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ON SQUARE ROOTS OF THE UNIFORM DISTRIBUTION 
ON COMPACT GROUPS 
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ABSTRACT.Let G be a compact separable topological group. When does there exist a 
probability P such that P P = U ,where U is Haarmeasure and P + U ?  We show 
that such square roots exist if and only if G is not abelian, nor the product of the 
quaternions and a product of two element groups. In the course of proving this we 
classify compact groups with the property that every closed subgroup is normal. 

1. Introduction. Let G be a compact separable topological group. When does there 
exist a probability P such that P * P = U where U is Haar measure and P + U? 
Our main result is 

THEOREM1. There is a probability P such that P * P = U if and only if G is a 
nonabelian group which is not isomorphic to a product H x E with H the eight element 
group of quaternions and E a product of two element groups. 

A proof of Theorem 1appears in $2. The proof depends on the following result 
which is proved in $3. 

THEOREM2. Let G be a compact, separable group with the property that every closed 
subgroup is normal. Then G = H X E X 0 where H is the eight element group of 
quaternions, E is a product of two element groups, and 0 is a compact abelian group 
with Pontryagin dual a torsion group in which every element has odd order. The 
converse is also true. 

REMARK1.Recall that a group is called Hamiltonian if every subgroup is normal. 
Dedekind and Baer characterized Harnitonian groups as groups which can be 
represented a,s H x E x 5) with H and E as in Theorem 2, and 5) a torsion group in 
which every element has odd order. Thus there is a 1-1correspondence between 
Hamiltonian groups with E a countable product of two element groups and 5) 
countable, and compact separable groups with every subgroup normal. 

The countable torsion groups 5) can be classified by using results in Kaplansky 
(1952). First, any torsion group is a direct sum of primary groups, and I )  can have 
no 2-primary part. Then, Ulm's theorem gives a complete characterization of the 
other possible primary parts. 
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REMARK 2. The problem studied here arose in a statistical context. One common 
method for generating uniform random variables on groups involves factoring the 
uniform distribution. Discussion and examples are in Chapter 4 of Diaconis (1982). 
Theorem 1represents a first step in understanding such factorizations. 

Theorem 1 is also related to problems of estimating the speed of convergence of 
random walks to Haar measure. Let G be a finite group of cardinality [GI. For P a 
probability on G, and U the uniform distribution, define the variation distance 
between P and U as 

IIP - UII = C I p ( g )  - I. 
Aldous and Diaconis have shown that for most probabilities P (in the sense of the 
uniform distribution on the [GI simplex) 1 1  P * P - UII = o(1)as [GI tends to infinity. 

2. Proof of Theorem 1. We first introduce some notation and definitions. By a 
representation of a compact group G we mean a continuous homomorphism p of G 
into the group of invertible linear operators on a complex vector space V of 
dimension d,. A representation p is irreducible if the only proper invariant subspace 
of V is (0). Without loss of generality we assume throughout that all the irreducible 
representations are given by unitary matrices. For a representation p, its con-
tragredient P is defined by 

~ ( g )  p(g-')'= 

where 'denotes transpose. Then 

P ( g )  = Po. 

The Fourier transform of a measure P on G is defined by 


Similarly, one defies the Fourier transform of a continuous function f on G. Then 
we have the Fourier inversion formula 

Where * denotes transpose of complex conjugate, 6 is the set of irreducible 
representations of G, and Haar measure on G is normalized so that G has total mass 
1. 

On a compact abelian group the factorization U = P * P is impossible unless 
P = U.This follows because all irreducible representations are one dimensional and, 
for nontrivial p, 

0 = p ( u )  = p ( P  * P )  = p ( ~ ) 2  

implies p ( P )  = 0. 
For nonabelian groups, the proof requires some preliminary lemmas. 

LEMMA1. Let p be a bounded measure on a compact group G. Then y, is real if and-
only ijfor every irreducible representation p of G, P ( p )  = p ( p ) .  
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PROOF.If p is real, then 

-
Conversely, suppose p is a measure such that p ( p )  = ~ ( p )This means 

Since this holds for every irreducible p, the Peter-Weyl theorem implies that the set 
function ii - p is zero, SO p is real. 

LEMMA2. Let G be a compact noncommutative group. Then the following conditions 
are equivalent: 

(a) There is a probability measure P # U such that P * P = U. 
(b) There is an irreducible (complex) representation p of G such that the algebra 

contains nilpotent elements. 

PROOF.If U = P * P then P ( P ) ~= 0 and p(P) # 0 for some p because P + U. 
it is easy to see that p(P) E R, and so R, contains nilpotent elements. Conversely, 
let y, E Rp be nilpotent. If y," = 0 and n is smallest such power, then set y = Y;-'. 
This is nonzero and = 0.Define a continuous f on G as follows: Set for every 
irreducible representation n of G 

This defines a nonzero continuous function by the Fourier inversion theorem. By 
Lemma 1, f is real. Notice that if p is equivalent to P, say P(g) = p(g) = Tp(g)T-' 
(T is unitary), then -

P ( f )  = T P ( ~IT-' = Cc,p(g)  = 7 

and the hypothesis of Lemma 1is satisfied. Clearly n(f ) 2  = 0 for every irreducible 
representation n of G. It follows that for E > 0 sufficiently small P = (1 + ~ f ( g ) )dg 
is a probability measure satisfying P * P = U. 

REMARK.The relation between the existence of nilpotent elements and commuta-
tivity of the group has been investigated by M. Behncke (1971). 

It was argued above that abelian groups do not admit a nontrivial square root of 
the uniform distribution. In light of Lemma 2, the nonabelian compact separable 
groups with the property that R,(G) has no nilpotents must be classified. 
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Let M(G) denote! the algebra, under convolution, of real measures on G. The 
following lemma has been abstracted from Sehgal(1975): 

LEMMA3.  If M(G) has no nilpotent elements then every closed subgroup of G is 
normal. 

PROOF.Observe first that if R is any ring with unit and no nilpotents, then an 
idempotent e = e 2  in R commutes with every element r E R. In fact, the equation 
[ e r ( l  - e)12 = 0 implies er(1 - e )  = 0, so er = ere. Similarly, re = ere = er. Now 
let R = M(G), let H be a closed subgroup of G, and let e be Haar measure on H 
normalized so that vol(H) = 1.Then e is an idempotent in M(G). For g E G let 6, 
be a point mass at g. Then 6, * e * 6,-I = e which implies H is normal. 

To complete the proof of Theorem 1,map M(G) into Rp(G)by p + p(p). From 
the Peter-Weyl theory, the map 

is injective. Since Rp(G)contains no nilpotent elements, neither does M(G) and by 
Lemma 3, G is of the form given by Theorem 2. If 0 is not trivial, choose a 
character x taking at least one nonreal value. Let p be the irreducible representation 
of H given by 

0 i
i - i i  0 )  and j :). 

Then x O 1 8 p is an irreducible two-dimensional representation, and R,,,,,(G) 
is the full 2 X 2 complex matrix algebra, which contains nilpotent elements. This 
completes the proof of Theorem 1. 

3. Proof of Theorem 2. 
DEFINITION.A topological group is Hamiltonian if every closed subgroup is 

normal. 
Recall that a finite group G is Harniltonian if and only if it is of the form 

G = H X F where F is a finite abelian group with no element of order 4 (see Hall 
(1959)). 

LEMMA4. Closed subgroups and quotient groups of Hamiltonian groups are Hamilto-
nian. 

PROOF.Clear. 

LEMMA5. A compact noncommutative Lie group of dim 2 1is not Hamiltonian. 

PROOF.Let Go be a connected component of the identity in G. If G is Hamilto-
nian then so is Go.If G O  is not abelian then it contains closed nonnormal subgroups, 
e.g. a maximal torus. So we may assume Go is a torus T, and G/T is finite. Hence 
we have the exact sequence 
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where F is a finite abelian group with no element of order 4. Let G' = . I l - l (~) .Then 
we have the exact sequence 

Let c E H ~ ( H ,T)  be the cocycle defining the extension (1). Since H has order 8, 
8c = 0 in H2(H,T) (see e.g. Mac Lane (1975)). This means there is f :  H + T such 
that 82 - 6f = 0 where 6 is the coboundary operator for nonhomogeneouscochains 
and c: H x H + T is a representative for the cocycle c. Clearly there is C#D: H - T 
such that 89 = f.  Now the cochain c' = .? - SC#Dis also a representative for c and 
8c' = 0, i.e., c' takes values in the subgroup 6of elements of orders dividing 8 in T. 
Therefore we have the commutative, row and column exact diagram 

0 0 
.1 .1 

O 6 K H O 
.1 .1 id 

O T G ' H - 0  

where K is defined by the cocycle c'. The subgroup K is finite, therefore a closed 
subgroup of G'. From the finite case, K and therefore G' and so G cannot be 
Hamiltonian. 

For a separable compact group G, the Peter-Weyl theorem implies there is a 
sequence of finite dimensionalrepresentations pn (n E N) such that 

n ~ e r ~ , , ={ e )  and K e r ~ , , ~ K e r p , , + ~ .  
n 

LEMMA6. If G is a compact separable Hamiltonian group, then pn(G) is finite and 
G = lim pn(G) where the projective limit is taken relative to the system { pn(G)) with 

t 
the obvious maps P,+~(G)+ pn(G). 

PROOF. If G is Hamiltonian, then p,(G) is a Hamiltonian compact Lie group, and 
therefore finite. We have the inverse system of exact sequences: 

for n < m where K, = Kerp, + Kn is the inclusion etc. Since in the category of 
compact groups lim of inverse systems of exact sequences is exact (Eilenberg-

t 
Steenrod (1952, Chapter 8)), we have the exact sequence 

The hypothesis on p, implies nKn = { e ). 
It is no loss of generality to assume pl(G) = H. So we have the exact sequence 

when we have identified pl(G) with H. 
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LEMMA7.  Let G'be a compact separable Hamiltonian group, and T,,,, ( m  n )  be 
the natural projection nm,: pm(G) -t p,(G). Then we can choose a splitting p,(G) = H 
X F," x F,' when F," is a product of Z2's and F,' is an abelian group of odd order in 
such a way that nmn1, = id. 

PROOF.We construct the splitting inductively. The case n = 1 being obvious, we 
assume the splitting has been constructed up to n. Consider the canonical homomor-
phism 

.,+I,: p,+,(G) + P,(G) = H x F;' x F,' 

and any decomposition 

pn+l(G)= H' X F,':, X F,'+l 

where H' = H, F,I:, is a product of Z2's and F A ,  is a finite abelian group of odd 
order. Choose (q,, q,, 0 )  E H' x F;il X F A 1  (a= 1,2) such that 

nn+ln ( 4 1 , q ~ , 0 )= (i,O,O), nn+ln (q2 ,~2 ,0 )= ( j , 0 , 0 ) .  

Set q, = q1q2,q ,  = q1q2,then nn+,,(q3, q,, 0 )  = ( k ,0,O). NOWdefine a homomor-
phism 

The fact that a,+, is a homomorphism can be checked by straightforward verifica-
tion, e.g., let us show 

( 3 )  Qn+1( j )= @n+l(ki) .  

By construction a,+,(j )  = (q2 ,q2,O),  

@ n + l ( k ) @ n + l ( i )  = (9341,~ 3 7 7 1 ,O )  

and q3q1= q2.Also 

nn+ln(q2 ,~2 ,0)= ( j , 0 , 0 )  = %+i .(q3qi, q290). 

Hence (q,q,q;', 0,O) E Kern,,, ,. If q,q,q;' + e then Kernn+, ,I,, f { e l  and 
then im nn+,,would be abelian. This proves (3). Let H" = im@,+,. We have the 
decomposition 

P,+,(G) = H" X F,':, x Fn'+,. 

Now notice that the projection ,,I,,, is simply the identity map after possibly 
relabelling. 

LEMMA8. Let G be a compact separable Hamiltonian group. Then the exact 
sequence (2)  splits and furthermore G = H x K, as a direct product. 

PROOF.It suffices to prove the first assertion since if the sequence (2)splits and G 
is a semidirect product of K ,  and H which is not ii direct product, then H would be 
a closed subgroup which is not normal. To prove that (2)splits, we have to construct 
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a homomorphism 

/3: H + G = l i rnpn(G)
C 

such that p ,  0 /3 = id,. To do this it suffices to construct /3,: H + pn(G) such that 

P , ( G )  
B" f 

(4) H r m n  m > , n  
Bm 

pm(G) 

commutes and 8, = id. We define /3, = id. Consider the decomposition p,(G) = H 
X Fn" X F,,'provided by Lemma 7 .  Define 

/3, ,( i)= ( i , o , o ) ,  P n ( j )= ( j , o , o ) ,  etc. 

By Lemma 7 ,  the commutativitycondition (4) is satisfied. 
We now complete the proof of Theorem 2. We necessarily have rn+,. (FA, )  c F,' 

and T,,, ,,(H x F,': ,) cH x F,,".Hence 

G = lim ( H  x F,") x lim (F,').
C t 

It remains to show 

( 5 )  limc ( H  x F:') = H x 5 (F:) 

where limits are taken with respect to the obvious maps. By definition 

@ ( H  X ',,''I = { ( ( q , f l ) ,(q,f2),...)lrrnn((q,frn))= ( q y f n ) } .  

Now n, , (q ,  0 )  = ( q ,0),hence if ( ( 9 ,f , ) ,  ( q ,f , ) ,  ...) E lip(H X F,,'')we have 

( 6 )  rmn(e,f m )  = ( '3  f n ) .  

Conversely, if (6)  holds then ((4,A),( q ,f2),...) E 9(H x F,"). This proves (5)  
and Theorem 2 with 0 presented as an abelian profinite group. Shatz (1972, p. 10) 
shows that an abelian group is profinite if and only if its dual is a torsion group. 

In conclusion we note that a compact Hamiltonian group does not necessarily 
have the property that every subgroup is normal. In fact, H X n Z ,  (Z ,  = integers 
mod prime p) is Hamiltonian in our sense, however, the cyclic subgroup generated 
by ( i ,  1 , 1 , 1 , ...) is not normal. 
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