TAB
t (x) relate to the standard Chebyshev interpolant LA

t (p) via

TAB
t (x) = e2πıNΨ(x,cB)LA

t (x)e−2πıNΨ(xA
t ,cB).

Let us define uB(x) =
∑

p∈B e2πıNΨ(x,p)f̂(ξ(p)) to be the partial sum with p
restricted to B. The separated approximations imply that there exists a compact
representation for {uB(x), x ∈ A}: when wB ≤ 1/

√
N ,

(2.2) uB(x) ≈
∑
t

e2πıNΨ(x,pB
t )δAB

t if δAB
t ≈

∑
p∈B

SAB
t (p)f̂(ξ(p))

and when wA ≤ 1/
√
N ,

(2.3) uB(x) ≈
∑
t

TAB
t (x)δAB

t if δAB
t ≈

∑
p∈B

e2πıNΨ(xA
t ,p)f̂(ξ(p)).

It is not difficult to see that δAB
t serve as equivalent sources in the first case and

approximates uB(xA
t ) in the second one.

Combining these observations with the structure of the Butterfly algorithm
[MB96, OWR10], we have the following algorithm for applying the Fourier inte-
gral operators. Essentially, this computes {δAB

t } for all admissible pairs (A,B)
efficiently in a recursive fashion.

(1) Construct quadtrees TX and TP for X and P , respectively. Both of them
have [0, 1]2 as the root box at level 0 and have leaf boxes of width 1/N .
Let L denote the total number of levels.

(2) Let A be the root of TX . For each leaf box B of TP , construct

δAB
t =

∑
p∈B

SAB
t (p)f̂(ξ(p)).

(3) For level � = 1, 2, . . . , L/2, construct δAB
t for all pairs (A,B) where A at

level � and B is at level L− �. Denote by Ap the parent of A and by {Bc}
the set of the children of B:

δAB
t =

∑
c

∑
t′

SAB
t (pBc

t′ )δ
ApBc

t′ .
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(4) For each pair (A,B) with where A at level L/2 and B is at level L/2,
compute

δAB
t =

∑
t′

a(xA
t , p

B
t′ )e

2πıΨ(xA
t ,pB

t′ )δ
ApBc

t′ .

(This is the only place where the amplitude enters. Note that we had
assumed a = 1 in [CDY09].)

(5) For level � = L/2 + 1, . . . , L, construct δAB
t for all pairs (A,B) where A at

level � and B is at level L− �.

δAB
t =

∑
c

∑
t′

T
ApBc

t′ (xA
t )δ

ApBc

t′ .

(6) Let B be the root of TP . For each leaf box A and each x ∈ A, set

u(x) =
∑
t

TAB
t (x)δAB

t .

For each level �, there are N2 pairs of admissible boxes (A,B) with wAwB = 1/N .
Since we perform O(1) steps for constructing each set of coefficients {δAB

t }, the
number of steps used for each level � is O(N2). Since there are at most O(logN)
levels, this algorithm takes at most O(N2 logN) steps.

Figure 3. Schematic illustration of the butterfly algorithm in 2D
with 4 levels (L = 3). The levels are paired as indicated so that the
product of the sidelengths remains constant. The algorithm starts
at the root of TX and at the bottom of TP . It then traverses TX
top down and TP bottom up, and terminates when the last level
(the bottom of TX) is reached. The figure also represents the four
children of any box B.

3. Theory

In this section we present the justification of the FIO formula (1.3). Such oscil-
latory integrals are very well known and go back at least to Lax [Lax57]. However,
they are usually introduced as parametrices, i.e., asymptotic high-frequency ap-
proximations to the solution operator. The same is true for the polarizers ±P that
form the one-way components f±(x) in equation (1.2). In Section 3.1, we study
the operator P−1 and show that it is exactly pseudodifferential. In Section 3.2 we
make the transition to an exact oscillatory integral representation of the propaga-
tors e±itP in free space. In Section 3.3, we extend both characterizations to the
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case of the torus, where Fourier series replace the Fourier transform, and where
differentiations in the wave number domain become finite differences.

The wave equation utt = ∇ · c2(x)∇u can be written as the system

(3.1)
∂

∂t

(
u
v

)
= L
(
u
v

)
,

where L is the matrix of operators

L =

(
0 I

∇ · c2(x)∇ 0

)
.

By letting P be the positive semidefinite square root of L = −∇·c2(x)∇, we obtain
the formal spectral factorization

L =

(
0 I

(iP )2 0

)
=

1

2

(
I I
iP −iP

)(
iP 0
0 −iP

)(
I (iP )−1

I −(iP )−1

)
.

As a result, the propagator obeys

etL =
1

2

(
I I
iP −iP

)(
eitP 0
0 e−itP

)(
I (iP )−1

I −(iP )−1

)
.

This equation is another expression of the decoupling into one-way components as
in Section 1: the matrix of operators on the right forms the “polarized” components,
the middle matrix evolves them, and the left matrix recomposes them.

3.1. The polarizers are pseudodifferential operators. In this section we de-
fine P and P−1, and show that both belong to a class of operators with pseudodif-
ferential symbols of so-called classical type. Throughout this paper, the pseudodif-
ferential representation of almost any linear operator P is

Pu(x) =

∫
eix·ξp(x, ξ)û(ξ) dξ,

where p(x, ξ) is called the symbol. This formula always makes sense for x ∈ R
2

and in the scope of the Schwartz theorem – p(x, ξ) always exists as a distributional
kernel. When x ∈ [0, 1)2, however, the dual Fourier variable ξ is continuous and
does not result from Fourier series transformation. Instead, it is the usual Fourier
transform used in patches, after taking a partition of unity φj on the torus. The
operator P is then itself partitioned as φiPφj : the pieces are studied independently
by means of pseudodifferential symbols, and later recombined by summation over
i and j. We will thus feel free to let x ∈ [0, 1)2 in this section and ignore this
partitioning in the notations. See [Tre80, Hö85, Sog93] for complete background
on the definition of pseudodifferential operators on manifolds. Note in passing
that nothing in what follows depends on the fact that we only consider two spatial
dimensions.

Symbols generally have a lot of structure.

Definition 3.1 (Smoothing). A linear operator R acting inside the space of tem-
pered distributions in [0, 1)2 is called smoothing when it has a bounded pseudodif-
ferential symbol r(x, ξ) such that, for all integer M > 0 (arbitrarily large), and for
all r > 0 (arbitrarily small),

|∂α
ξ ∂

β
x r(x, ξ)| ≤ CMr(1 + |ξ|2)−M/2, |ξ| > r.



FAST WAVE COMPUTATION VIA FOURIER INTEGRAL OPERATORS 1469

Such a symbol r(x, ξ) decays faster than any negative power of |ξ| as |ξ| → ∞;
its corresponding operator can be shown to map tempered distributions to C∞

functions.

Definition 3.2 (Classical symbol, [Tre80, Hö85]). A symbol p(x, ξ) is called clas-
sical of order m, denoted p ∈ Ψm

cl, when

p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ),

where pn(x, ξ) is positive-homogeneous of order n in ξ, i.e.,

pn(x, λξ) = λnpn(x, ξ), λ > 0.

In addition, pn(x, ξ) is required to be C∞ in x and in the angular ξ variables, with
uniform smoothness constants. The notation ∼ means that there exists a C∞ cutoff
function χ(x, ξ) such that χ = 0 in a neighborhood of ξ = 0, and χ = 1 outside of
a larger neighborhood of ξ = 0, and there exist numbers εj > 0 (possibly tending
to zero as j → ∞) such that

r(x, ξ) = p(x, ξ) −
∑
j≥0

χ(x, εjξ)pm−j(x, ξ)

is the symbol of a smoothing operator in the sense of the previous definition.

A classical symbol need not be C∞ at the origin in ξ. It is well known that the
classical condition above implies the smoothness condition

(3.2) |∂α
ξ ∂

β
xp(x, ξ)| ≤ Cαβr(1 + |ξ|2)m/2−|α|/2, |ξ| > r.

Functions of operators, when they make sense, can be defined by means of the
spectral theorem. All the operators of interest in this paper have discrete spectra1.

Definition 3.3. Let L have the spectral decomposition

L =
∑
j

λjEj ,

where the Ej are projection operators onto the eigenspaces with eigenvalues λj .
Then, for any function f whose domain includes the spectrum of L,

f(L) =
∑
j

f(λj)Ej ,

(with strong L2-operator convergence on functions g such that
∑

j f
2(λj)‖Ejg‖22 <

∞.)

For instance, the operator of interest in this paper, L = −∇ · c2(x)∇ on the
torus, is positive semi-definite. It has a nullspace associated with the constant
eigenfunction, and an otherwise discrete set of positive eigenvalues.

The square-root and the inverse square-root of a positive-definite operator are
well-defined operations. The following classical result is due to Seeley [See67], and
its proof can also be found in [Sog93], p. 110. For background, see also [Tre80],
Vol. 3, pages leading up to p. 43.

1The Rellich embedding theorem ensures that any invertible operators on a compact manifold
like the torus have discrete spectra.
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Theorem 3.4. Consider a positive-definite operator T ∈ Ψ2
cl. Then T 1/2 and

T−1/2, as defined by the spectral theorem, have classical symbol of orders 1 and −1,
respectively.

The operator L = −∇· c2(x)∇ is not positive definite because it has a nullspace.
Instead, the theorem should be applied to T = P0 + L, where P0 is the orthogonal
projector onto constants,

P0g(x) =

∫
[0,1)2

g(x)dx.

This modification of L only changes the symbol at the origin, hence does not change
the classical character of the symbol. Once T 1/2 and T−1/2 are obtained:

• L1/2 = T 1/2 − P0 also has a symbol in the class Ψ1
cl;

• L−1/2 = T−1/2 as long as the function g to which it is applied has a zero
mean, i.e., P0g = 0 . This is why care has been taken to assume that
û1(0) = P0u1 = 0. The initial condition u1 is the only function to which
P−1 is applied. So when restricted to functions of mean zero, L−1/2 makes
sense and has a symbol in Ψ−1

cl
.

As a conclusion, P and P−1 are pseudodifferential operators with classical sym-
bols, with the proviso that P−1 is only applied to mean zero functions. The re-
maining question of characterizing the symbols of P and P−1 in the native Fourier
series variables on the torus will be addressed in Section 3.3.

3.2. The propagators are of Fourier integral type. In this section we show
that e±itP , the solution operators to the pseudodifferential equations ut = ±iPu,
are Fourier integral operators.

The following classical result hinges on the property that p(x, ξ), the symbol of
P , is in the class Ψ1

cl. It was perhaps first formulated by Lax [Lax57]. More modern

formulations with precise estimates on the remainder such as the one below require
some microlocal analysis that can be found at least in [Hö85, Sog93, Tre80].

Theorem 3.5 (FIO parametrix). Assume P has a symbol in the class Ψ1
cl. There

exists T > 0 such that for all 0 ≤ t < T , there exist scalar phase functions Φ±, and
scalar amplitude functions a± such that

(3.3)
(
e±itP f

)
(x) =

∫
Rn

eiΦ±(x,ξ;t)a±(x, ξ; t)f̂(ξ) dξ + (R(t)f) (x).

Moreover, as long as t ∈ [0, T ), Φ± obey the Hamilton-Jacobi equations

∂Φ±
∂t

(x, ξ; t) = λ±(x,∇xΦ±(x, ξ; t)), Φ±(x, ξ; 0) = x · ξ,

and a± obey the smoothness estimate

(3.4) |∂α
ξ ∂

β
xa±(x, ξ; t)| ≤ Ctαβr (1 + |ξ|2)−|α|/2, |ξ| ≥ r.

For each 0 ≤ t < T , R(t) is a smoothing operator in the sense of Definition 3.1.

This result is local in time: T cannot be taken larger than the time at which
caustics appear from planar wavefronts. This geometrical situation occurs when,
in time T , two different points initially on the same straight line are mapped to a
single point by the Hamiltonian flow generated by either λ±. The smoother the
medium c2(x) the larger T .
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Mathematicians usually specify the amplitudes a± in the above result as asymp-
totic expansions for |ξ| → ∞, or equivalence classes of highest-order symbols. Such
characterizations may be sufficient as proof techniques, but they are inadequate as
numerical expansion schemes.

The operators R(t) are smoothing, but they are not small and cannot be ignored
numerically. The discussion in this section deals with amplitudes that are not
necessarily C∞ near the origin; it is this precise point which allows us to absorb
the remainder R(t) in the amplitude of the oscillatory integral.

Corollary 3.6. In Theorem 3.5, R(t) can be taken to be zero.

Proof. Let R(t) be the original smoothing remainder obtained from Theorem 3.5,

(R(t)) f(x) =

∫
eix·ξr(x, ξ; t)f̂(ξ) dξ,

with
|∂α

ξ ∂
β
x r(x, ξ; t)| ≤ CMr(1 + |ξ|2)−M/2, |ξ| > r, ∀M > 0.

This gives rise to the composite expression(
e±itP f

)
(x) =

∫
Rn

e−iΦ±(x,ξ;t)b±(x, ξ; t)f̂(ξ) dξ,

with
b±(x, ξ; t) = a±(x, ξ; t) + r(x, ξ; t) ei(x·ξ−Φ±(x,ξ;t)).

It suffices to show that the second term in the right-hand side is a smoothing
amplitude.

This term is to be differentiated in x and in ξ. In the Leibniz formula, every
term will have either r(x, ξ; t) or one of its derivatives as a factor. A contribution
(1 + |ξ|2)−M/2 for all M > 0 results in the bound—in short, (1 + |ξ|2)−∞. The
other factors are derivatives of the exponential: they can only grow polynomially
in ξ. This growth will not undo the super-algebraic decay of (1 + |ξ|2)−M/2, only
the value of the overall constant CM . �

3.3. Analysis on the torus. The analysis in the previous sections, and in partic-
ular equations (3.2), (3.3), and (3.4), assumed that continuous Fourier transforms
were taken in coordinate charts for the torus. In this section it is shown how these
various results extend to the more natural setting of discrete ξ ∈ Z

2 coming from
taking Fourier series. It is also the approach followed in the algorithms.

Without loss of generality, the coordinate charts can be taken to be isometric
maps resulting from the canonical embedding [0, 1)2 ⊂ R

2: in this scenario the
symbol x is overloaded as a coordinate in both [0, 1)2 and R

2. Periodization is one
way to relate the solution of the wave equation on [0, 1)2, with periodic boundary
conditions, to that of the wave equation on R

2.
The periodic extension of a wavefield from [0, 1)2 to R

2 is

u(x, t) = u(x mod [0, 1)2, t), x ∈ R
2.

The medium parameter is similarly periodized as

c2(x) = c2(x mod [0, 1)2).

A window function ρ(x), x ∈ R
2, is then chosen such that its Fourier transform ρ̂

obeys

• ρ̂ ∈ C∞(R2);
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• ρ̂(0) = 1;
• supp ρ̂ ⊂ B0(1/2), the ball centered at the origin with radius 1/2.

Owing to the property that ρ̂(n) = δ0n, n ∈ Z
2, it follows that the integer translates

of ρ form a partition of unity: ∑
n∈Z2

ρ(x− n) = 1.

Let us now consider the wavefield w(x, t) solution of

wtt −∇ · c2(x)∇w = 0, x ∈ R
2,

with initial conditions

w(x, 0) = ρ(x)u0(x), wt(x, 0) = ρ(x)u1(x).

By linearity,

(3.5) u(x, t) =
∑
n∈Z2

w(x− n, t),

with pointwise convergence.
The important property that

∫
[0,1)2

u1(x) dx = 0 is preserved at the level of w in

the sense that
ρ̂u1(ξ) = 0, ξ ∈ B0(1/2).

We now address the two related questions of how to express pseudodifferential
and Fourier integral operators in the native Fourier variable ξ ∈ Z

2 on the torus.
If g(x) is a [0, 1)2-periodic function, it makes sense to apply a pseudodifferential
operator T to the fast-decaying function hn(x) = ρ(x− n)g(x) of x ∈ R

2, yielding

Thn(x) =

∫
R2

e2πix·ξσ(x, ξ)ĥn(ξ) dξ, x ∈ R
2,

where σ(x, ξ) is the amplitude of T , and “hat” is the Fourier transform. The action
of T on g itself can then be defined as

Tg(x) = lim
ε→0

∑
n∈Z2

e−εn2

(Thn) (x), x ∈ [0, 1)2.

The problem is to find an amplitude a(x, ξ), ξ ∈ Z
2, such that

Tg(x) =
∑
ξ∈Z2

e2πix·ξτ (x, ξ)ĝ(ξ) dξ,

where the hat now denotes the Fourier series,

ĝ(ξ) =

∫
[0,1)2

e−2πix·ξg(x) dx, ξ ∈ Z
2.

Elementary manipulations show that τ (x, ξ) are nothing but the samples of σ(x, ξ):

τ (x, ξ) = σ(x, ξ), x ∈ [0, 1)2, ξ ∈ Z
2.

The smoothness properties of σ are therefore transferred at the discrete level: dis-
crete symbols are samples of their very smooth counterparts. This is chiefly true of
the polarizer T = (iP )−1, as far as our application is concerned.

Similarly, we seek to write the propagators as Fourier series operators :(
e±itP f±

)
(x) =

∑
ξ∈Z2

eiΦ±(x,ξ;t)b±(x, ξ; t)α̂±(ξ).
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The phase functions Φ± are the same as previously, and the polarized components
are

f±(x) =
1

2

[
u0(x) ± (iP )−1u1(x)

]
, x ∈ [0, 1)2,

where we have just made sense of P−1. An analysis very similar to the pseudodiffer-
ential case shows that the amplitudes b±(x, ξ; t) are also samples of the amplitudes
for the propagator in R

2:

b±(x, ξ; t) = a±(x, ξ; t), x ∈ [0, 1)2, ξ ∈ Z
2.

It was the subject of research by Turunen et al. over the past few years to
formulate a smoothness criterion native to the torus for symbols such as τ (x, ξ)
and b±(x, ξ; t). In [Tur00, RT07] the authors propose to replace partial derivatives
by finite differences in ξ. The forward difference operator Δα

ξ with multi-index α
is defined as

Δα
ξ = Δf1

ξ1
Δf2

ξ2
,

(Δξjf)(ξ) = f(ξ + δj) − f(ξ), j = 1, 2,

with obvious modifications in several spatial dimensions. Here δ1 = (1, 0) and
δ2 = (0, 1) are Kronecker deltas. Is it explained how to formulate a notion of
calculus (via boundedness in certain Sobolev scales) based on these finite differences.
In the scope of this discussion it will suffice to observe that the following simple
result holds.

Proposition 3.7. Let p(x, ξ) be a function of x ∈ [0, 1)2 and ξ ∈ R
2. If there

exists m > 0, and for all r > 0 and multi-indices α, β there exists Cαβr > 0 such
that

(3.6) |∂α
ξ ∂

β
xp(x, ξ)| ≤ Cαβr(1 + |ξ|2)m/2−|α|/2, |ξ| > r,

and such that ∂β
xp(x, ξ) is bounded on any compact set, then it also holds that

|Δα
ξ ∂

β
xp(x, ξ)| ≤ C ′

αβr(1 + |ξ|2)m/2−|α|/2, |ξ| > r, ξ ∈ Z
2,

for a possibly different constant C ′
αβr.

Proof. Fix α and β. Let f(ξ) = ∂β
xp(x, ξ) for simplicity of notation. Then

Δ
fj
ξj
f(ξ) =

∫
[0,1]fj

∂fjf

∂ξ
fj
j

(ξ + |s|δj) ds,

with |s| =
∑fj

i=1 si and ds = ds1 . . . dsfj . As a result,

(3.7) |Δf
ξ f(ξ)| = |Δf1

ξ1
Δf2

ξ2
f(ξ)| ≤ max

|η|≤|α|

∣∣∣∣∣ ∂|α|f

∂ξf11 ∂ξf22
(ξ + η)

∣∣∣∣∣ ,
with |α| = f1 + f2. Two regimes must be contrasted:

• Near the origin, consider ξ such that |ξ| ≤ |α|+1. Let Dβ be the maximum
of ∂β

xp(x, ξ) over the larger ball |ξ| ≤ 2|α| + 1. We may simply take all the
terms in absolute value in the finite difference expansion and obtain

|Δf
ξ f(ξ)| ≤ 2|α|Dβ , |ξ| ≤ |α| + 1.
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• Consider |ξ| > |α| + 1. Then |ξ + η| > 1 when |η| ≤ |α|, and we may
invoke equation (3.6) with r = 1. (W.l.o.g. Cαβr decreases as a function of
increasing r.) The right-hand side in (3.7) is bounded by

Cαβ1 max
|η|≤|α|

(1 + |ξ + η|2)−|α|/2.

Peetre’s inequality allows us to conclude that

(1 + |ξ + η|2)−|α|/2 ≤ 2|α|/2(1 + |η|2)|α|/2(1 + |ξ|2)−|α|/2,

≤ 2|α|/2(1 + |α|2)|α|/2(1 + |ξ|2)−|α|/2,

which is what we sought to establish. �

4. Numerical algorithm

In Section 1, we list the four questions to be addressed and briefly outline the
solutions. In this section, we describe the solutions in detail.

4.1. Computation of P and P−1. To construct P = L1/2 and P−1, we use dis-
crete symbol calculus. There is one small problem: L = −∇ · (c2(x)∇) is only
a positive semidefinite operator with one zero eigenvalue. Hence, the square root
algorithm in Section 2.1 cannot be applied directly. However, since L is of diver-
gence form, we know that the corresponding eigenfunction is the constant function.
Therefore, we can fix this problem easily, and in the same manner as we did in
the theory earlier, by removing the average from the initial condition u0(x) and
addressing it separately. For all initial value functions u0(x) with zero mean, we
can redefine L to be

Lu = −∇ · (c2(x)∇u) +

∫
u(x)dx.

Now this L is a positive definite operator, and we can use the algorithm in Section
2.1 to compute P = L1/2 and P−1 = L−1/2.

4.2. Computation of Φ±(x, ξ, τ ). The next task is to compute Φ±(x, ξ, t) for
x ∈ X = {(n1

N , n2

N ) : n1, n2 ∈ Z, 0 ≤ n1, n2 < N} and ξ ∈ Ω = {(ξ1, ξ2) : ξ1, ξ2 ∈
Z,−βN

2 ≤ ξ1, ξ2 < βN
2 }. Φ±(x, ξ, t) are functions of homogeneous degree 1 in ξ

and satisfy

(4.1)

{
∂tΦ±(x, ξ, t)∓ c(x)|∇xΦ±(x, ξ, t)| = 0,

Φ±(x, ξ, 0) = x · ξ.

We can simply the computation using two simple observations:

• Since Φ±(x, ξ, t) is homogeneous of degree 1 in ξ, we only need to solve the

problem Φ±(x, ξ̂, t) for ξ̂ on unit circle.
• Even though Φ±(x, ξ, t) is not periodic in x, its difference with the initial

condition Φ±(x, ξ, t) − x · ξ is periodic and is amenable to high accuracy
spectral differentiation.

Therefore, we solve the following problem for Ψ±(x, ξ, t) := Φ±(x, ξ, t)−x·ξ instead:

for each ξ̂ ∈ S1,

(4.2)

{
∂tΨ±(x, ξ̂, t) ∓ c(x)|∇xΨ±(x, ξ̂, t) + ξ̂| = 0,

Ψ±(x, ξ̂, 0) = 0.
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Notice that the solution of this equation only depends on the coefficient c(x). When

c(x) is a bandlimited function, Ψ±(x, ξ̂, t) is a smooth function in x when t is
significantly smaller than the time t∗ when the caustics appear. This allows us to

solve Ψ±(x, ξ̂, t) on a grid much coarser than the N ×N grid (where the function
f(x) is defined) and still obtain a high accuracy. Moreover, it is easy to check that

Ψ±(x, ξ̂, t) is also smooth in ξ̂.

As a result, we discretize S1 with equispaced grid ξ̂k, 1 ≤ k ≤ Mξ. For each ξ̂k,

we solve Ψ±(x, ξ̂k, t) on a Mx×Mx Cartesian grid in the x variable. The x derivative

∇xΨ±(x, ξ̂k, t) is approximated using spectral differentiation, which can be easily

done using the Fast Fourier Transform (FFT) since the function Ψ±(x, ξ̂k, t) is
periodic in x. We use a high order Runge-Kutta method for timestepping. Notice
that since the solution grid is of size Mx ×Mx, the time step can be taken to be of
order 1/Mx.

Once the Ψ±(x, ξ̂k, t) is obtained for each ξ̂k on the Mx × Mx spatial grid,

evaluating Ψ±(x, ξ̂, t) for any x and ξ̂ is a simple Fourier interpolation problem.
When Mξ is small, evaluating the Fourier series direction is sufficiently efficient.
When Mξ gets sufficiently larger, we can use tools such as nonuniform FFT [DR93].

4.3. Computation of a±(x, ξ, τ ). For τ < t∗, the matrices (a±(x, ξ, τ ))x∈X,ξ∈Ω

are numerically low-rank. The algorithm described in Section 2.2 is used to con-
struct their low-rank separated approximation. The main issue here is how to
sample the rows and columns of (a±(x, ξ, t))x∈X,ξ∈Ω.

Before we start, we first introduce some matrix notation that will simplify the
presentation. Given two matrices A = (axξ)x∈X,ξ∈Ω and B = (bxξ)x∈X,ξ∈Ω of the
same size, A � B denotes their pointwise product, i.e., the matrix with entries
(axξbxξ). We define the Fourier transform matrix F by

F =

(
1

N2
e−2πıx·ξ

)
ξ∈Ω,x∈X

.

Accordingly, the inverse Fourier transform matrix is given by

F−1 = (e2πıx·ξ)x∈X,ξ∈Ω.

Recall that the main components of the solution formula are

(4.3) (e±iPτf)(x) =
∑
ξ∈Ω

a±(x, ξ, τ )e2πıΦ±(x,ξ,τ)f̂(ξ)

for x ∈ X. If we define the matrices

A± = (a±(x, ξ, τ ))x,ξ, E± = (e2πıΦ±(x,ξ,τ))x,ξ,

we can then rewrite (4.3) as

e±iPτ = (A± � E±) · F.

As we now show, extracting rows and columns of A± reduces to applying e±iP t

to some spectral functions. For any ξ̃, we define vector eξ̃ = (e2πıx·ξ̃)x. Clearly, eξ̃
corresponds to a plane wave with wave number ξ̃. We use δx̃ to denote the vector
with one at index x̃ and zero everywhere else. Similarly, δξ̃ is the vector with one

at index ξ̃ and zero everywhere else.
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When we apply e±iPτ to eξ̃, we get

e±iPτeξ̃ = (A± � E±)Feξ̃ = (A± � E±)δξ̃.

However, the last term is exactly equal to the ξ̃-th column of (A± �E±). Now, we

can easily evaluate the ξ̃-th column of E+, which is exactly equal to (e2πıΦ±(x,ξ̃,t))x.

Dividing them term by term gives the ξ̃-th column of A± = (a±(x, ξ, τ ))x,ξ. Now
the only question that remains is how to compute e±iPτeξ̃. It is easy to see that
this is in fact the solution of the following problem at t = τ :

(4.4)

⎧⎪⎨⎪⎩
∂ttu(x, t) −∇ · (c2(x)∇u(x, t)) = 0 t > 0, x ∈ [0, 1)2,

u(x, 0) = eξ̃(x) x ∈ [0, 1)2,

∂tu(x, 0) = (±iPeξ̃)(x) x ∈ [0, 1)2,

which is solved with spectral differentiation in x and Runge-Kutta time stepping
in t. Since for each ξ̃ the solution takes O(N3) steps, sampling each column of
A± = (a±(x, ξ, τ ))x,ξ costs at most O(N3) steps.

In order to sample the x̃-th row of A±, we use the fact

δ∗x̃e
±iPτF−1 = δ∗x̃(A± � E±).

Transposing the left side and using the fact (e±iPτ )∗ = e∓iPτ , we get(
F−∗e∓iPτδx̃

)∗
= δ∗x̃(A± � E±).

Therefore, in order to sample the x̃-th row of A±, we compute e∓iPτδx̃, apply
(F−1)∗ = N2F to it, transpose the result, and finally divide entrywise the x̃-th row
of E±. Similar to the column sampling case, e−iPτδx̃ is the solution of the following
problem at time t = τ :

(4.5)

⎧⎪⎨⎪⎩
∂ttu(x, t) −∇ · (c2(x)∇u(x, t)) = 0 t > 0, x ∈ [0, 1)2,

u(x, 0) = δx̃(x) x ∈ [0, 1)2,

∂tu(x, 0) = (∓iP δx̃)(x) x ∈ [0, 1)2.

Again, by using spectral differentiation in x and time stepping in t, we can sample
each row of A± = (a±(x, ξ, τ ))x,ξ in O(N3) steps.

Since the algorithm in Section 2.2 for constructing the separated approximation
of A± requires sampling only a constant number of rows and columns (where the
constant depends on the ε-rank of A±), the total cost of computing these separated
approximations is still O(N3). We would like to emphasize that the construction
of these approximations is a precomputation step and is performed only once for
a fixed c(x). Once these approximations are ready, one can reuse them in the
solutions for arbitrary initial conditions.

4.4. Computation of u(x, τ ). So far, we have discussed the details of constructing
the Fourier integral representation

(e±iPτf±)(x) =
∑
ξ

e2πıΦ±(x,ξ,τ)a±(x, ξ, τ )f̂±(ξ).
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For bandlimited c(x), the computing of P and P−1 takes O(logN) steps. Comput-
ing Φ±(x, ξ, τ ) requires only O(1) steps. Factorizing (a±(x, ξ, τ ))x,ξ uses at most
O(N3) steps in total. Therefore, the total preprocessing time is of order O(N3).

Now let us briefly summarize the computing of u(x, τ ) given u0(x) and u1(x).

(1) Compute f± = 1
2 (u0 ± (iP )−1u1). The application of P−1 uses the algo-

rithm in Section 2.1.
(2) Compute

(e±iPτf±)(x) =
∑
ξ∈Ω

a±(x, ξ, τ )e2πıΦ±(x,ξ,τ)f̂±(ξ)

for x ∈ X using the Fourier integral operator algorithms described in Sec-
tion 2.3. This takes O(N2 logN) or, depending on the algorithmic variant
chosen, O(N2.5 logN) steps.

(3) Finally, set u(x, τ ) = (eiPτf+)(x) + (e−iPτf−)(x) for x ∈ X.

5. Numerical results

In this section, we present several numerical examples to illustrate the algorithm
described in Section 4. We implement the algorithms in Matlab and all numerical
results are obtained on a workstation with a 3.0GHz CPU. We set an overall error
threshold of order 10−4 for all components of the algorithm. The time τ for which
the FIO representation is constructed is taken to be 1/8, which is less than t∗ in
all examples.

Example 1. The coefficient c(x) is given by a two-dimensional sine wave (see
Figure 4).

Figure 4. Example 1. Coefficient c(x).

As we mentioned in Section 4, the precomputation step includes four steps: (1)
the construction of P and P−1 using discrete symbol calculus, (2) the computation
of the phase functions Ψ±(x, ξ, t), (3) the computation of the amplitudes a±(x, ξ, t),
and (4) finally the precomputation of the Fourier integral operators with symbol
a±(x, ξ, t)e2πıΦ±(x,ξ,t).

The representation of the symbols of P = L1/2 and P−1 = L−1/2 uses 9 × 9
Fourier modes eλ(x) in the x domain (i.e., B = 5). In the ξ domain, the symbols
are representation with the hierarchical spline approximation, with a total number
of 667 samples for N ≤ 1024. The construction of P and P−1 through the Schulz-
Higham iteration converges in 35 iterations and costs 1.37e+02 seconds in total.
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The phase functions Ψ±(x, ξ̂, τ ) are computed with a uniform 32× 32 Cartesian
grid in the x domain and a uniform 128 grid in the angular component of ξ. We
solve the Hamilton-Jacobi equation in time using the standard 4th-order Runge-
Kutta method, with a time step equal to 1/512. The resulting phase function

Ψ±(x, ξ̂, τ ) has an accuracy of order 10−8, which is sufficiently accurate for the

overall computation. The evaluation of Ψ±(x, ξ̂, τ ) at locations off-grid is done with
the standard Fourier interpolation, so that the high order accuracy is preserved.

The computation of Ψ±(x, ξ̂, τ ) takes only 1.65e+01 seconds.
Most of the precomputation time is spent on the the construction of the ampli-

tudes a±(x, ξ, τ ) and the precomputation of the FIOs with symbol
a±(x, ξ, τ )e2πıΦ±(x,ξ,τ). These two components depend on the problem size N . In
the following experiments, N = 128, 256, 512, and 1024. For the precomputation
of the FIOs, we use the version based on angular decomposition (Approach 1 of
Section 2.3). Even though this version has a relatively high asymptotic complex-
ity, its relatively smaller prefactor constant makes it more efficient for the problem
sizes addressed here (i.e., N = 128, . . . , 1024). The results of the precomputation
are summarized in Table 1. TAMP is the time for constructing the separated factor-
izations of (a±(x, ξ, τ ))x,ξ in seconds, rAMP is the ε-rank of resulting factorization
with ε = 10−4, TFIO is the precomputation time of the FIOs in seconds, WFIO is
the total number of wedges in the angular partitioning of the frequency domain,
and rFIO is the (average) separation rank in (2.1).

Table 1. Example 1. Results of the precomputation of the ampli-
tudes a±(x, ξ, τ ) and the FIOs. TAMP is the time for constructing
the factorizations of (a±(x, ξ, τ ))x,ξ in seconds, rAMP is the ε-rank
of resulting factorization with ε = 10−4, TFIO is the precompu-
tation time of the FIOs in seconds, WFIO is the total number of
wedges in the angular partitioning of the frequency domain, and
rFIO is the (average) separation rank in (2.1).

N TAMP rAMP TFIO WFIO rFIO
128 5.29e+02 19 1.32e+02 16 9
256 3.34e+03 18 3.27e+02 24 8
512 2.55e+04 17 1.31e+03 32 7
1024 1.38e+05 17 5.58e+03 46 7

For each N , we apply the resulting FIO representation to compute the wave
solution u(x, τ ) at τ = 1/8 for the following three initial conditions.

(1) Harmonic wave

u0(x) = e2πı(α1Nx1+α2Nx2), u1(x) = −2πı
√
α2
1 + α2

2Ne2πı(α1Nx1+α2Nx2),

with (α1, α2) = (5/32, 3/32). As N grows, the initial condition becomes
more and more oscillatory.
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(2) Plane wave

u0(x) = exp(−(N/4)2(x1 − 1/2)2), u1(x) = 0.

This initial condition is concentrated along the line x1 = 1/2, and it be-
comes more and more singular as Ngrows.

(3) Gaussian bump

u0(x) = exp(−(N/4)2
(
(x1 − 1/2)2 + (x1 − 1/2)2

)
), u1(x) = 0.

This Gaussian bump is localized near (x1, x2) = (1/2, 1/2).

Table 2 summarizes the running time and relative L2 error of computing u(x, τ ) us-
ing the constructed FIO representations for these initial conditions and for different
values of N . Here the relative error is estimated by comparing our result with the
solution computed by an accurate time-stepping scheme with spectral differentia-
tion in space and the 4th-order Runge-Kutta method in time (with sufficiently small
time step). The error of this time-stepping scheme is of order 10−7 for t ∈ [0, τ ], so
that we can effectively treat its result as the exact solution.

Table 2. Example 1. Running time and relative L2 error of com-
puting u(x, τ ) for different initial conditions and different values
of N .

Init. cond. 1 Init. cond. 2 Init. cond. 3
N Time Error Time Error Time Error
128 7.90e-01 9.24e-05 4.65e-01 9.86e-05 3.57e+00 9.13e-05
256 1.77e+00 1.56e-04 1.76e+00 1.72e-04 2.07e+01 1.30e-04
512 6.85e+00 1.10e-04 6.67e+00 2.04e-04 1.03e+02 1.25e-04
1024 2.73e+01 1.82e-04 2.70e+01 2.28e-04 6.21e+02 1.65e-04

From Table 2, we observe that the error is consistently of order 10−4, which
shows that our algorithm has the desired accuracy. Each time N doubles, the
number of unknowns grows by a factor of four. For the first two initial conditions,
the running time of the evaluation algorithm seems to scale linearly with respect to
the unknowns. The reason behind this is that the first two initial conditions are both
well-localized in the frequency domain and therefore, for the angular decomposition
based FIO algorithm, one only needs to visit a small number of wedges. On the
other hand, the last initial condition has a support covering the whole frequency
domain, and hence the FIO algorithm visits all wedges. One clearly sees that in
this case the running time of our evaluation algorithm grows by a factor of 5 to 6
when the number of unknowns quadruples, which is consistent with the theoretical
O(N2.5 logN) estimate.

We plot in Figure 5 the running time of the FIO evaluation algorithm in com-
parison with the full time-stepping algorithm with spectral differentiation in space,
for the three initial conditions. It is clear that the algorithm based on the FIO rep-
resentation is much more efficient than the time-stepping algorithm for the first two
initial conditions again due to the frequency localization of the initial data. For the
last initial condition, even though the FIO based algorithm has a relatively higher
absolute running time, the curve suggests that asymptotically it is eventually more
efficient than the full time-stepping algorithm. (Note that finite differences are at
least as costly as a spectral method at the desired level of accuracy.)
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Figure 5. Comparison of the running time of our evaluation al-
gorithm with the running time of the time-stepping algorithm.

Figure 6 shows the solutions for three initial conditions at time τ , 2τ , 3τ , and
4τ with τ = 1/8 for N = 512. It is clear from these plots that, although we take
a time step much larger than the CFL limit, the numerical dispersion effect is not
an issue due to the spectral nature of our approach.

Example 2. Finally, we consider a randomly generated c(x) given in Figure 9.
The results of the precomputation of the amplitudes and the FIOs for different

values of N are reported in Table 5.
For each value of N , the FIOs is again applied to three initial conditions and

these results are summarized in Table 6.
Figure 10 shows the solutions for three initial conditions at time τ , 2τ , 3τ , and

4τ with τ = 1/8 for N = 512.
Figure 8 shows the solutions for the three initial conditions at time τ , 2τ , 3τ ,

and 4τ with τ = 1/8 for N = 512.

Example 3. We consider a wave guide problem with coefficient c(x) given in
Figure 7.

The results for constructing P and Ψ±(x, ξ̂, t) are omitted since they are similar
to the first example. We first report the results of the construction of amplitudes
a±(x, ξ, τ ) and the precomputation of FIOs a±(x, ξ, τ )e2πıΦ±(x,ξ,τ) for N = 128,
256, 512, and 1024 in Table 3. Since the coefficient c(x) only depends on x2, the
amplitude approximations and the FIO representations are simpler compared to
the first example. The separation ranks rAMP and rFIO are significantly smaller.

For each value of N , we apply the constructed FIOs to three initial conditions
considered in the first example. The results for different initial conditions are
summarized in Table 4. As a direct result of the smaller separation rank rFIO, the
running times are much lower compared to the ones in the first example. However,
the scaling behavior is very similar.
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Table 3. Example 2. Results of the precomputation of the am-
plitudes a±(x, ξ, τ ) and the FIOs.

N TAMP rAMP TFIO WFIO rFIO
128 4.22e+02 7 1.17e+02 16 7
256 2.72e+03 7 3.07e+02 24 6
512 2.16e+04 7 1.28e+03 32 6
1024 1.12e+05 7 5.42e+03 46 5

Table 4. Example 2. Running time and relative L2 error of
u(x, τ ) for different initial conditions and different values of N .

Init. cond. 1 Init. cond. 2 Init. cond. 3
N Time Error Time Error Time Error
128 4.45e-01 3.70e-05 3.53e-01 2.32e-05 2.82e+00 4.33e-05
256 1.51e+00 4.64e-05 1.39e+00 4.03e-05 1.73e+01 3.45e-05
512 5.87e+00 4.21e-05 5.51e+00 7.26e-05 8.89e+01 5.52e-05
1024 2.37e+01 5.37e-05 2.31e+01 7.71e-05 5.21e+02 6.45e-05

Table 5. Example 3. Results of the precomputation of the am-
plitudes a±(x, ξ, τ ) and the FIOs.

N TAMP rAMP TFIO WFIO rFIO
128 5.69e+02 20 1.31e+02 16 10
256 3.52e+03 19 3.41e+02 24 8
512 2.54e+04 18 1.33e+03 32 8
1024 1.42e+05 16 5.66e+03 46 7

Table 6. Example 3. Running time and relative L2 error of
u(x, τ ) for different initial conditions and different values of N .

Init. cond. 1 Init. cond. 2 Init. cond. 3
N Time Error Time Error Time Error
128 7.43e-01 1.68e-04 4.89e-01 1.38e-04 3.65e+00 1.23e-04
256 1.85e+00 1.44e-04 1.79e+00 1.72e-04 2.13e+01 1.37e-04
512 7.08e+00 2.88e-04 6.93e+00 2.01e-04 1.07e+02 1.73e-04
1024 2.87e+01 2.39e-04 2.83e+01 2.49e-04 6.27e+02 1.74e-04
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Figure 6. Example 1. The solution u(x, t) at t = 1/8, 1/4, 3/8,
and 1/2 (from top to bottom) for three different initial conditions
with N = 512.

Figure 7. Example 2. Coefficient c(x).



FAST WAVE COMPUTATION VIA FOURIER INTEGRAL OPERATORS 1483

Figure 8. Example 2. The solution u(x, t) at t = 1/8, 1/4, 3/8,
and 1/2 (from top to bottom) for three different initial conditions
with N = 512.

Figure 9. Example 3. Coefficient c(x).
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Figure 10. Example 3. The solution u(x, t) at t = 1/8, 1/4, 3/8,
and 1/2 (from top to bottom) for three different initial conditions
with N = 512.
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