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Abstract

This paper introduces the hierarchical interpolative factorization for integral equa-
tions (HIF-IE) associated with elliptic problems in two and three dimensions.
This factorization takes the form of an approximate generalized LU decompo-
sition that permits the efficient application of the discretized operator and its
inverse. HIF-IE is based on the recursive skeletonization algorithm but incorpo-
rates a novel combination of two key features: (1) a matrix factorization frame-
work for sparsifying structured dense matrices and (2) a recursive dimensional
reduction strategy to decrease the cost. Thus, higher-dimensional problems are
effectively mapped to one dimension, and we conjecture that constructing, ap-
plying, and inverting the factorization all have linear or quasilinear complexity.
Numerical experiments support this claim and further demonstrate the perfor-
mance of our algorithm as a generalized fast multipole method, direct solver, and
preconditioner. HIF-IE is compatible with geometric adaptivity and can handle
both boundary and volume problems. MATLAB® codes are freely available.
© 2015 Wiley Periodicals, Inc.

1 Introduction
This paper considers integral equations (IEs) of the form

(1.1)
a.x/u.x/C b.x/

Z
�

K.kx � yk/c.y/u.y/ d�.y/ D f .x/;

x 2 � � Rd ;

associated with elliptic partial differential equations (PDEs), where a.x/, b.x/,
c.x/, and f .x/ are given functions; the integral kernel K.r/ is related to the fun-
damental solution of the underlying PDE; and d D 2 or 3. Such equations encom-
pass both boundary and volume problems and can be derived from PDEs in various
ways. We give two prototypical examples below:

(1) Consider the interior Dirichlet Laplace problem

�u.x/ D 0; x 2 D � Rd ;(1.2a)

u.x/ D f .x/; x 2 @D � �;(1.2b)
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in a smooth, simply connected domain, which can be solved by writing u.x/ as the
double-layer potential

u.x/ D

Z
�

@G

@�y
.kx � yk/�.y/d�.y/; x 2 D ;(1.3)

over an unknown surface density �.x/, where

G.r/ D

(
�
1
2�

log r; d D 2;
1
4�r

; d D 3;
(1.4)

is the fundamental solution of the free-space PDE and �y is the unit outer normal
at y 2 � . By construction, (1.3) satisfies (1.2a). To enforce the boundary condition
(1.2b), take the limit as x ! � and use standard results from potential theory [31]
to obtain

�
1

2
�.x/C

Z
�

@G

@�y
.kx � yk/�.y/d�.y/ D f .x/; x 2 �;(1.5)

where the integral is defined in the principal value sense. This is a boundary IE
for �.x/ of the form (1.1) (up to a straightforward generalization to matrix-valued
kernels).

Alternatively, one could use the single-layer potential representation

u.x/ D

Z
�

G.kx � yk/�.y/d�.y/; x 2 D ;

which immediately gives the IEZ
�

G.kx � yk/�.y/d�.y/ D f .x/; x 2 �;

upon taking the limit as x ! � since the integral is well-defined. Note that this
has a.x/ � 0 in (1.1). Such equations are called first-kind Fredholm IEs and are
generally ill-conditioned. Second-kind Fredholm IEs such as (1.5), on the other
hand, have a.x/ ¤ 0 for all x and are usually well-conditioned.

(2) Consider the divergence-form PDE

r � .a.x/ru.x// D f .x/; x 2 � � Rd ;

and let

u.x/ D

Z
�

G.kx � yk/�.y/d�.y/;

where G.r/ is as defined in (1.4). Then the PDE becomes the volume IE

a.x/�.x/Cra.x/ �

Z
�

rxG.kx � yk/�.y/d�.y/ D f .x/; x 2 �;
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upon substitution, which again has the form (1.1).
IEs can similarly be derived for many of the PDEs of classical physics including

the Laplace, Helmholtz, Stokes, and time-harmonic Maxwell equations. In such
cases, the kernel function K.r/ is typically singular near 0 but otherwise smooth
with noncompact support. For this paper, we will also require that K.r/ not be too
oscillatory.

Discretization of (1.1) using, e.g., the Nyström, collocation, or Galerkin method
leads to a linear system

Au D f;(1.6)

where A 2 CN�N is dense with u and f the discrete analogues of u.x/ and f .x/,
respectively. This paper is concerned with the efficient factorization and solution
of such systems.

1.1 Previous Work
Numerical methods for solving (1.6) can be classified into several groups. The

first consists of classical direct methods like Gaussian elimination or other stan-
dard matrix factorizations [26], which compute the solution exactly (in principle,
to machine precision, up to conditioning) without iteration. These methods are
useful when N is small. However, since A is dense, such algorithms generally
have O.N 3/ complexity, which quickly makes them infeasible as N increases.

The second group is that of iterative methods, among the most popular of which
are Krylov subspace methods such as conjugate gradient [38, 49] or GMRES [47].
The number of iterations required depends on the problem and is typically small
for second-kind IEs but can grow rapidly for first-kind ones. The main computa-
tional cost is the calculation of matrix-vector products at each iteration. Combined
with fast multipole methods (FMMs) [22, 28, 29, 54] or other accelerated matrix
multiplication schemes [5, 36], such techniques can yield asymptotically optimal
or near-optimal solvers with O.N/ or O.N logN/ complexity. However, itera-
tive methods are not as robust as their direct counterparts, especially when a.x/,
b.x/, or c.x/ lacks regularity or has high contrast. In such cases, convergence can
be slow and specialized preconditioners are often needed. Furthermore, iterative
methods can be inefficient for systems involving multiple right-hand sides or low-
rank updates, which is an important setting for many applications of increasing
interest, including time stepping, inverse problems, and design.

The third group covers rank-structured direct solvers, which exploit the obser-
vation that certain off-diagonal blocks of A are numerically low-rank in order to
dramatically lower the cost. The seminal work in this area is due to Hackbusch
et al. [33–35], whose H - and H 2-matrices have been shown to achieve linear
or quasilinear complexity. Although their work has had significant theoretical im-
pact, in practice, the constants implicit in the asymptotic scalings tend to be large
due to the recursive nature of the inversion algorithms and the use of expensive
hierarchical matrix-matrix multiplication.
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More recent developments aimed at improving practical performance include
solvers for hierarchically semiseparable (HSS) matrices [10, 11, 52] and meth-
ods based on recursive skeletonization (RS) [25, 27, 39, 43], among other related
schemes [2, 8, 13]. These can be viewed as special cases of H 2-matrices and are
optimal in one dimension (1D) (e.g., boundary IEs on curves) but have superlinear
complexities in higher dimensions. In particular, RS proceeds analogously to the
nested dissection multifrontal method (MF) for sparse linear systems [19,23], with
the so-called skeletons characterizing the off-diagonal blocks corresponding to the
separator fronts. These grow asO.N 1=2/ in two dimensions (2D) andO.N 2=3/ in
three dimensions (3D), resulting in solver complexities of O.N 3=2/ and O.N 2/,
respectively.

Recently, Corona, Martinsson, and Zorin [16] constructed an O.N/ RS solver
in 2D by exploiting further structure among the skeletons and using hierarchical
matrix algebra. The principal observation is that for a broad class of integral ker-
nels, the generic behavior of RS is to retain degrees of freedom (DOFs) only along
the boundary of each cell in a domain partitioning. Thus, 2D problems are reduced
to 1D, and the large skeleton matrices accumulated throughout the algorithm can
be handled efficiently using 1D HSS techniques. However, this approach is quite
involved and has yet to be realized in 3D or in complicated geometries.

1.2 Contributions
In this paper, we introduce the hierarchical interpolative factorization for IEs

(HIF-IE), which produces an approximate generalized LU decomposition ofAwith
linear or quasilinear complexity estimates. HIF-IE is based on RS but augments
it with a novel combination of two key features: (1) a matrix factorization formu-
lation via a sparsification framework similar to that developed in [11, 50, 52] and
(2) a recursive dimensional reduction scheme as pioneered in [16]. Unlike [16],
however, which keeps large skeleton sets but works with them implicitly using fast
structured methods, our sparsification approach allows us to reduce the skeletons
explicitly. This obviates the need for internal hierarchical matrix representations,
which substantially simplifies the algorithm and enables it to extend naturally to
3D and to complex geometries, in addition to promoting a more direct view of the
dimensional reduction process.

Figure 1.1 shows a schematic of HIF-IE as compared to RS in 2D. In RS (top),
the domain is partitioned into a set of square cells at each level of a tree hierarchy.
Each cell is skeletonized from the finest level to the coarsest, leaving DOFs only
along cell interfaces. The size of these interfaces evidently grows as we march up
the tree, which ultimately leads to the observed O.N 3=2/ complexity.

In contrast, in HIF-IE (bottom), we start by skeletonizing the cells at the finest
level as in RS but, before proceeding further, perform an additional level of edge
skeletonization by grouping the remaining DOFs by cell edge. This respects the
1D structure of the interface geometry and allows more DOFs to be eliminated.
The combination of cell and edge compression is then repeated up the tree, with
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FIGURE 1.1. Schematic of RS (top) and HIF-IE (bottom) in 2D. The
gray box (left) represents a uniformly discretized square; the lines in the
interior of the boxes (right) denote the remaining DOFs after each level
of skeletonization.

the result that the skeleton growth is now suppressed. The reduction from 2D
(square cells) to 1D (edges) to zero dimensions (0D) (points) is completely explicit.
Extension to 3D is immediate by skeletonizing cubic cells, then faces, then edges
at each level to execute a reduction from 3D to 2D to 1D to 0D. This tight control
of the skeleton size is essential for achieving near-optimal scaling.

Once the factorization has been constructed, it can be used to rapidly apply both
A and A�1, thereby serving as a generalized FMM, direct solver, or preconditioner
(depending on the accuracy). Other capabilities are possible, too, though they will
not be pursued here. As such, HIF-IE is considerably more general than many pre-
vious non-factorization-based fast direct solvers [10,16,25,39,43], which facilitate
only the application of the inverse.

Extensive numerical experiments reveal strong evidence for quasilinear com-
plexity and demonstrate that HIF-IE can accurately approximate various integral
operators in both boundary and volume settings with high practical efficiency.

1.3 Outline
The remainder of this paper is organized as follows. In Section 2, we introduce

the basic tools needed for our algorithm, including an efficient matrix sparsifica-
tion operation that we call skeletonization. In Section 3, we describe the recursive
skeletonization factorization (RSF), a reformulation of RS using our new factor-
ization approach. This will serve to familiarize the reader with our sparsification
framework as well as to highlight the fundamental difficulty associated with RS
methods in 2D and 3D. In Section 4, we present HIF-IE as an extension of RSF
with additional levels of skeletonization corresponding to recursive dimensional
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reductions. Although we cannot yet provide a rigorous complexity analysis, es-
timates based on well-supported rank assumptions suggest that HIF-IE achieves
linear or quasilinear complexity. This conjecture is borne out by numerical ex-
periments, which we detail in Section 5. Finally, Section 6 concludes with some
discussion and future directions.

2 Preliminaries
In this section, we first list our notational conventions and then describe the basic

elements of our algorithm.
Uppercase letters will generally denote matrices, while the lowercase letters c,

p, q, r , and s denote ordered sets of indices, each of which is associated with a
DOF in the problem. For a given index set c, its cardinality is written jcj. The
(unordered) complement of c is given by cc, with the parent set to be understood
from the context. The uppercase letter C is reserved to denote a collection of
disjoint index sets.

Given a matrix A, Apq is the submatrix with rows and columns restricted to
the index sets p and q, respectively. We also use the MATLAB® notation AW;q to
denote the submatrix with columns restricted to q.

Throughout, k � k refers to the 2-norm.

2.1 Sparse Elimination
Let

A D

24App Apq
Aqp Aqq Aqr

Arq Arr

35(2.1)

be a matrix defined over the indices .p; q; r/. This matrix structure often appears
in sparse PDE problems, where, for example, p corresponds to the interior DOFs
of a region D , q to the DOFs on the boundary @D , and r to the external region
� n xD , which should be thought of as large. In this setting, the DOFs p and r are
separated by q and hence do not directly interact, resulting in the form (2.1).

Our first tool is quite standard and concerns the efficient elimination of DOFs
from such sparse matrices.

LEMMA 2.1. Let A be given by (2.1) and write App D LpDpUp in factored
form, where Lp and Up are unit triangular matrices (up to permutation). If App is
nonsingular, then

R�pASp D

24Dp Bqq Aqr
Arq Arr

35;(2.2)
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where

R�p D

24 I

�AqpU
�1
p D�1p I

I

3524L�1p I

I

35;
Sp D

24U�1p I

I

3524I �D�1p L�1p Apq
I

I

35
and Bqq D Aqq � AqpA�1ppApq is the associated Schur complement.

Note that the indices p have been decoupled from the rest. Regarding the sub-
system in (2.2) over the indices .q; r/ only, we may therefore say that the DOFs p
have been eliminated. The operators Rp and Sp carry out this elimination, which
furthermore is particularly efficient since the interactions involving the large index
set r are unchanged.

2.2 Interpolative Decomposition
Our next tool is the interpolative decomposition (ID) [14] for low-rank matrices,

which we present in a somewhat nonstandard form below.

LEMMA 2.2. Let A D AW;q 2 Cm�n with rank k � min.m; n/. Then there
exist a partitioning q D yq [ Lq with jyqj D k and a matrix Tq 2 Ck�n such that
AW; Lq D AW;yqTq .

PROOF. Let

A… D QR D Q
�
R1 R2

�
be a so-called thin pivoted QR decomposition of A, where Q 2 Cm�k is unitary,
R 2 Ck�n is upper triangular, and the permutation matrix… 2 f0; 1gn�n has been
chosen so thatR1 2 Ck�k is nonsingular. Then identifying the first k pivots with yq
and the remainder with Lq,

AW; Lq D QR2 D .QR1/
�
R�11 R2

�
� AW;yqTq

for Tq D R�11 R2. �

The ID can also be written more traditionally as

A D AW;yq
�
I Tq

�
…

where … is the permutation matrix associated with the ordering .yq; Lq/. We call
yq and Lq the skeleton and redundant indices, respectively. Lemma 2.2 states that
the redundant columns of A can be interpolated from its skeleton columns. The
following shows that the ID can also be viewed as a sparsification operator.
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COROLLARY 2.3. Let A D AW;q be a low-rank matrix. If q D yq [ Lq and Tq are
such that AW; Lq D AW;yqTq , then�

AW; Lq AW;yq
�� I

�Tq I

�
D
�
0 AW;yq

�
:

In general, let AW; Lq D AW;yqTq CE for some error matrix E and characterize the
ID by the functions ˛.n; k/ and ˇ.n; k/ such that

kTqk � ˛.n; k/; kEk � ˇ.n; k/�kC1.A/;(2.3)

where �kC1.A/ is the .kC1/st largest singular value ofA. If j˛.n; k/j and jˇ.n; k/j
are not too large, then (2.3) implies that the reconstruction of AW; Lq is stable and
accurate. There exists an ID with

˛.n; k/ D

q
f 2k.n � k/; ˇ.n; k/ D

q
1C f 2k.n � k/(2.4)

for f D 1, but computing it can take exponential time, requiring the combinatorial
maximization of a submatrix determinant. However, an ID satisfying (2.4) with
any f > 1 can be computed in polynomial time [30]. In this paper, we use the
algorithm of [14] based on a simple pivoted QR decomposition, which has a pos-
sibility of failure but seems to consistently achieve (2.4) with f D 2 in practice at
a cost of O.kmn/ operations. Fast algorithms based on random sampling are also
available [37], but these can incur some loss of accuracy (see also Section 4.3).

The ID can be applied in both fixed and adaptive rank settings. In the former, the
rank k is specified, while, in the latter, the approximation error is specified and the
rank adjusted to achieve (an estimate of) it. Hereafter, we consider the ID only in
the adaptive sense, using the relative magnitudes of the pivots to adaptively select k
such that kEk . "kAk for any specified relative precision " > 0.

2.3 Skeletonization
We now combine Lemmas 2.1 and 2.2 to efficiently eliminate redundant DOFs

from dense matrices with low-rank off-diagonal blocks.

LEMMA 2.4. Let

A D

�
App Apq
Aqp Aqq

�
with Apq and Aqp low-rank, and let p D yp [ Lp and Tp be such that�

Aq Lp
A�
Lpq

�
D

�
Aq yp
A�
ypq

�
Tp;

i.e., Aq Lp D Aq ypTp and A Lpq D T �p A ypq . Without loss of generality, write

A D

24A Lp Lp A Lp yp A Lpq
A yp Lp A yp yp A ypq
Aq Lp Aq yp Aqq

35
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and define

Qp D

24 I

�Tp I

I

35:
Then

Q�pAQp D

24B Lp Lp B Lp yp
B yp Lp A yp yp A ypq

Aq yp Aqq

35;(2.5)

where

B Lp Lp D A Lp Lp � T
�
p A yp Lp � A Lp ypTp C T

�
p A yp ypTp;

B Lp yp D A Lp yp � T
�
p A yp yp;

B yp Lp D A yp Lp � A yp ypTp;

so

R�
Lp
Q�pAQpS Lp D

24D Lp B yp yp A ypq
Aq yp Aqq

35 � Zp.A/;(2.6)

where R Lp and S Lp are the elimination operators of Lemma 2.1 associated with Lp
and B yp yp D A yp yp � B yp LpB�1Lp LpB Lp yp, assuming that B Lp Lp is nonsingular.

In essence, the ID sparsifies A by decoupling Lp from q, thereby allowing it to be
eliminated using efficient sparse techniques. We refer to this procedure as skele-
tonization since only the skeletons yp remain. Note that the interactions involving
q D pc are unchanged. A very similar approach has previously been described in
the context of HSS ULV decompositions [11] by combining the structure-preserving
rank-revealing factorization [53] with reduced matrices [50].

In general, the ID often only approximately sparsifies A (for example, if its off-
diagonal blocks are low-rank only to a specified numerical precision) so that (2.5)
and consequently (2.6) need not hold exactly. In such cases, the skeletonization
operator Zp.�/ should be interpreted as also including an intermediate truncation
step that enforces sparsity explicitly. For notational convenience, however, we will
continue to identify the left- and right-hand sides of (2.6) by writing Zp.A/ �
R�
Lp
Q�pAQpS Lp, with the truncation to be understood implicitly.
In this paper, we often work with a collection C of disjoint index sets, where

Ac;cc and Acc;c are numerically low-rank for all c 2 C . Applying Lemma 2.4 to
all c 2 C gives

ZC .A/ � U
�AV; U D

Y
c2C

QcR Lc ; V D
Y
c2C

QcS Lc ;

where the redundant DOFs Lc for each c 2 C have been decoupled from the rest and
the matrix products over C can be taken in any order. The resulting skeletonized
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matrix ZC .A/ is significantly sparsified and has a block diagonal structure over
the index groups

� D
�[
c2C

f Lcg
�
[

n
s n

[
c2C

Lc
o
;

where the outer union is to be understood as acting on collections of index sets and
s D f1; : : : ; N g is the set of all indices.

3 Recursive Skeletonization Factorization
In this section, we present RSF, a reformulation of RS [25, 27, 39, 43] as a ma-

trix factorization using the sparsification view of skeletonization as developed in
Lemma 2.4. Mathematically, RSF is identical to RS but expresses the matrixA as a
(multiplicative) multilevel generalized LU decomposition instead of as an additive
hierarchical low-rank update. This representation enables much simpler algorithms
for applying A and A�1 as well as establishes a direct connection with MF [19,23]
for sparse matrices, which produces a (strict) LU decomposition using Lemma 2.1.
Indeed, RSF is essentially just MF with presparsification via the ID at each level.
This point of view places methods for structured dense and sparse matrices within a
common framework, which provides a potential means to transfer techniques from
one class to the other.

Note that because RSF is based on elimination, it requires that certain interme-
diate matrices be invertible, which in general means that A must be square. This
is a slight limitation when compared to RS, which can be used, for example, as a
generalized FMM [25, 39] or least squares solver [40] for rectangular matrices.

We begin with a detailed description of RSF in 2D before extending to 3D in
the natural way (the 1D case will not be treated but should be obvious from the
discussion). The same presentation framework will also be used for HIF-IE in
Section 4, which we hope will help make clear the specific innovations responsible
for its improved complexity estimates.

3.1 Two Dimensions
Consider the IE (1.1) on � D .0; 1/2, discretized using a piecewise constant

collocation method over a uniform n�n grid for simplicity. More general domains
and discretizations can be handled without difficulty, but the current setting will
serve to illustrate the main ideas.

Let h be the step size in each direction and assume that n D 1=h D 2Lm,
where m D O.1/ is a small integer. Integer pairs j D .j1; j2/ index the elements
�j D h.j1 � 1; j1/ � h.j2 � 1; j2/ and their centers xj D h.j1 � 1

2
; j2 �

1
2
/ for

1 � j1; j2 � n. With fxj g as the collocation points, the discrete system (1.6) reads

aiui C bi
X
j

Kij cjuj D fi
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` D 0 ` D 1 ` D 2 ` D 3

FIGURE 3.1. Active DOFs at each level ` of RSF in 2D.

at each xi , where aj D a.xj /, bj D b.xj /, cj D c.xj /, and fj D f .xj /; uj is the
approximation to u.xj /; and

Kij D

Z
�j

K.kxi � yk/d�.y/:(3.1)

Note thatA is not stored since it is dense; rather, its entries are generated as needed.
The total number of DOFs is N D n2, each of which is associated with a point xj
and an index in s.

The algorithm proceeds by eliminating DOFs level by level. At each level `,
the set of DOFs that have not been eliminated are called active with indices s`.
Initially, we set A0 D A and s0 D s. Figure 3.1 shows the active DOFs at each
level for a representative example.

Level 0

Defined at this stage are A0 and s0. Partition � into the Voronoi cells [4]
mh.j1 � 1; j1/�mh.j2 � 1; j2/ of width mh D n=2L about the centers mh.j1 �
1
2
; j2 �

1
2
/ for 1 � j1; j2 � 2L. Let C0 be the collection of index sets correspond-

ing to the active DOFs of each cell. Clearly,
S
c2C0

c D s0. Then skeletonization
with respect to C0 gives

A1 D ZC0
.A0/ � U

�
0 A0V0; U0 D

Y
c2C0

QcR Lc ; V0 D
Y
c2C0

QcS Lc ;

where the DOFs
S
c2C0

Lc have been eliminated (and marked inactive). Let s1 D
s0 n

S
c2C0

Lc D
S
c2C0

yc be the remaining active DOFs. The matrix A1 is block
diagonal with block partitioning

�1 D
� [
c2C0

f Lcg
�
[ fs1g:

Level `

Defined at this stage areA` and s`. Partition� into the Voronoi cells 2`mh.j1�
1; j1/ � 2

`mh.j2 � 1; j2/ of width 2`mh D n=2L�` about the centers 2`mh.j1 �
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1
2
; j2 �

1
2
/ for 1 � j1; j2 � 2L�`. Let C` be the collection of index sets corre-

sponding to the active DOFs of each cell. Clearly,
S
c2C`

c D s`. Skeletonization
with respect to C` then gives

A`C1 D ZC`
.A`/ � U

�
` A`V`; U` D

Y
c2C`

QcR Lc ; V` D
Y
c2C`

QcS Lc ;

where the DOFs
S
c2C`

Lc have been eliminated. The matrix A`C1 is block diago-
nal with block partitioning

�`C1 D
� [
c2C0

f Lcg
�
[ � � � [

� [
c2C`

f Lcg
�
[ fs`C1g;

where s`C1 D s` n
S
c2C`

Lc D
S
c2C`

yc.

Level L

Finally, we have AL and sL, where D � AL is block diagonal with block
partitioning

�L D
� [
c2C0

f Lcg
�
[ � � � [

� [
c2CL�1

f Lcg
�
[ fsLg:

Combining the approximation over all levels gives

D � U �L�1 � � �U
�
0 AV0 � � �VL�1;

where each U` and V` are products of unit triangular matrices, each of which can
be inverted simply by negating its off-diagonal entries. Therefore,

A � U��0 � � �U
��
L�1DV

�1
L�1 � � �V

�1
0 � F;(3.2a)

A�1 � V0 � � �VL�1D
�1U �L�1 � � �U

�
0 D F

�1:(3.2b)

The factorization F permits fast multiplication and can be used as a generalized
FMM. Its inverse F�1 can be used as a direct solver at high accuracy or as a
preconditioner otherwise. If D is stored in factored form, e.g., as an LU decom-
position, then the same factorization can readily be used for both tasks. We call
(3.2) an (approximate) generalized LU decomposition since while each U` and V`
are composed of triangular factors, they are not themselves triangular, being the
product of both upper and lower triangular matrices. We emphasize that F and
F�1 are not assembled explicitly and are applied only in factored form.

The entire procedure is summarized compactly as Algorithm 3.1. In general, we
construct the cell partitioning at each level using an adaptive quadtree [48], which
recursively subdivides the domain until each node contains only O.1/ DOFs.

3.2 Three Dimensions
Consider now the analogous setting in 3D, where � D .0; 1/3 is discretized

using a uniform n�n�n grid with�j D h.j1�1; j1/�h.j2�1; j2/�h.j3�1; j3/
and xj D h.j1� 12 ; j2�

1
2
; j3�

1
2
/ for j D .j1; j2; j3/. The total number of DOFs

is N D n3.
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Algorithm 3.1 RSF.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1 D ZC`
.A`/ � U

�
`
A`V` F skeletonize cells

end for
A � U��0 � � �U

��
L�1ALV

�1
L�1 � � �V

�1
0 F generalized LU decomposition

` D 0 ` D 1 ` D 2

FIGURE 3.2. Active DOFs at each level ` of RSF in 3D.

The algorithm extends in the natural way with cubic cells 2`mh.j1 � 1; j1/ �
2`mh.j2�1; j2/�2

`mh.j3�1; j3/ about the centers 2`mh.j1� 12 ; j2�
1
2
; j3�

1
2
/

replacing the square cells in 2D at level ` for 1 � j1; j2; j3 � 2L�`. With this
modification, the rest of the algorithm remains unchanged. Figure 3.2 shows the
active DOFs at each level for a representative example. The output is again a
factorization of the form (3.2). General geometries can be treated using an adaptive
octree.

3.3 Accelerated Compression
A dominant contribution to the cost of RSF is computing IDs for skeletonization.

The basic operation required is the construction of an ID of

W`;c D

�
.A`/cc;c

.A`/
�
c;cc

�
;

where c 2 C` and cc D s` n c, following Lemma 2.4. We hereafter drop the
dependence on ` for notational convenience. Observe that Wc is a tall-and-skinny
matrix of sizeO.N/�jcj, so forming its ID takes at leastO.N jcj/ work. The total
number of index sets c 2 C` for all ` isO.N/, so considering allWc yields a lower
bound of O.N 2/ on the total work and hence on the complexity of RSF.

In principle, it is straightforward to substantially accelerate the algorithm by
reconstructing an ID of Wc from that of a much smaller matrix Yc . All that is
needed is that the rows of Yc span those of Wc , i.e., R.W �c / � R.Y �c /, where
R.�/ denotes the matrix range.
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FIGURE 3.3. Accelerated compression using equivalent interactions.
By Green’s theorem, all off-diagonal interactions with a given box B
can be represented by its interactions with an artificial local proxy sur-
face � and with all DOFs interior to � .

LEMMA 3.1. Let W D XY with column indices q. If q D yq [ Lq and Tq are such
that YW; Lq D YW;yqTq , then

WW; Lq D XYW; Lq D XYW;yqTq D WW;yqTq:

In other words, an ID of Yc gives an ID of Wc D XcYc . Note that we make
no explicit reference to Xc ; only its existence is assumed. Of course, such a small
matrix Yc always exists since rank.Wc/ � jcj; the difficulty lies in finding Yc
a priori.

For elliptic problems, the integral kernel K.r/ typically satisfies some form of
Green’s theorem, in which its values inside a region D 2 � can be recovered from
its values on the boundary � D @D . Consider, for example, the Laplace kernel
(1.4) and let '.x/ D G.kx � x0k/ be the harmonic field in D due to an exterior
source x0 2 � n xD . Then

'.x/ D

Z
�

�
'.y/

@G

@�y
.kx � yk/ �

@'

@�y
.y/G.kx � yk/

�
d�.y/; x 2 D ;

i.e., the “incoming” field '.x/ lives in the span of single- and double-layer inter-
actions with � . In practice, we will use this fact only when x 2 D is sufficiently
separated from � (see below), in which case the double-layer term can often even
be omitted since the corresponding discrete spaces are equal to high precision. Out-
going interactions can essentially be treated in the same way using the “transpose”
of this idea.

In such cases, a suitable Yc can readily be constructed. To see this, let B de-
note the cell containing the DOFs c and draw a local “proxy” surface � around B
(Figure 3.3). This partitions cc as cc D cN [ cF, where cN consists of all DOFs
interior to � (the near field) and cF consists of the rest (the far field). By Green’s
theorem, the interactions involving cF can be represented by artificial “equivalent”
interactions with � . Therefore, discretizing � with equivalent DOFs cE, we assert
the following:
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LEMMA 3.2. Consider (1.1) with b.x/ � c.x/ � 1 and let all quantities be as
defined in the preceding discussion. Then, up to discretization error (see [45]),
R.A�

cF;c
/ � R.Y �

cE;c
/, where .YcE;c/ij D K.kxE

i � xj k/ for fxj g and fxE
j g the

points identified with the DOFs c and cE, respectively.

PROOF. This immediately follows from Green’s theorem upon recognizing that
AcF;c contains interactions involving only the original kernel function K.r/. This
must be checked because AW;c may have Schur complement interactions (SCIs),
i.e., those corresponding to the matrixB yp yp in (2.6), accumulated from skeletoniza-
tion at previous levels, over which we do not have analytic control. However, due to
the hierarchical nature of the domain partitioning, any such SCIs must be restricted
to the diagonal block Acc . Thus, Green’s theorem applies. �

LEMMA 3.3. Consider (1.1) with general b.x/ and c.x/. Then, up to discretization
error, R.A�

cF;c
/ � R.Y �

cE;c
/ and R.Ac;cF/ � R.Yc;cE/, where

.YcE;c/ij D K
�

xE

i � xj


�c.xj /; .Yc;cE/ij D b.xi /K

�

xi � xE
j



�:
PROOF. The functions b.x/ and c.x/ act as diagonal multipliers, so AcF;c D

BcF zAcF;cCc , where zAcF;c is the corresponding interaction matrix with b.x/ �
c.x/ � 1 (i.e., that in Lemma 3.2), and BcF D diag.b.xF

i // and Cc D diag.c.xi //
for fxF

j g the points attached to cF. By Lemma 3.2, zAcF;c D
zXcE;c

zYcE;c for some
zXcE;c , so

AcF;c D BcF zXcE;c
zYcE;cCc D

�
BcF zXcE;c

��
zYcE;cCc

�
� XcE;cYcE;c :

A similar argument with Ac;cF D Bc zAc;cFCcF analogously defined and

zAc;cF D zAT
cF;c D

zY T
cE;c
zXT
cE;c �

zYc;cE zXc;cE

proves that Ac;cF D Yc;cEXc;cE for some Xc;cE . �

If � is separated from B , for example as in Figure 3.3, then standard multi-
pole estimates [28, 29] show that we only need jcEj D O.logd�1.1="// to satisfy
Green’s theorem to any precision ". In particular, for fixed ", we can choose jcEj

to be constant. Therefore, Lemma 3.3 gives

Wc � XcYc � Xc

2664
AcN;c

A�
c;cN

YcE;c

Y �
c;cE

3775(3.3)

for some Xc , where Yc has size O.jcNj C 1/ � jcj with jcNj D O.jcj/ typically.
Lemma 3.1 then reduces the global compression of Wc to the local compression
of Yc . This so-called proxy trick has also been employed by [14, 16, 25, 27, 39, 43,
44, 46, 54] and is crucial for reducing the asymptotic complexity. For numerical
stability, we include the quadrature weights for the integral (3.1) in YcE;c and Yc;cE

so that the various components of Yc are all of the same order.
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FIGURE 3.4. Recursive subdivision of source domain (white) into well-
separated subdomains from the target (gray), each of which has constant
interaction rank.

In this paper, for a cellB with scaled width 1 centered at the origin, we take as �
the circle of radius 3

2
in 2D, uniformly discretized with 64 points, and the sphere of

radius 3
2

in 3D, uniformly sampled (by projecting Gaussian random vectors) with
512 points. These values of jcEj have been experimentally validated to reproduce
interactions via the Laplace kernel (1.4) with " � 10�15. This approach is more
efficient than the “supercell” proxy of [27, 39] by factors of 4=� D 1:2732 : : : in
2D and 6=� D 1:9099 : : : in 3D (volume ratio of the cube to the sphere of equal
diameter), which takes as � the outer boundary of the 3�3 (�3) cell block centered
at B .

3.4 Complexity Estimates
We now investigate the computational complexity of RSF. For this, we need to

estimate the skeleton size jycj for a typical index set c 2 C` at level `. Denote this
quantity by k` and let n` D .2`m/d D O.2d`/ be the number of DOFs (both active
and inactive) in each cell. From Figures 3.1 and 3.2, it is clear that skeletons tend
to cluster around cell interfaces, which can again be justified by Green’s theorem,
so k` D O.n

1=2

`
/ D O.2`/ in 2D and k` D O.n

2=3

`
/ D O.22`/ in 3D. Indeed,

this can be verified using standard multipole estimates by noting that k` is on the
order of the interaction rank between two adjacent cells at level `, which can be
analyzed via recursive subdivision to expose well-separated structures (Figure 3.4).
This yields the more detailed result

k` D

(
O.`/; d D 1;

O.2.d�1/`/; d � 2;
(3.4)

which, in fact, holds for d equal to the intrinsic dimension rather than the ambient
dimension.
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THEOREM 3.4 ([39, 43]). Assume that (3.4) holds. Then the cost of constructing
the factorization F in (3.2) using RSF with accelerated compression is

tf D O.2
dLm3d /C

LX
`D0

2d.L�`/O.k3` / D

(
O.N/; d D 1;

O.N 3.1�1=d//; d � 2;
(3.5)

while that of applying F or F�1 is

ta=s D O.2
dLm2d /C

LX
`D0

2d.L�`/O.k2` / D

8̂<̂
:
O.N/; d D 1;

O.N logN/; d D 2;

O.N 2.1�1=d//; d � 3:

(3.6)

PROOF. Consider first the factorization cost tf . There are 2d.L�`/ cells at
level `, where each cell c 2 C` requires the calculation of an ID of Yc in (3.3)
as well as various local matrix operations at a total cost of O.jcj3/, assuming that
jcNj D O.jcj/. But jcj D md for ` D 0, while jcj D O.k`�1/ D O.k`/ for ` � 1
since the active DOFs c are obtained by merging the skeletons of 2d cells at level
` � 1. Hence (3.5) follows.

A similar derivation holds for ta=s by observing that each c 2 C` requires local
matrix-vector products with cost O.jcj2/. �

Remark 3.5. If a tree is used, then there is also a cost of O.N logN/ for tree
construction, but the associated constant is tiny, and so we can ignore it for all
practical purposes.

The memory cost to store F itself is clearly mf D O.ta=s/ and so is also given
by (3.6). From Theorem 3.4, it is immediate that RSF behaves just like MF, with
the geometric growth of k` in 2D and 3D leading to suboptimal complexities.

COROLLARY 3.6. If

k` D O.k`/(3.7)

for some constant k, then tf D O.Nk2/ and ta=s D O.Nk/.

PROOF. From (3.5), tf D O.2dL.md C k/3/, so choosing md D O.k/ gives
N D nd D .2Lm/d D O.2dLk/ and tf D O.2dLk3/ D O.Nk2/. Similarly,
ta=s D O.2

dL.md C k/2/ D O.2dLk2/ D O.Nk/. �

This is a more precise version of the 1D result that will be useful later when
discussing HIF-IE.

4 Hierarchical Interpolative Factorization
In this section, we present HIF-IE, which builds upon RSF by introducing ad-

ditional levels of skeletonization in order to effectively reduce all problems to 1D.
Considering the 2D case for concreteness, the main idea is simply to employ an
additional level ` C 1

2
after each level ` by partitioning � according to the cell



18 K. L. HO AND L. YING

` D 0 ` D 1
2

` D 1 ` D 3
2

` D 2 ` D 5
2

` D 3

FIGURE 4.1. Active DOFs at each level ` of HIF-IE in 2D.

edges near which the surviving active DOFs cluster. This fully exploits the 1D
geometry of the active DOFs. However, the algorithm is complicated by the fact
that the cell and edge partitions are nonnested, so different index groups may now
interact via SCIs. Such SCIs do not lend themselves easily to analysis, and we have
yet to prove a statement like (3.4) on their ranks. Nevertheless, extensive numer-
ical experiments by ourselves (Section 5) and others [16] reveal that very similar
bounds appear to be obeyed. This suggests that SCIs do not need to be treated in
any significantly different way, and we hereafter assume that interaction rank is
completely determined by geometry.

The overall approach of HIF-IE is closely related to that of [16], but our sparsi-
fication framework permits a much simpler implementation and analysis. As with
RSF, we begin first in 2D before extending to 3D.

4.1 Two Dimensions
Assume the same setup as in Section 3.1. HIF-IE supplements cell skeletoniza-

tion (2D to 1D) at level ` with edge skeletonization (1D to 0D) at level `C 1
2

for
each ` D 0; 1; : : : ; L � 1. Figure 4.1 shows the active DOFs at each level for a
representative example.

Level `

Partition � into Voronoi cells about the cell centers 2`mh.j1 � 1
2
; j2 �

1
2
/ for

1 � j1; j2 � 2L�`. Let C` be the collection of index sets corresponding to the
active DOFs of each cell. Skeletonization with respect to C` then gives

A`C 1
2
D ZC`

.A`/ � U
�
` A`V`; U` D

Y
c2C`

QcR Lc ; V` D
Y
c2C`

QcS Lc ;

where the DOFs
S
c2C`

Lc have been eliminated.
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Level ` C
1
2

Partition � into Voronoi cells about the edge centers 2`mh.j1; j2 � 1
2
/ for 1 �

j1 � 2L�` � 1, 1 � j2 � 2L�`, and 2`mh.j1 � 1
2
; j2/ for 1 � j1 � 2L�`,

1 � j2 � 2
L�` � 1. Let C`C1=2 be the collection of index sets corresponding to

the active DOFs of each cell. Skeletonization with respect to C`C1=2 then gives

A`C1 D ZC`C1=2
.A`C1=2/ � U

�
`C1=2A`C1=2V`C1=2;

U`C1=2 D
Y

c2C`C1=2

QcR Lc ; V`C1=2 D
Y

c2C`C1=2

QcS Lc ;

where the DOFs
S
c2C`C1=2

Lc have been eliminated.

Level L

Combining the approximation over all levels gives

D � AL � U
�
L�1=2 � � �U

�
1=2U

�
0 AV0V1=2 � � �VL�1=2;

so

A � U��0 U��1=2 � � �U
��
L�1=2DV

�1
L�1=2 � � �V

�1
1=2V

�1
0 � F;(4.1a)

A�1 � V0V1=2 � � �VL�1=2D
�1U �L�1=2 � � �U

�
1=2U

�
0 D F

�1:(4.1b)

This is a factorization of exactly the same type as that in (3.2) (but with twice the
number of factors). The entire procedure is summarized as Algorithm 4.1.

Algorithm 4.1 HIF-IE in 2D.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1=2 D ZC`
.A`/ � U

�
`
A`V` F skeletonize cells

A`C1 D ZC`C1=2
.A`C1=2/ � U

�
`C1=2

A`C1=2V`C1=2 F skeletonize edges
end for
A � U��0 U��

1=2
� � �U��

L�1=2
ALV

�1
L�1=2

� � �V �1
1=2
V �10 F generalized LU

decomposition

4.2 Three Dimensions
Assume the same setup as in Section 3.2. HIF-IE now performs two rounds of

additional dimensional reduction over RSF by supplementing cell skeletonization
(3D to 2D) at level ` with face skeletonization (2D to 1D) at level `C 1

3
and edge

skeletonization (1D to 0D) at level ` C 2
3

. Figure 4.2 shows the active DOFs at
each level for a representative example.
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` D 0 ` D 1
3

` D 2
3

` D 1

` D 4
3

` D 5
3

` D 2

FIGURE 4.2. Active DOFs at each level ` of HIF-IE in 3D.

Level `

Partition� into Voronoi cells about the cell centers 2`mh.j1� 12 ; j2�
1
2
; j3�

1
2
/

for 1 � j1; j2; j3 � 2L�`. Let C` be the collection of index sets corresponding to
the active DOFs of each cell. Skeletonization with respect to C` then gives

A`C1=3 D ZC`
.A`/ � U

�
` A`V`; U` D

Y
c2C`

QcR Lc ; V` D
Y
c2C`

QcS Lc ;

where the DOFs
S
c2C`

Lc have been eliminated.

Level ` C
1
3

Partition � into Voronoi cells about the face centers

2`mh

�
j1; j2 �

1

2
; j3 �

1

2

�
; 1 � j1 � 2

L�`
� 1; 1 � j2; j3 � 2

L�`;

2`mh

�
j1 �

1

2
; j2; j3 �

1

2

�
; 1 � j2 � 2

L�`
� 1; 1 � j1; j3 � 2

L�`;

2`mh

�
j1 �

1

2
; j2 �

1

2
; j3

�
; 1 � j3 � 2

L�`
� 1; 1 � j1; j2 � 2

L�`:
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Let C`C1=3 be the collection of index sets corresponding to the active DOFs of
each cell. Skeletonization with respect to C`C1=3 then gives

A`C2=3 D ZC`C1=3
.A`C1=3/ � U

�
`C1=3A`C1=3V`C1=3;

U`C1=3 D
Y

c2C`C1=3

QcR Lc ; V`C1=3 D
Y

c2C`C1=3

QcS Lc ;

where the DOFs
S
c2C`C1=3

Lc have been eliminated.

Level ` C
2
3

Partition � into Voronoi cells about the edge centers

2`mh

�
j1; j2; j3 �

1

2

�
; 1 � j1; j2 � 2

L�`
� 1; 1 � j3 � 2

L�`;

2`mh

�
j1; j2 �

1

2
; j3

�
; 1 � j1; j3 � 2

L�`
� 1; 1 � j2 � 2

L�`;

2`mh

�
j1 �

1

2
; j2; j3

�
; 1 � j2; j3 � 2

L�`
� 1; 1 � j1 � 2

L�`:

Let C`C2=3 be the collection of index sets corresponding to the active DOFs of
each cell. Skeletonization with respect to C`C2=3 then gives

A`C1 D ZC`C2=3
.A`C2=3/ � U

�
`C2=3A`C2=3V`C2=3;

U`C2=3 D
Y

c2C`C2=3

QcR Lc ; V`C2=3 D
Y

c2C`C2=3

QcS Lc ;

where the DOFs
S
c2C`C2=3

Lc have been eliminated.

Level L

Combining the approximation over all levels gives

D � AL � U
�
L�1=3 � � �U

�
2=3U

�
1=3U

�
0 AV0V1=3V2=3 � � �VL�1=3;

so

A � U��0 U��1=3U
��
2=3 � � �U

��
L�1=3DV

�1
L�1=3 � � �V

�1
2=3V

�1
1=3V

�1
0 � F;(4.2a)

A�1 � V0V1=3V2=3 � � �VL�1=3D
�1U �L�1=3 � � �U

�
2=3U

�
1=3U

�
0 D F

�1:(4.2b)

This procedure is summarized as Algorithm 4.2.

4.3 Accelerated Compression
Proxy compression still applies, provided that we make some minor modifica-

tions to account for SCIs, which we generally have access to only numerically
and so cannot evaluate at arbitrary points as needed in Lemma 3.3. Specifically,
for a given index set c, we now expand cN by including all DOFs that interact
with c via SCIs in addition to those interior to � as in Section 3.3. The far field
cF D ccncN then consists only of original kernel interactions, so Lemma 3.3 holds.
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Algorithm 4.2 HIF-IE in 3D.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1=3 D ZC`
.A`/ � U

�
`
A`V` F skeletonize cells

A`C2=3 D ZC`C1=3
.A`C1=3/ � U

�
`C1=3

A`C1=3V`C1=3 F skeletonize faces
A`C1 D ZC`C2=3

.A`C2=3/ � U
�
`C2=3

A`C2=3V`C2=3 F skeletonize edges
end for
A � U��0 U��

1=3
� � �U��

L�1=3
ALV

�1
L�1=3

� � �V �1
1=3
V �10 F generalized LU

decomposition

It remains to observe that SCIs are local due to the domain partitioning strategy.
Thus, all cN reside in an immediate neighborhood of c and we again conclude that
jcNj D O.jcj/.

Even with this acceleration, however, the ID still manifests as a computational
bottleneck. To combat this, we also tried fast randomized methods [37] based
on compressing ˆcYc , where ˆc is a small Gaussian random sampling matrix.
We found that the resulting ID was inaccurate when Yc contained SCIs. This
could be remedied by considering instead ˆc.YcY �c /


Yc for some small integer

 D 1; 2; : : : , but the expense of the extra multiplications usually outweighed any
efficiency gains.

4.4 Modifications for Second-Kind Integral Equations
The algorithms presented so far are highly accurate for first-kind IEs in that

kA � F k=kAk D O."/, where " is the input precision to the ID (Section 5). For
second-kind IEs, however, we see a systematic deterioration of the relative error
roughly as O.N"/ as N ! 1. This instability can be explained as follows. Let
A be a typical second-kind IE matrix discretization. Then the diagonal entries of
A are O.1/, while its off-diagonal entries are O.1=N/. Since the interpolation
matrix, say, Tp, from the ID has entries of order O.1/, the same is true of B Lp Lp,
B Lp yp, and B yp Lp in (2.5). Therefore, the entries of the Schur complement B yp yp in
(2.6) are O.1/; i.e., SCIs dominate kernel interactions by a factor of O.N/.

LEMMA 4.1. Assume the setting of the discussion above and let c 2 C` be such
that Yc in (3.3) contains SCIs. Then kYck D O.1/, so the ID of Yc has absolute
error kEck D O."/.

Consider now the process of “unfolding” the factorization F from the middle
matrix D � AL outward. This is accomplished by undoing the skeletonization
operation for each c 2 C` in reverse order, at each step reconstructing .A`/W; Lc
and .A`/ Lc;W from .A`C1=d /W;yc and .A`C1=d /yc;W. Restricting attention to 2D for
concreteness, we start at levelLwith interactions between the DOFs sL as depicted
in Figure 4.3 (left). By Lemma 4.1, unskeletonizing each edge c 2 CL�1=2 induces
an error in the interactions between the edges e1 and e2 as labeled in the figure
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FIGURE 4.3. Matrix reconstruction from skeleton-skeleton interactions.

FIGURE 4.4. Sparsity pattern of SCIs. A reference domain configura-
tion (left) is shown with each half-edge labeled from 1 to 8. The edge of
interest (1 and 2) is outlined in gray along with all outgoing SCIs. The
corresponding matrix view (right) shows these interactions (hatched) in-
dexed by half-edge.

(center) of absolute magnitude O."/. At the next level, unskeletonizing the shaded
cell c 2 CL�1 that they bound then relies on the approximate interactions between
e1 and e2. This spreads the O."/ error over the reconstructed cell interactions,
which is small for SCIs acting internally to each cell c 2 CL�2 (omitting level L�
3
2

for simplicity) but not for kernel interactions between any two distinct cells B1
and B2 (right); indeed, the relative error for the latter is O.N"/. These corrupted
interactions are then used for reconstruction at the next level and are eventually
spread throughout the whole matrix. The same argument clearly holds in 3D.

This analysis suggests that the only fix is to skeletonize at effective precision
O."=N/ so that kernel interactions are accurately reconstructed. This is equivalent
to ensuring that both scales in Yc are well approximated by the ID. Following this
intuition, we decompose Yc as Yc D Y K

c CY
S
c , where Y K

c consists purely of kernel
interactions, and set �c" for �c D min.1; kY K

c k=kY
S
c k/ as the local compression

tolerance, which we note uses increased precision only when necessary.
The two-scale structure of Yc also enables an additional optimization as can

be seen by studying the sparsity patterns of SCIs. Figure 4.4 shows an example
configuration in 2D after cell skeletonization at level `, which leaves a collection
of edges at level `C 1

2
, each composed of two half-edges consisting of skeletons

from the two cells on either side (left). Let c D g1 [ g2 2 C`C1=2 be a given
edge with indices partitioned by half-edge, and let Ygj

be the submatrix of Yc cor-
responding to gj . Then Y S

g1
and Y S

g2
(analogously defined) have different nonzero

structures, so Yg1
and Yg2

have large entries in different row blocks (right). The
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stable interpolation of Yc hence requires that all interpolation coefficients from one
half-edge to the other be O.1=N/ since otherwise the reconstruction of, say, Yg1

will have large errors in rows where Y S
g2

is nonzero. As N ! 1, these cross-
interpolation coefficients must therefore vanish and the compression of Yc decou-
ples into the compression of Yg1

and Yg2
separately. We enforce this asymptotic

decoupling explicitly, which moreover provides an acceleration due to the cubic
cost of the ID. The ID of Yc is then given by yc D .yg1; yg2/, Lc D . Lg1; Lg2/, and
Tc D diag.Tg1

; Tg2
/, where gj D ygj [ Lgj and Tgj

define the ID of Ygj
. We

use the compression tolerance �gj
" with �gj

D min.1; kY K
gj
k=kY S

gj
k/ locally for

each gj .
In general, we define the subsets fgj g algebraically according to the sparsity

pattern of Y S
c , which can be done using the matrix indicator function

.S .A//ij D

(
0; Aij D 0;

1; Aij ¤ 0:

LEMMA 4.2. Let B D S .A/�S .A/ for some matrix A. Then AW;i and AW;j have
the same sparsity pattern if and only Bij D max.kAW;ik0; kAW;j k0/.

4.5 Complexity Estimates
Analysis of HIF-IE is impeded by the compression of SCIs, for which we do

not have rigorous bounds on the interaction rank. Nonetheless, ample numerical
evidence suggests that SCIs behave very similarly to standard kernel interactions.
For the sake of analysis, we hence assume that the same rank estimates apply, from
which we have (3.7) for all ` � 1 by reduction to 1D. We emphasize that this
has yet to be proven, so all following results should formally be understood as
conjectures, albeit ones with strong experimental support (Section 5).

THEOREM 4.3. Assume that (3.7) holds. Then the cost of constructing the fac-
torization F in (4.1) or (4.2) using HIF-IE with accelerated compression is tf D
O.N/, while that of applying F or F�1 is ta=s D O.N/.

PROOF. This is essentially just a restatement of Corollary 3.6 (but with the sum
now taken also over fractional levels). �

COROLLARY 4.4. For second-kind IEs,

tf D

(
O.N logN/; d D 2;

O.N log6N/; d D 3;
ta=s D

(
O.N log logN/; d D 2;

O.N log2N/; d D 3:

PROOF. According to the modifications of Section 4.4, there are now two ef-
fective ID tolerances: " for all c 2 C` such that Y S

c D 0 and O."=N/ otherwise.
The former is used for all initial levels ` � � before SCIs have become widespread
(i.e., before any meaningful dimensional reduction has occurred), and the latter for
all ` > �. But using precision O."=N/ yields a rank estimate with constant of



HIERARCHICAL INTERPOLATIVE FACTORIZATION FOR INTEGRAL EQUATIONS 25

proportionality O.logı N/, where ı is the intrinsic dimension of the DOF clus-
ter c [28, 29], so the amount of compression depends on N . Thus, � D �.N / and
our first task is to determine its form.

The crossover level � can be obtained by balancing the typical size jcj of an
edge (2D and 3D) or face (3D only) with its skeleton size jycj. In 2D, this is 2� �
� logN , where the left-hand side gives the size of an edge at level �, and the right-
hand side the estimated rank for SCI compression. Therefore, � � log logN .

In 3D, there are two crossover levels �1 and �2 corresponding to face and edge
compression, respectively, with � D max.�1; �2/:

22�1 � 2�1 log2N; 2�2 � �2 logN:

Hence, �1 � 2 log logN and �2 � log logN , so � � 2 log logN .
The cost of constructing F for second-kind IEs is then

tf D O.2
dLm3d /C

�X
`D0

2d.L�`/O.23.d�1/`/C

LX0

`D�

O.2d.L�`/k3` /;

where prime notation denotes summation over all levels, both integer and frac-
tional, and k` is as given in (3.7) with k D O.logN/. The first sum corresponds
to running RSF on the initial levels and reduces to

�X
`D0

2d.L�`/O.23.d�1/`/ D

(
O.N logN/; d D 2;

O.N log6N/; d D 3;

while the second can be interpreted as the cost of the standard HIF-IE (without
modification) applied to the remaining

O.2��N/ D

(
O.N= logN/; d D 2;

O.N= log2N/; d D 3;

DOFs at uniform precision O."=N/. By Corollary 3.6, this is

LX0

`D�

O.2d.L�`/k3` / D

(
O.N logN/; d D 2;

O.N /; d D 3;

so, adding all terms, we derive tf as claimed.
A similar argument for

ta=s D O.2
dLm2d /C

�X
`D0

2d.L�`/O.22.d�1/`/C

LX0

`D�

O.2d.L�`/k2` /

completes the proof. �

Remark 4.5. Like Theorem 3.4 for RSF, the parameter d in Corollary 4.4 can also
be regarded as the intrinsic dimension.
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5 Numerical Results
In this section, we demonstrate the efficiency of HIF-IE by reporting numerical

results for some benchmark problems in 2D and 3D. All algorithms and examples
were implemented in MATLAB® and are freely available at https://github.
com/klho/FLAM/. In what follows, we refer to RSF as rskelf2 in 2D and rskelf3 in
3D. Similarly, we call HIF-IE hifie2 and hifie3, respectively, with hifie2x and hifie3x
denoting their second-kind IE counterparts. All codes are fully adaptive and built
on quadtrees in 2D and octrees in 3D. The average block size jcj at level 0 (and
hence the tree depth L) was chosen so that jcj � 2jycj. In select cases, the first few
fractional levels of HIF-IE were skipped to optimize the running time. Symmetry
was exploited wherever possible by compressing

Y 0c D

�
AcN;c

YcE;c

�
instead of the full matrix Yc in (3.3), which reduces the cost by about a factor of
2. Diagonal blocks, i.e., App in Lemma 2.1, were factored using the (partially piv-
oted) LDL decomposition if A is symmetric and the LU decomposition otherwise.

For each example, the following, if applicable, are given:

� ": base relative precision of the ID;
� N : total number of DOFs in the problem;
� jsLj: number of active DOFs remaining at the highest level;
� tf : wall clock time for constructing the factorization F in seconds;
� mf : memory required to store F in GB;
� ta=s: wall clock time for applying F or F�1 in seconds;
� ea: a posteriori estimate of kA � F k=kAk (see below);
� es: a posteriori estimate of kI � AF�1k � kA�1 � F�1k=kA�1k;
� ni : number of iterations to solve (1.6) using GMRES with preconditioner
F�1 to a tolerance of 10�12, where f is a standard uniform random vector
(ill-conditioned systems only).

The operator errors ea and es were estimated using power iteration with a stan-
dard uniform random start vector [18, 42] and a convergence criterion of 10�2

relative precision in the matrix norm. This procedure requires the application of
both A and A�, which for translation-invariant kernels was done using fast Fourier
convolution [9] and for non-translation-invariant kernels using an ID-based kernel-
independent FMM [44, 46] at precision 10�15. The same methods were also used
to apply A when solving (1.6) iteratively.

For simplicity, all IEs were discretized using a piecewise-constant collocation
method as in Section 3. Certain near-field interactions (to be defined for each
case) were computed using adaptive quadrature, while all other interactions were
handled as simple one-point approximations, e.g.,Kij D K.kxi �xj k/hd in (3.1).

https://github.com/klho/FLAM/
https://github.com/klho/FLAM/
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TABLE 5.1. Factorization results for Example 1.

rskelf2 hifie2
" N jsLj tf mf jsLj tf mf

10�3
5122 2058 1:9eC2 7:7e�1 67 6:2eC1 3:0e�1
10242 4106 1:4eC3 3:6eC0 67 2:5eC2 1:2eC0
20482 6270 6:6eC3 1:4eC1 70 1:0eC3 4:7eC0

10�6
5122 3430 7:7eC2 1:8eC0 373 2:7eC2 8:5e�1
10242 5857 4:6eC3 7:7eC0 428 1:2eC3 3:5eC0
20482 11317 3:0eC4 3:3eC1 455 4:8eC3 1:4eC1

10�9
5122 4162 1:2eC3 2:3eC0 564 4:3eC2 1:2eC0
10242 8264 1:0eC4 1:1eC1 686 2:1eC3 4:8eC0
20482 16462 8:3eC4 5:2eC1 837 9:1eC3 1:9eC1

TABLE 5.2. Matrix application results for Example 1.

rskelf2 hifie2
" N ta=s ta=s ea es ni

10�3
5122 7:2e�1 5:2e�1 3:4e�04 1:2e�1 9

10242 3:2eC0 2:1eC0 3:8e�04 1:6e�1 10

20482 1:3eC1 1:2eC1 4:3e�04 1:6e�1 10

10�6
5122 9:2e�1 9:7e�1 3:8e�07 5:0e�4 3

10242 4:2eC0 4:1eC0 3:3e�07 6:5e�4 4

20482 2:1eC1 1:5eC1 5:0e�07 4:1e�4 4

10�9
5122 1:1eC0 8:1e�1 2:8e�10 4:3e�7 2

10242 4:9eC0 3:5eC0 2:7e�10 6:8e�7 2

20482 2:8eC1 1:4eC1 5:7e�10 1:1e�6 2

All computations were performed in MATLAB® R2010b on a single core (with-
out parallelization) of an Intel Xeon E7-4820 CPU at 2.0 GHz on a 64-bit Linux
server with 256 GB of RAM.

5.1 Two Dimensions
We begin first in 2D, where we present three examples.

Example 1. Consider (1.1) with a.x/ � 0, b.x/ � c.x/ � 1, K.r/ D � 1
2�

log r ,
and � D .0; 1/2, i.e., a first-kind volume IE in the unit square, discretized over
a uniform n � n grid. The diagonal entries Ki i are computed adaptively, while
all Kij for i ¤ j are approximated using one-point quadratures. We factored the
resulting matrix A using both rskelf2 and hifie2 at " D 10�3, 10�6, and 10�9. The
data are summarized in Tables 5.1 and 5.2 with scaling results shown in Figure 5.1.

It is evident that jsLj � kL behaves as predicted, with HIF-IE achieving signif-
icant compression over RSF. Consequently, we find strong support for asymptotic
complexities consistent with Theorems 3.4 and 4.3. For all problem sizes tested,
tf and mf are always smaller for HIF-IE, though ta=s is quite comparable. This is
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FIGURE 5.1. Scaling results for Example 1. Wall clock times tf (ı) and
ta=s (�) and storage requirements mf (˘) are shown for rskelf2 (white)
and hifie2 (black) at precision " D 10�6. Included also are reference
scalings (gray dashed lines) ofO.N/ andO.N 3=2/ (left, from bottom to
top), and O.N/ and O.N logN/ (right). The lines for ta=s (bottom left)
lie nearly on top of each other.

because ta=s is dominated by memory access (at least in our current implementa-
tion), which also explains its relative insensitivity to ". Furthermore, we observe
that ta=s � tf for both methods, which makes them ideally suited to systems
involving multiple right-hand sides.

The forward approximation error ea D O."/ for all N and seems to increase
only very mildly, if at all, with N . This indicates that the local accuracy of the ID
provides a good estimate of the overall accuracy of the algorithm, which is not easy
to prove since the multilevel matrix factors constituting F are not unitary. On the
other hand, we expect the inverse approximation error to scale as es D O.�.A/ea/,
where �.A/ D kAkkA�1k is the condition number of A, and indeed we see that es
is much larger due to the ill-conditioning of the first-kind system. When using F�1

to precondition GMRES, however, the number of iterations required is always very
small. This indicates that F�1 is a highly effective preconditioner.

Example 2. Consider now the same setup as in Example 1 but with a.x/ � 1. This
gives a well-conditioned second-kind IE, which we factored using rskelf2, hifie2,
and hifie2x. The data are summarized in Tables 5.3 and 5.4 with scaling results in
Figure 5.2.

As expected, results for rskelf2 are essentially the same as those in Example 1
since the off-diagonal interactions at each level are identical. We also see the
breakdown of hifie2, which still has linear complexity but fails to properly approx-
imate A as predicted in Section 4.4. This is remedied by hifie2x, which achieves
ea; es D O."/ but with a slight increase in cost. In particular, it appears to scale
somewhat faster than linearly but remains consistent with Corollary 4.4.
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TABLE 5.3. Factorization results for Example 2.

rskelf2 hifie2 hifie2x
" N jsLj tf mf jsLj tf mf jsLj tf mf

10�3
5122 2058 1:9eC2 7:7e�1 108 6:8eC1 3:5e�1 376 1:1eC2 5:1e�1
10242 4106 1:4eC3 3:6eC0 135 2:8eC2 1:4eC0 456 5:3eC2 2:2eC0
20482 6270 6:6eC3 1:4eC1 172 1:2eC3 5:7eC0 522 2:4eC3 9:4eC0

10�6
5122 3430 7:7eC2 1:8eC0 475 2:2eC2 8:8e�1 804 4:7eC2 1:4eC0
10242 5857 4:7eC3 7:7eC0 580 9:1eC2 3:4eC0 962 2:2eC3 5:7eC0
20482 11317 3:0eC4 3:3eC1 614 3:6eC3 1:4eC1 1115 9:6eC3 2:3eC1

10�9
5122 4162 1:2eC3 2:3eC0 1030 6:4eC2 1:5eC0 1087 6:7eC2 1:7eC0
10242 8264 1:0eC4 1:1eC1 1241 3:2eC3 6:3eC0 1381 3:6eC3 7:2eC0
20482 16462 8:2eC4 5:2eC1 1583 1:5eC4 2:6eC1 1697 1:8eC4 3:1eC1

TABLE 5.4. Matrix application results for Example 2.

rskelf2 hifie2 hifie2x
" N ta=s ta=s ea es ta=s ea es

10�3
5122 7:2e�1 5:4e�1 7:8e�2 8:5e�2 5:3e�1 2:6e�04 2:9e�4
10242 3:3eC0 2:3eC0 8:3e�2 9:1e�2 2:4eC0 2:7e�04 3:0e�4
20482 1:1eC1 1:2eC1 9:8e�2 1:1e�1 1:2eC1 8:0e�04 8:7e�4

10�6
5122 1:2eC0 9:6e�1 4:1e�4 4:4e�4 1:0eC0 5:9e�07 6:7e�7
10242 5:1eC0 3:3eC0 8:2e�4 9:0e�4 4:5eC0 9:3e�07 1:0e�6
20482 1:8eC1 1:2eC1 3:7e�3 4:1e�3 1:7eC1 1:6e�06 1:8e�6

10�9
5122 1:4eC0 8:9e�1 3:0e�7 3:4e�7 1:2eC0 2:8e�10 3:2e�10
10242 5:4eC0 3:7eC0 8:4e�7 9:6e�7 5:0eC0 3:5e�10 3:9e�10
20482 2:5eC1 1:5eC1 1:8e�6 2:0e�6 1:8eC1 1:1e�09 1:2e�09

FIGURE 5.2. Scaling results for Example 2, comparing rskelf2 (white),
hifie2 (gray), and hifie2x (black) at precision " D 10�6. Included also
are reference scalings of O.N/, O.N logN/, and O.N 3=2/ (left); and
O.N/ and O.N logN/ (right). All other notation as in Figure 5.1.
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TABLE 5.5. Factorization results for Example 3.

rskelf2 hifie2 hifie2x
" N � jsLj tf mf jsLj tf mf jsLj tf mf

10�6
2562 8 1522 8:3eC2 8:5e�1 551 7:8eC2 6:8e�1 592 8:4eC2 7:2e�1
5122 16 2995 5:0eC3 4:4eC0 860 4:0eC3 3:0eC0 825 4:3eC3 3:4eC0
10242 32 5918 3:0eC4 2:2eC1 1331 1:8eC4 1:3eC1 1229 2:0eC4 1:5eC1

TABLE 5.6. Matrix application results for Example 3.

rskelf2 hifie2 hifie2x
" N � ta=s ta=s ea es ni ta=s ea es ni

10�6
2562 8 4:1e�1 3:5e�1 1:8e�4 8:5e�4 3 4:6e�1 7:7e�6 3:9e�5 3

5122 16 2:4eC0 1:6eC0 8:8e�4 5:8e�3 6 2:1eC0 1:8e�5 1:7e�4 3

10242 32 1:2eC1 8:3eC0 5:5e�3 5:7e�2 9 9:3eC0 6:5e�5 9:6e�4 3

Example 3. We then turn to the Lippmann-Schwinger equation

�.x/C k2
Z
�

K.kx � yk/!.y/�.y/d�.y/ D f .x/; x 2 � D .0; 1/2;

for Helmholtz scattering, where k D 2�� is the frequency of the incoming wave
with � the number of wavelengths in�;K.r/ D .i=4/H .1/

0 .kr/ is the fundamental
solution of the associated Helmholtz equation satisfying the Sommerfeld radiation
condition, where i is the imaginary unit and H .1/

0 .�/ is the zeroth-order Hankel
function of the first kind; and !.x/ is a continuous function representing the scat-
terer. We refer the interested reader to [15] for details. Assuming that !.x/ � 0,
this can be symmetrized by the change of variables u.x/ D

p
!.x/�.x/ as

(5.1)
u.x/C k

p
!.x/

Z
�

K.kx � yk/Œk
p
!.y/�u.y/d�.y/ D

p
!.x/f .x/;

x 2 �;

i.e., (1.1) with a.x/ � 1 and b.x/ � c.x/ D k
p
!.x/. We took a Gaussian bump

!.x/ D exp.�32.x � x0/2/ for x0 D .1
2
; 1
2
/ as the scatterer and discretized (5.1)

using a uniform grid with quadratures as computed in Example 1. The frequency k
was increased with n D

p
N to keep the number of DOFs per wavelength fixed at

32. Data for rskelf2, hifie2, and hifie2x with � D 8, 16, and 32 at " D 10�6 are
shown in Tables 5.5 and 5.6.

Overall, the results are similar to those in Example 2 but with added compu-
tational expense due to working over C and computing H .1/

0 .kr/. Moreover, al-
though (5.1) is formally a second-kind IE, it becomes increasingly first-kind as
k ! 1. Thus, the problem is somewhat ill-conditioned, as reflected in the de-
terioration of ea and es even for hifie2x. Nevertheless, F�1 remains a very good
preconditioner, with ni D O.1/ for hifie2x. Interestingly, despite its inaccuracy,
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hifie2 is also quite effective for preconditioning: experimentally, we observe that
ni D O.logN/, which can be justified as follows.

LEMMA 5.1. If A D I C E with " D kEk, then the number of iterations for
GMRES to solve (1.6) to any target precision "0 > 0 is ni � log" "0.

PROOF. Let uk be the kth iterate with residual rk D Auk�f . Then the relative
residual satisfies

krkk

kf k
� min
p2Pk

kp.A/k;

where Pk is the set of all polynomials p of degree no greater than k such that
p.0/ D 1 [47]. Consider, in particular, the choice p.´/ D .1 � ´/k . Then
kp.A/k � kI � Akk D kEkk D "k , so krkk=kf k � "k . Setting the left-hand
side equal to "0 yields ni � k � log" "0. �

COROLLARY 5.2. Let F D AC E and F�1 D A�1 C G with kEk � CN"kAk
and kGk � CN"�.A/kA�1k for some constant C such that CN"�.A/� 1. Then
the number of iterations for GMRES to solve (1.6) with preconditioner F�1 is

ni �
�
1C log1=" CN�.A/

�
log" "0:

PROOF. The preconditioned matrix is F�1A D F�1.F � E/ D I � F�1E,
where

kF�1Ek � .kA�1k C kGk/kEk � CN"�.A/.1C CN"�.A// � CN"�.A/;

so Lemma 5.1 gives

ni � logCN"�.A/ "0 D
log "0

logCN"�.A/
D

�
1

1C log" CN�.A/

�
log "0
log "

D

�
1

1 � log1=" CN�.A/

�
log" "0:

But CN�.A/ � 1=", so log1=" CN�.A/ � 1. The claim now follows by first-
order expansion of the term in parentheses. �

We remark that HIF-IE is effective only at low to moderate frequency since the
rank structures employed break down as k ! 1. In the limit, the only compres-
sion possible is due to Green’s theorem, with HIF-IE reducing to RSF for volume
IEs. The situation is yet worse for boundary IEs, for which no compression at all is
available in general, and both RSF and HIF-IE revert to havingO.N 3/ complexity.

5.2 Three Dimensions
We next present three examples in 3D: a boundary IE and two volume IEs as in

Examples 1 and 2.
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TABLE 5.7. Factorization results for Example 4.

rskelf3 hifie3 hifie3x
" N jsLj tf mf jsLj tf mf jsLj tf mf

10�3

20480 3843 3:3eC2 4:7e�1 1143 2:2eC2 2:2e�1 2533 3:5eC2 3:4e�1
81920 7659 2:7eC3 2:2eC0 1247 7:3eC2 7:2e�1 3456 1:7eC3 1:3eC0
327680 15091 2:0eC4 1:0eC1 1300 3:0eC3 2:9eC0 2875 7:4eC3 5:2eC0
1310720 27862 1:4eC5 4:2eC1 1380 1:1eC4 1:1eC1 2934 2:6eC4 1:8eC1

10�6
20480 6939 1:3eC3 1:2eC0 4976 1:2eC3 8:0e�1 6256 1:4eC3 1:1eC0
81920 14295 1:5eC4 6:2eC0 8619 8:4eC3 3:2eC0 10748 9:5eC3 4:7eC0
327680 28952 1:3eC5 3:1eC1 13782 5:0eC4 1:2eC1 13625 5:4eC4 1:9eC1

TABLE 5.8. Matrix application results for Example 4.

rskelf3 hifie3 hifie3x
" N ta=s ta=s ea es ta=s ea es

10�3

20480 2:6e�1 1:8e�1 6:4e�3 1:0e�2 2:1e�1 3:8e�4 7:0e�4
81920 1:2eC0 5:3e�1 4:0e�2 5:1e�2 6:7e�1 1:0e�3 1:8e�3
327680 4:7eC0 1:9eC0 8:8e�2 1:1e�1 3:3eC0 4:2e�4 8:1e�4
1310720 2:2eC1 7:2eC0 2:4e�1 3:3e�1 1:1eC1 6:0e�4 7:1e�4

10�6
20480 5:6e�1 4:3e�1 3:7e�6 6:8e�6 4:9e�1 4:1e�7 8:0e�7
81920 2:9eC0 1:8eC0 1:3e�5 2:4e�5 2:1eC0 3:7e�7 6:1e�7
327680 1:5eC1 6:5eC0 5:6e�5 1:0e�4 1:1eC1 5:9e�7 1:0e�6

Example 4. Consider the second-kind boundary IE (1.5) on the unit sphere � D
S2, where G.r/ is as defined in (1.4). It is possible to reparametrize � in 2D and
then use 2D algorithms, but we ran the full 3D solvers here. We represented �
as a collection of flat triangles and discretized via a centroid collocation scheme.
Near-field interactions for all centroids within a local neighborhood of radius h
about each triangle, where h is the average triangle diameter, were computed using
fourth-order tensor-product Gauss-Legendre quadrature. This gives a linear system
(1.6) with unsymmetric A. Data for rskelf3, hifie3, and hifie3x at " D 10�3 and
10�6 are shown in Tables 5.7 and 5.8 with scaling results in Figure 5.3.

Since � is a 2D surface, d D 2 in Theorem 3.4, so we can expect RSF to
haveO.N 3=2/ complexity, as observed. However, the skeleton size is substantially
larger than in 2D, so the corresponding costs are much higher. The same is true for
HIF-IE, which achieves quasilinear complexity as predicted in Theorem 4.3 and
Corollary 4.4. As before, ea; es D O."/ for hifie3x but suffer for hifie3.

We also tested the accuracy of our algorithms in solving the associated PDE
(1.2) by constructing an interior harmonic field

v.x/ D
X
j

G.kx � yj k/qj ; x 2 D ;

due to 16 random exterior sources fyj gwith kyj k D 2, where the “charge” strengths
qj were drawn from the standard uniform distribution. This induces the boundary
data f .x/ D v.x/jx2� , which returns the charge density �.x/ upon solving (1.5).
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FIGURE 5.3. Scaling results for Example 4, comparing rskelf3 (white),
hifie3 (gray), and hifie3x (black) at precision " D 10�3; all other notation
is as in Figure 5.1.

TABLE 5.9. Relative errors against exact solutions for the PDE in Example 4.

" N rskelf3 hifie3 hifie3x

10�3

20480 7:6e�4 2:8e�3 7:8e�4
81920 3:0e�4 3:0e�2 4:2e�4
327680 1:2e�4 8:1e�2 2:1e�4
1310720 4:8e�4 3:1e�1 2:0e�4

10�6
20480 7:9e�4 7:9e�4 7:8e�4
81920 3:7e�4 3:7e�4 3:7e�4
327680 1:8e�4 1:8e�4 1:8e�4

The field u.x/ due to �.x/ via the double-layer potential (1.3) is then, in principle,
identical to v.x/ by uniqueness of the boundary value problem. This equality was
assessed by evaluating both u.x/ and v.x/ at 16 random interior targets f j́ g with
k j́ k D

1
2

. The relative error between fu. j́ /g and fv. j́ /g is shown in Table 5.9,
from which we observe that rskelf3 and hifie3x are both able to solve the PDE up
to the discretization or approximation error.

Example 5. Now consider the 3D analogue of Example 1, i.e., (1.1) with a.x/ � 0,
b.x/ � c.x/ D 1, K.r/ D 1=.4�r/, and � D .0; 1/3, discretized over a uniform
grid with adaptive quadratures for the diagonal entries. Data for rskelf3 and hifie3
at " D 10�3 and 10�6 are given in Tables 5.10 and 5.11 with scaling results in
Figure 5.4.

It is immediate that tf D O.N 2/ and ta=s D O.N 4=3/ for RSF, which consid-
erably degrades its performance for largeN . Indeed, we were unable to run rskelf3
for N D 1283 because of the excessive memory cost. In contrast, HIF-IE scales
much better but does not quite achieveO.N/ complexity as stated in Theorem 4.3:
the empirical scaling for tf at " D 10�3, for instance, is approximately O.N 1:3/.
We believe this to be a consequence of the large interaction ranks in 3D, which
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TABLE 5.10. Factorization results for Example 5.

rskelf3 hifie3
" N jsLj tf mf jsLj tf mf

10�3
323 5900 5:4eC2 1:0eC0 969 1:6eC2 2:7e�1
643 24005 3:9eC4 1:9eC1 1970 3:4eC3 2:6eC0
1283 — — — 3981 5:5eC4 2:5eC1

10�6
323 11132 2:4eC3 2:8eC0 6108 2:1eC3 1:4eC0
643 — — — 16401 1:0eC5 2:0eC1

TABLE 5.11. Matrix application results for Example 5.

rskelf3 hifie3
" N ta=s ta=s ea es ni

10�3
323 4:0e�1 1:6e�1 3:1e�4 2:7e�2 6

643 6:2eC0 1:5eC0 3:6e�4 4:4e�2 7

1283 — 1:4eC1 1:2e�3 7:2e�2 8

10�6
323 1:1eC0 5:2e�1 1:2e�7 2:8e�5 3

643 — 6:1eC0 2:4e�7 9:5e�5 3

FIGURE 5.4. Scaling results for Example 5, comparing rskelf3 (white)
and hifie3 (black) at precision " D 10�3. Dotted lines denote extrapo-
lated values. Included also are reference scalings of O.N/ and O.N 2/

(left), andO.N/ andO.N 4=3) (right); all other notation as in Figure 5.1.

make the asymptotic regime rather difficult to reach. Still, even the experimental
growth rate of k` ' O.2`/ would be sufficient for theoretical O.N logN/ com-
plexity. In parallel with Example 1, ea D O."/ but es is somewhat larger due to
ill-conditioning. We found F�1 to be a very effective preconditioner throughout.

Example 6. Finally, we consider the 3D analogue of Example 2, i.e., Example 5
but with a.x/ � 1. This is a well-conditioned second-kind IE, which we factored
using rskelf3, hifie3, and hifie3x. The data are summarized in Tables 5.12 and 5.13
with scaling results shown in Figure 5.5.
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TABLE 5.12. Factorization results for Example 6.

rskelf3 hifie3 hifie3x
" N jsLj tf mf jsLj tf mf jsLj tf mf

10�3
323 5900 5:4eC2 1:0eC0 1271 2:1eC2 3:9e�1 3127 5:0eC2 6:6e�1
643 24005 4:0eC4 1:9eC1 2023 3:3eC3 3:7eC0 7141 1:3eC4 8:5eC0
1283 — — — 5105 5:2eC4 3:6eC1 17491 3:5eC5 1:1eC2

10�6
323 11132 2:4eC3 2:8eC0 5611 1:6eC3 1:4eC0 8620 2:4eC3 2:2eC0
643 — — — 12558 5:4eC4 1:6eC1 25797 8:6eC4 3:4eC1

TABLE 5.13. Matrix application results for Example 6.

rskelf3 hifie3 hifie3x
" N ta=s ta=s ea es ta=s ea es

10�3
323 4:0e�1 2:0e�1 4:6e�3 5:0e�3 2:2e�1 1:1e�4 1:3e�4
643 6:6eC0 1:8eC0 4:4e�2 4:7e�2 3:1eC0 6:2e�4 6:8e�4
1283 — 1:7eC1 6:7e�2 7:3e�2 5:1eC1 1:7e�3 1:9e�3

10�6
323 1:0eC0 5:7e�1 8:5e�6 9:7e�6 7:4e�1 2:9e�7 3:4e�7
643 — 6:4eC0 5:9e�5 6:8e�5 1:2eC1 1:5e�6 1:8e�6

FIGURE 5.5. Scaling results for Example 6, comparing rskelf3 (white),
hifie3 (gray), and hifie3x (black) at precision " D 10�3. Included also
are reference scalings of O.N/, O.N log6N/, and O.N 2/ (left); and
O.N/, O.N log2N/, and O.N 4=3/ (right). All other notation is as in
Figure 5.4.

Algorithms rskelf3 and hifie3 behave very similarly as in Example 5 but with
some error propagation for hifie3 as discussed in Section 4.4. Full accuracy is
restored using hifie3x but at the cost of significantly larger skeleton sizes. The
empirical complexity of hifie3x hence suffers but remains quite favorable compared
to that of rskelf3. We also find a good fit with the complexity estimates of Corollary
4.4, though the presumed penalty for not yet reaching the asymptotic regime may
imply that the proposed bounds are overly pessimistic.
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6 Generalizations and Conclusions
In this paper, we have introduced HIF-IE for the efficient factorization of dis-

cretized integral operators associated with elliptic PDEs in 2D and 3D. HIF-IE
combines a novel matrix sparsification framework with recursive dimensional re-
duction to construct an approximate generalized LU decomposition at estimated
quasilinear cost. The latter enables significant compression over RS and is critical
for improving the asymptotic complexity, while the former substantially simplifies
the algorithm and permits its formulation as a factorization. This representation al-
lows the rapid application of both the matrix and its inverse, and therefore provides
a generalized FMM, direct solver, or preconditioner, depending on the accuracy.
We have also presented RSF, a factorization formulation of RS [25, 27, 39, 43] that
is closely related to MF [19, 23] for sparse matrices. Indeed, a key observation
underlying both RSF and HIF-IE is that structured dense matrices can be sparsified
very efficiently via the ID. This suggests that well-developed sparse techniques can
be applied, and we anticipate that fully exploring this implication will lead to new
fast algorithms for dense linear algebra.

The skeletonization operator at the core of RSF and HIF-IE can be interpreted in
several ways. For example, we can view it as an approximate local change of ba-
sis in order to gain sparsity. Unlike traditional approaches [1, 7, 17], however, this
basis is determined optimally on the fly using the ID. Skeletonization can also be
regarded as adaptive numerical upscaling or as implementing specialized restric-
tion and prolongation operators in the context of multigrid methods [32].

Although we have presently only considered matrices arising from IEs, the same
methods can also be applied (with minor modification) to various general struc-
tured matrices such as those encountered in Gaussian process modeling [3, 12]
or sparse differential formulations of PDEs [6, 24, 51]. In particular, HIF-IE can
be heavily specialized to the latter setting by explicitly taking advantage of ex-
isting sparsity. The resulting hierarchical interpolative factorization for differen-
tial equations (HIF-DE) is described in the companion paper [41] and likewise
achieves estimated linear or quasilinear complexity in 2D and 3D.

Some important directions for future research include:

� Obtaining analytical estimates of the interaction rank for SCIs, even for the
simple case of the Laplace kernel (1.4). This would enable a much more
precise understanding of the complexity of HIF-IE, which has yet to be
rigorously established.

� Parallelizing RSF and HIF-IE, both of which are organized according to a
tree structure where each node at a given level can be processed indepen-
dently of the rest. The parallelization of HIF-IE holds particular promise
and should have significant impact on practical scientific computing.

� Investigating alternative strategies for reducing skeleton sizes in 3D, which
can still be quite large, especially at high precision. New ideas may be
required to build truly large-scale direct solvers.
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� Understanding the extent to which our current techniques can be adapted
to highly oscillatory kernels, which possess rank structures of a different
type than that exploited here [20, 21]. Such high-frequency problems can
be extremely difficult to solve by iteration and present a prime target area
for future fast direct methods.
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