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Abstract. We define the dimension 2g − 1 Faber-Hurwitz Chow/homology classes on the moduli
space of curves, parametrizing curves expressible as branched covers of P1 with given ramification
over ∞ and sufficiently many fixed ramification points elsewhere. Degeneration of the target and
judicious localization expresses such classes in terms of localization trees weighted by “top inter-
sections” of tautological classes and genus 0 double Hurwitz numbers. This identity of generating
series can be inverted, yielding a “combinatorialization” of top intersections of ψ-classes. As genus
0 double Hurwitz numbers with at most 3 parts over ∞ are well understood, we obtain Faber’s
Intersection Number Conjecture for up to 3 parts, and an approach to the Conjecture in general
(bypassing the Virasoro Conjecture). We also recover other geometric results in a unified manner,
including Looijenga’s theorem, the socle theorem for curves with rational tails, and the hyperelliptic
locus in terms of κg−2.

Part 1. INTRODUCTION AND SUMMARY OF RESULTS

Since we shall be using arguments from geometry and combinatorics, we have separated the
material into three parts to assist the reader. Part 1 gives the background to the topic and a
summary of our results. Part 2 contains the geometry that uses degeneration to obtain a recursion
for the Faber-Hurwitz classes, and localization to express these as tree sums involving the Faber
symbol. Part 3 contains an approach through algebraic combinatorics to transform and then solve
the formal partial differential equations and functional equations that originate from degeneration
and localization in Part 2 and thence to obtain the top intersection numbers. We have sought to
make the transition from the geometry of Part 2 to the combinatorics of Part 3 pellucid.

1. Summary of results

The purpose of this paper is to give a geometrico-combinatorial approach that is direct and, we
hope, enlightening, to the three known results that are listed below. We give a summary of results
for those quite familiar with moduli spaces of curves, and Faber’s foundational conjectures on their
cohomology or Chow rings. A more detailed introduction to the paper is given in Section 2, and
most readers should turn immediately to this.

The three results are:

(I) R2g−1(M
rt
g,n) is generated by a single element, which we denote Gg,1 (Theorem 3.12). This

argument was promised in [GV3, Sec. 5.7]. (Since R2g−1(Mg) was shown earlier by Faber
to be non-zero [F1, Thm. 2], this single element is also non-zero by Remark 2.3(iii) below.)

(II) A combinatorial description of ψa11 · · ·ψan
n ∈ R2g−1(M

rt
g,n) as a multiple of this generator,

in terms of genus 0 double Hurwitz numbers (Theorem 3.11). (These intersections of ψ-
classes determine all top intersections in the tautological ring, and are the subject of Faber’s
Intersection Number Conjecture.)

Date: November 21, 2006; revised January 5, 2009.
The first two authors are partially supported by NSERC grants. The third author is partially supported by NSF

PECASE/CAREER grant DMS–0238532.
2000 Mathematics Subject Classification: Primary 14H10, Secondary 05E99, 14K30.

1



(III) Hence a proof of Faber’s Intersection Number Conjecture for up to three points1, and
arbitrary genus (Theorem 2.5).

Past proofs of some of these results are described in Section 1.2. In the above statements we have
used the following notation. Let Mrt

g,n be the moduli space of n-pointed genus g stable curves with

“rational tails”, and R∗(Mrt
g,n) its tautological ring. Genus 0 double Hurwitz numbers enumerate

branched covers of the sphere by another sphere, with branching over 0 and ∞ specified by partitions
α and β respectively, and the simplest non-trivial branching over an appropriate number of other
given points. They are well understood in the case where one of the partitions has at most three
parts [GJV2].

The “one-part analysis” yields as corollaries new proofs of a number of important facts, such
as the class of the hyperelliptic locus in Mg as a multiple of κg−2. These results are collected as
Corollaries 6.3 through 6.6. A direct proof of these consequences by our methods would be much
shorter; much of our effort will be to develop techniques to deal with more parts.

We note that Faber’s Intersection Number Conjecture for bounded genus involves a finite amount
of information, thanks to the string and dilaton equation (Prop. 2.6); for any (reasonably small)
genus, this finite amount of information can be directly computed [F3]. (We point out that although
Faber’s verification of his conjecture up to genus 21, [F4], using work of Pandharipande, involves
a finite amount of information, it is a large amount, and is very difficult.) However, Faber’s
Intersection Number Conjecture for a bounded number of points, the case considered here, involves
an infinite amount of information.

The methods here can readily be adapted to deal with a larger number of points. For example,
the case n = 4 follows from the formulae for genus 0 double Hurwitz numbers from [GJV2], and a
Maple computation. The case n = 5 should also be computationally tractable. However, we content
ourselves with calculations that could be done by hand, as the route to a natural proof of Faber’s
Intersection Number Conjecture is clearly not through any hoped-for closed form description of the
genus 0 double Hurwitz generating series in general — such series might be expected to get quite
complicated. Instead, we hope for a proof using the structure of the double Hurwitz generating
series as a whole, and there are indications that this may be tractable. We point out in particular
the very recent preprint [SSV], giving a good description of genus 0 double Hurwitz numbers in
general, and a particularly elegant description in many cases.

1.1. Motivation. The ELSV formula provides a remarkable link between Hurwitz numbers (count-
ing branched covers of P1 or, combinatorially, transitive factorizations of elements of the symmet-
ric group into transpositions) and the intersection theory on the moduli space of curves. See
[ELSV1, ELSV2], and [GV2] for a proof in the context of Gromov-Witten theory. The ELSV
formula describes Hurwitz numbers in terms of top intersections of the moduli space of curves.
This relation can be “inverted” to prove results on top intersections on the moduli space of curves.
This has been used by a large number of authors, including Ekedahl, Kazarian, Lando, Okounkov,
Pandharipande, Shadrin, Shapiro, Vainshtein and Zvonkine, to great effect. Notable examples are
the proofs of Witten’s Conjecture [OP, KL].

This paper relies on the observation that similar methods can be applied to the (non-compact)
moduli space of smooth curves. In this case, localization turns question about top intersections into
“genus 0 combinatorics” (involving trees rather than general graphs), which should in principle
be simpler than the genus g combinatorics that arises in the case of compactified moduli space.
Indeed, we immediately get some results (for example, results (I) and (II)) from the statement of
the analogue of the ELSV formula. Explicitly inverting this ELSV-analogue requires more work,
but then our knowledge of genus 0 double Hurwitz numbers with few parts translates directly into
Faber’s Intersection Number Conjecture with few parts (result (III)).

1Note added in revision: A proof for the general case has recently been given in [LX2].
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We point out that these techniques of algebraic combinatorics are useful in geometry in a wider
context. A further example of their use appears in [GJV3] where we give a direct proof of Getzler
and Pandharipande’s λg-Conjecture (without Gromov-Witten theory), and related techniques have
been used by a number of the authors mentioned above.

1.2. Background. The one-dimensionality of (I) was established in [FP], and may also follow
from Looijenga [Lo]. The argument given here can be seen as an extension of the tautological
vanishing theorem of [GV3]. The entire argument is outlined in a few pages in [V2, Sec. 7].

Getzler and Pandharipande showed that Faber’s Intersection Number Conjecture is a formal
consequence of the Virasoro Conjecture for the projective plane, [GeP], in fact just the degree 0
part (the “large volume” limit). Givental proved the Virasoro Conjecture for projective space (and
more generally Fano toric manifolds) [Gi1, Gi2]. Y.-P. Lee and Pandharipande are writing a book
[LP] giving details. Givental’s result is one of the most important results in Gromov-Witten theory,
and is a marvelous feat. However, it seems circuitous to prove the Intersection Number Conjecture
by means of the Virasoro Conjecture. The latter is a very heavy instrument which conceals the
combinatorial structure that lies behind the intersection numbers. As noted by K. Liu and Xu
[LX1], it is very desirable to have a shorter and direct explanation. (Liu and Xu show how the
conjecture cleanly follows from another attractive conjectural identity.) For this reason, we give
such an argument, paralleling our understanding of top intersection numbers on Mg,n via Hurwitz
numbers.

1.3. Outline of paper. The strategy of the paper is as follows. We define dimension 2g − 1
Faber-Hurwitz Chow/homology classes on the moduli space of curves, by considering (“virtually”)
branched covers of P1 with given ramification over ∞ and sufficiently many fixed ramification
points elsewhere. We consider only curves with rational tails, which simplifies the combinatorics
dramatically. We use the two most effective techniques of Gromov-Witten theory, degeneration
and localization.

• Degeneration of the target yields a recursion for such classes, which we can solve explicitly. The
story is analogous to that of genus 0 Hurwitz numbers (which are combinatorially straightforward),
not genus g Hurwitz numbers.

• Localization expresses such classes in terms of the desired top intersections and genus 0 double
Hurwitz numbers. The rational tails constraint forces the resulting localization graphs to be trees.

More precisely, localization expresses Faber-Hurwitz classes as a sum over certain decorated
trees (Sec. 3.10) of linear combinations of top intersections (including those that are the subject of
Faber’s conjecture) and genus 0 double Hurwitz numbers. The relation between the top intersections
and Faber-Hurwitz classes can be easily seen to be invertible, i.e. the top intersections are linear
combinations of Faber-Hurwitz classes (which we already understood via degeneration). From this,
Looijenga’s Theorem drops out quickly (from Theorem 3.12), for example. The central idea of this
paper is that this inversion may be done explicitly: the localization sum gives an expression which
readily can be unwound, and from which the top intersections can be extracted. This is done by a
change of variables.

Using this approach, we quickly recover various geometric results in a unified manner (Sec. 6.2).
Also, as genus 0 double Hurwitz numbers with at most 3 parts over ∞ are well understood, we
obtain Faber’s Intersection Number Conjecture for up to 3 parts, and an approach to the conjecture
in general.

In Section 2 we state the Faber Intersection Number Conjecture and give the geometric and
algebraic combinatorics background to our approach. The Faber-Hurwitz classes are defined in
Section 3, and we obtain a Join-cut Recursion for them by degeneration of the target. This is the first
form of the Degeneration Theorem, and the equivalent Join-cut (partial differential) Equation for
the Faber-Hurwitz series is given as the second form of this Theorem. In addition, using localization,
we obtain an expression for the Faber-Hurwitz classes as a weighted sum over (localization) trees,
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giving the first form of the Localization Tree Theorem. Section 4 addresses the weighted tree sum,
using the combinatorics of rooted, labelled trees and exponential generating series in a countable
set of indeterminates. This results in the second form of the Localization Tree Theorem, which is
purely algebraic, giving an expression for the Faber-Hurwitz series in terms of Faber’s intersection
numbers and the unique solution to a functional equation. Section 5 introduces the fundamental
transformation, as the composition of three operators. The first two operators are a symmetrization
and an implicit change of variables, which gives polynomials in the new indeterminates. The third
operator restricts these polynomials to “top” terms — those of maximum total degree. Our strategy
of proof for Faber’s Intersection Number Conjecture is to apply the fundamental transformation to
the Localization Tree Theorem and to the Degeneration Theorem, and eliminate the transformed
Faber-Hurwitz series. The key to the proof is that only top intersection numbers remain when we do
so, and they appear in enough linearly independent equations to uniquely determine them. Section 6
applies the strategy for the first time, to the one-part case (of Faber top intersection numbers)
which has some non-trivial geometric consequences. The methodology to that point requires us
to consider an equation for each genus g separately, so in Section 7 we refine the methodology by
creating generating series in genus. This means that a single generating series equation suffices to
prove Faber’s Intersection Number Conjecture for each number of parts. In Section 8, we apply
this refined methodology to establish Faber’s (top) Intersection Number Conjecture for 2 and 3
parts, and we include remarks about the general case.

Appendix B is a glossary of notation for the reader’s convenience.

Acknowledgments. The third author has benefited from discussions with Renzo Cavalieri, Carel
Faber, Y.-P. Lee, Rahul Pandharipande, Hsian-Hua Tseng, and especially Tom Graber, who devel-
oped many of the algebro-geometric foundations on which this paper is based. We also thank Ezra
Getzler, Kefeng Liu, and Melissa Liu.

2. Introduction

2.1. Geometric background. We work over the complex numbers. Throughout, the genus g is
at least 1. We assume some knowledge of the moduli space of curves. An overview is given in [V2],
which outlines the necessary background and ends with a sketch of many of the results of this paper;
see also [V1]. We also assume familiarity with Gromov-Witten theory, in particular the theory of
relative stable maps, and with localization on their moduli space (“relative virtual localization”)
[Li1, Li2, GV3, LLZ]. An introduction to many of the Gromov-Witten ideas we shall use may be
found in [V2] and [H]. We prefer to work in the Chow ring A∗ rather than the cohomology ring
H2∗, because our arguments apply in this more refined setting, but there is no loss should the
reader wish to work in cohomology. Chow/homology classes will often be written in blackboard
bold font (e.g. F) in order to distinguish them from numbers.

Faber’s conjectures on the topology of the moduli space of smooth curves Mg (given in [F1]) are
a striking description of the “tautological” part of the cohomology ring, the part of the cohomology
ring arising “naturally from geometry”. The “top intersections” in this ring have a particularly
remarkable combinatorial structure. We begin by describing these conjectures.

On the moduli space of stable n-pointed genus g stable curves Mg,n (or any open subset thereof),
let ψi (1 ≤ i ≤ n) be the first Chern class of the line bundle corresponding to the cotangent space
of the universal curve at the ith marked point.

We shall denote all forgetful morphisms Mg,n → Mg,n′ by π, where the source and target will
be clear from the context. For example if π : Mg,1 → Mg, then the ith Mumford-Morita-Miller

“κ-class” is defined by κi := π∗ψ
i+1
1 .

Given an (n1 + 1)-pointed curve of genus g1, and an (n2 + 1)-pointed curve of genus g2, gluing
the first curve to the second along the last point of each yields an (n1 +n2)-pointed curve of genus
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g1 + g2. This gives a map

Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2
.

Similarly, we can take a single (n+2)-pointed curve of genus g, and glue its last two points together
to get an n-pointed curve of genus g + 1. This gives a map

Mg,n+2 → Mg+1,n.

We call these two types of maps gluing morphisms. We call the forgetful and gluing morphisms the
natural morphisms between moduli spaces of curves.

2.2. The tautological ring. There are many equivalent definitions of the tautological ring in the
literature. The following will be convenient for our purposes.

Definition 2.1. [GV3, Def. 4.2] The system of tautological rings (R∗(Mg,n) ⊂ A∗(Mg,n))g,n is
the smallest system of Q-vector spaces closed under pushforwards by the natural morphisms, such
that all monomials in ψ1, . . . , ψn lie in R∗(Mg,n).

If M is an open subset of Mg,n, let R∗(M) := R∗(Mg,n)|M, Rj(M) := RdimM−j(M). (Here

Rk(M) is the codimension k part of R∗(M).) We shall often use the notation R∗ instead of R∗,
because we wish to think of classes as homology classes.

We take this opportunity to introduce a third sort of tautological class: let Eg,n be the Hodge

bundle on Mg,n. It has rank g, and

π∗Eg,0 = Eg,n

where π is the forgetful morphism π : Mg,n → Mg. Over a point [(C, p1, . . . , pn)] ∈ Mg,n, the fiber
of Eg,n is the vector space of differentials on C. The λ-classes are defined by λi = ci(Eg,n). By the
above relation, they behave well with respect to pullback by forgetful morphisms (“π∗λi = λi”).
Note that λ0 = 1.

It is not hard to show that the tautological ring of the moduli space of smooth curves Mg is
generated by the κ-classes, and indeed this is essentially the original definition of R∗(Mg) in [F1].

We now describe three predictions of Faber, namely the Vanishing Conjecture, the Perfect Pairing
Conjecture, and the Intersection Number Conjecture, which is a central subject of this paper.

Vanishing Conjecture. Ri(Mg) = 0 for i > g − 2, and Rg−2(Mg) ∼= Q. This was proved by

Looijenga and Faber. Looijenga’s Theorem [Lo] is that Rg−2(Mg) is generated as a vector space by
a single element (this will also follow from our analysis, see Thm. 3.12). Faber proved the following
“non-vanishing theorem”.

Theorem 2.2 (Faber [F1], Thm. 2). Rg−2(Mg) 6= 0.

(For other proofs, see [BP, Thm. 6.5], and [BCT, Thm. 0.2], which is based on [C]. More precisely,
Faber described a linear functional

∫
·λg−1λg : Rg−2(Mg) → Q, and showed that the image was non-

zero by computing a certain intersection number. Bryan-Pandharipande [BP] and later Bertram-
Cavalieri-Todorov [BCT] show the image is non-zero by different enlightening computations.)

Perfect Pairing Conjecture. The analogue of Poincaré duality holds: for 0 ≤ i ≤ g − 2, the cup

product Ri(Mg) × Rg−2−i(Mg) → Rg−2(Mg) ∼= Q is a perfect pairing. This conjecture is known
only in special cases, and is essentially completely open.

Informally, these two conjectures state that “R∗(Mg) behaves like the ((p, p)-part of the) coho-
mology ring of a (g − 2)-dimensional complex projective manifold.” They imply that the entire
structure of the ring is determined by the top intersections of the κ-classes, i.e. by

∏
κdi

(where∑
i di = g − 2) in terms of some fixed generator of R2g−1(Mg).

Faber’s Intersection Number Conjecture. This gives a combinatorial description of these top inter-
sections. We note that this conjecture is useful even without knowing the perfect pairing conjecture;
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Faber’s algorithm [F2] reduces all “top intersections” in the tautological ring to intersections of the
form described in his Intersection Number Conjecture.

Faber reformulated his conjecture in the striking form given in Conjecture 2.4. In order to give
this reformulation, we review the extension of Faber’s Conjecture to curves with “rational tails”
(by Faber and Pandharipande, see for example [P2]). Recall that a nodal genus g nodal curve is
said to be a genus g curve with rational tails if one component is a smooth curve of genus g, and
hence the remaining components are genus 0 (spheres), see Figure 1. Then the dual graph is a tree,
a fact which will prove crucial for us. This is the reason that the graphs arising from localization
involves just tree combinatorics.

Figure 1. A pointed curve with “rational tails”. Notice that the dual graph is a tree.

Denote the corresponding open subset of Mg,n (corresponding to stable curves with rational

tails) by Mrt
g,n. If π : Mg,n → Mg, then Mrt

g,n = π−1(Mg). In particular, the forgetful morphism

Mrt
g,n → Mrt

g,n′ for n ≥ n′ is projective, and Mrt
g,1 = Mg,1.

We recall some background.

Remark 2.3. i) Rj(M
rt
g,n) = 0 for j < 2g − 1 and all n;

ii) for n ≥ 1,

(1) π∗ : R2g−1(M
rt
g,n) → R2g−1(M

rt
g,1) = R2g−1(Mg,1)

(where π : Mrt
g,n → Mg,1 is the forgetful morphism) is an isomorphism; and

iii) π∗ : R2g−1(Mg,1) → R2g−1(Mg) (where π : Mg,1 → Mg is the forgetful morphism) is
surjective.

Statements (i) and (ii) are parts (a) and (b) of [GV3, Prop. 5.8]. Statement (iii) is immediate
from an appropriate definition of the tautological ring, for example Definition 2.1.

Conjecture 2.4 (Faber’s Intersection Number Conjecture, “ψ-form”). For any n-tuple of positive
integers (d1, . . . , dn),

(2) π∗

(
ψd11 · · ·ψdn

n

)
=

(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n
j=1(2dj − 1)!!

ψg−1
1 for

∑

i

di = g − 2 + n

where π is the forgetful morphism Mrt
g,n → Mg,1. (Recall that (2a − 1)!! = 1 · 3 · · · (2a − 1) =

(2a)!/(2aa!).)

Note that Faber’s Intersection Number Conjecture is immediate for the case n = 1. We shall
prove the following.

Theorem 2.5. Faber’s Intersection Number Conjecture 2.4 is true for up to 3 points (i.e. for
n ≤ 3).

We shall need to consider more general intersection numbers involving one λ-class, arising in the
virtual localization formula. Motivated by the isomorphism (1), and in analogy with the “Witten
symbol” used in Gromov-Witten theory (e.g. [H, Sec. 26.2]), define the Faber symbol as

(3) 〈τa1 · · · τanλk〉
Fab
g := π∗ (ψa11 · · ·ψan

n λk) ∈ R2g−1(Mg,1)
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where the pushforward π∗ is the isomorphism of (1) (π : Mrt
g,n → Mg,1 is the forgetful morphism).

Caveat : this symbol is a Chow class, not a number; we repeat that we will often indicate classes
using blackboard bold font. The symbol is declared to be zero if some ai < 0, or if the product lies
in wrong degree, i.e.

k +
∑

i

ai 6= dimMrt
g,n − (2g − 1) = g − 2 + n.

Note that the case k = 0 is equivalent to there being no λ-factor, as λ0 = 1. This symbol satisfies
a version of the usual string and dilaton equations:

Proposition 2.6. The following relations among the Faber symbols hold.

〈τ0τa1 · · · τanλk〉
Fab
g =

n∑

i=1

〈τa1 · · · τai−1 · · · τanλk〉
Fab
g (string equation),

〈τ1τa1 · · · τanλk〉
Fab
g = (2g − 2 + n)〈τa1 · · · τanλk〉

Fab
g (dilaton equation).

The proof is a variation of the proof of the usual string and dilaton equations, and is left as an
exercise to the reader (see for example [V2, Sec. 3.13]).

Part 2. GEOMETRY

In Part 2, we use degeneration and localization to obtain a topological recursion for the Faber-
Hurwitz classes, and an expression for the Faber-Hurwitz classes as a sum over a class of weighted
trees that are to be defined. The topological recursion is then transformed into a partial differential
equation for the Faber-Hurwitz series.

3. Degeneration and localization

For a partition α, we use |α| and l(α) for the sum of parts and number of parts, respectively,
and write α ⊢ |α|. If α has ij parts equal to j, j ≥ 1, then we also write α = (1i12i2 · · ·), where
convenient. The set of all non-empty partitions is denoted by P.

3.1. Relative stable maps. We shall use the theory of stable relative maps to P1, following J. Li’s
algebro-geometric description in [Li1], and his description of their deformation-obstruction theory
in [Li2]. (We point out earlier definitions of relative stable maps in the differentiable category
due to A.-M. Li and Y. Ruan [LR], and Ionel and Parker [IP1, IP2], and Gathmann’s work [Ga]
in the algebraic category in genus 0.) We need the algebraic category for several reasons, most
importantly because we shall use virtual localization, and an explicit description of the moduli
space’s deformation-obstruction theory.

3.1.1. Relative to one point. The moduli space of genus g relative stable maps to P1 relative to one
point ∞, with branching above ∞ given by the partition α ⊢ d, is denoted by Mg,α(P

1) where d is
the degree of the cover.

A relative map to X = P1 is the following data:

• a morphism f1 from a nodal n-pointed genus g curve (C, q1, . . . , qn) (where as usual the qj
are distinct non-singular points) to a chain of P1’s, T = T0 ∪ T1 ∪ · · · ∪ Tt (where Ti and
Ti+1 meet), with a point ∞ ∈ Tt−Tt−1, so there are two points named ∞. We will call the
one on X, ∞X , and the one on T , ∞T , whenever there is any ambiguity.

• A projection f2 : T → X contracting Ti to ∞X (for i > 0) and giving an isomorphism from
(T0, T0 ∩ T1) (resp. (T0,∞T )) to (X,∞X) if t > 0 (resp. if t = 0). Denote f2 ◦ f1 by f .

• We have an equality of divisors on C: f∗1∞T =
∑
αiqi. In particular, f−1

1 ∞T consists of
non-singular marked points of C.
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• The preimage of each node n of T is a union of nodes of C. At any such node n′ of C,
the two branches map to the two branches of n, and their orders of branching are the
same. This is called the predeformability or kissing condition. See Figure 2 for a pictorial
representation. Analytically, this map is of the following form. The node uv = 0 in the
uv-plane maps to the node xy = 0 in the xy-plane by (u, v) 7→ (um, vm) = (x, y). (The
branching of the u-axis over the x-axis is the same as the branching of the v-axis over the
y-axis.)

target

source

Figure 2. The “predeformability” or “kissing” condition on maps of nodes to
nodes. The singularities of the source and target are nodes (analytically isomor-
phic to xy = 0 in C2), although it is impossible to depict them as such on the
page.

An isomorphism of two such maps is a commuting diagram

(C, p1, . . . , pm, q1, . . . , qn)

f1
��

∼ // (C ′, p′1, . . . , p
′
m, q

′
1, . . . , q

′
n)

f1
��

(T,∞T )
∼ //

f2
��

(T,∞T )

f2
��

(X,∞X )
= // (X,∞X)

where all horizontal morphisms are isomorphisms, the bottom (although not necessarily the middle!)
is an equality, the top horizontal isomorphism sends pi to p′i and qj to q′j. Note that the middle
isomorphism must preserve the isomorphism of T0 with X, and is hence the identity on T0, but for
i > 0, the isomorphism may not be the identity on Ti.

We say that f is stable if it has finite automorphism group.

Let rgα be the “expected” number of branch points away from ∞ (the number if all the branching
over points other than ∞ — “away from ∞” – were simple, i.e. corresponding to the partition
(1d−22) ⊢ d). Then

(4) rgα := d+ l(α) + 2g − 2,

by the Riemann-Hurwitz formula. Then Mg,α(P
1) supports a virtual fundamental class

[Mg,α(P
1)]vir ∈ Arg

α
(Mg,α(P

1))

of dimension rgα.
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There is a Fantechi-Pandharipande branch morphism [FnP]

(5) br : Mg,α(P
1) → Symr

g
α(P1)

sending each map to the set of its branch points in P1, excluding the ones that are “automatic”
because of the branching over ∞. Note that the total branching C → P1 above a point in the
target p 6= ∞ ∈ P1 is 1 only if the map is simply branched above p.

3.1.2. Relative to two points. Similarly, let Mg,α,β(P
1) be the moduli space of stable relative maps

to P1 relative to two points 0 and ∞, where branching above 0 is given by a partition α ⊢ d and the
branching above ∞ is given by a partition β ⊢ d. By the Riemann-Hurwitz formula, the expected
number of branch points away from 0 and ∞ is

(6) rgα,β := l(α) + l(β) + 2g − 2,

and the moduli space supports a virtual fundamental class

[Mg,α,β(P
1)]vir ∈ Arg

α,β
(Mg,α,β(P

1))

of this dimension. There is also a Fantechi-Pandharipande branch morphism

br : Mg,α,β(P
1) → Symr

g
α,β(P1).

A mild variation of this is the case of relative stable maps to a non-rigidified target (see [GV3,
Sec. 2.4]; these are sometimes called “rubber maps”), where two relative maps to (P1, 0,∞) are
considered the same if they differ by an automorphism of the target P1 preserving 0 and ∞ (an
element of the group C∗). This moduli space Mg,α,β(P

1)∼ of such objects supports a virtual
fundamental class of dimension one less than that of the “unrigidified” usual space:

[Mg,α,β(P
1)∼]vir ∈ Arg

α,β
−1(Mg,α,β(P

1)∼).

There is an obvious map φ : Mg,α,β(P
1) → Mg,α,β(P

1)∼ “forgetting the rigidification of the target”.
The two fundamental classes are related by the following result.

Proposition 3.1. [GV3, Lem. 4.6]

φ∗
(
br∗(L) ∩ [Mg,α,β(P

1)]vir
)

= rgα,β[Mg,α,β(P
1)∼]vir

where L is the class in Symr
g
α,β(P1) corresponding to those rgα,β-tuples of points containing a given

fixed point p0.

Intuitively, this is because given any unrigidified map in Mg,α,β(P
1)∼, there should be rgα,β ways

to “rigidify” it so that a branch point maps to 1 ∈ P1, as there “should be” rgα,β branch points

away from 0 and ∞.

3.1.3. Relative stable maps with rational tails. We define the moduli spaces of relative stable maps
with rational tails Mg,α(P

1)rt as the analogous moduli spaces of maps where the source curve is a
nodal curve with rational tails. This is an open substack of the space of relative stable maps. We
define Mg,α,β(P

1)rt similarly.

3.1.4. Relative stable maps with possibly disconnected source. The above definitions of relative maps
would all make sense without the requirement that the source curve be connected. The resulting
moduli space of maps from “possibly-disconnected” curves to P1 relative to one point is denoted
by Mg,α(P

1)•, and similarly for maps relative to two points.

9



3.1.5. Observations using the Riemann-Hurwitz formula. We make some crucial observations, which
are straightforward to verify using the Riemann-Hurwitz formula. We shall use them repeatedly.
A degree d cover is said to be completely branched over a point if the branching data is (d) ⊢ d.
Define a trivial cover of P1 to be a map P1 → P1 of the form [x; y] 7→ [xu; yu], branched only over
0 and ∞.

Remark 3.2. Suppose we have a map C → P1 from a nodal (possibly disconnected) curve, un-
branched away from 0 and ∞, where C is non-singular over 0 and ∞. Then it is a disjoint union
of trivial covers.

Remark 3.3. a) Suppose we have a map from a nodal curve C to P1, with no branching away from
0, 1, and ∞, simple branching at 1, and non-singular over 0 and ∞. Then it is a union of trivial
covers, with one further component, that is non-singular of genus 0, completely branched over one
of {0,∞}, and with two preimages over the other (see Figure 3). We call this an almost-trivial
cover.

b) More generally, suppose we have a map from a curve C to a chain of P1’s, satisfying the
kissing or predeformability condition, unbranched except for two non-singular points 0 and ∞ on
the ends of the chain, and simple branching at one more point. Then the map looks like a number
of trivial covers glued together, with one further almost-trivial cover P1 → P1 of the sort described
in Remark 3.3(a).

0 1 ∞

Figure 3. Almost-trivial covers: All branched covers from non-singular curves with
simple branching above 1 and no other branching away from 0 and ∞ must look
like this.

Remark 3.4. a) If we have a map from a nodal curve C to P1, with total branching away from
0 and ∞ of degree less than 2g, and non-singular over 0 and ∞, then C has no components of
geometric genus g. If instead the total branching away from 0 and ∞ is precisely 2g, and C has
a component of geometric genus g, then the cover is a disjoint union of trivial covers, and one
connected curve C ′ of arithmetic genus g, where the map C ′ → P1 is completely branched over 0
and ∞.

b) Suppose more generally we have a map from a curve C to a chain of P1’s, satisfying the kissing
condition, with branching of less than 2g away from the nodes and two smooth points 0 and ∞ on
the ends of the chain, then C has no component of geometric genus g. If the branching is precisely
2g away from the nodes and 0 and ∞, then the map is a number of trivial covers glued together,
plus one other cover of the sort described in Remark 3.4(a).

The following fact will prove essential.

Theorem 3.5. Let Gg,d,∼ := µ∗
[
Mg,(d),(d)(P

1, d)rt∼
]vir

where µ is the moduli map to Mrt
g,2, re-

membering the curve and the points over 0 and ∞. Then Gg,d,∼ = d2gGg,1,∼. Similarly, if

Gg,d := µ∗
[
br∗(L) ∩Mg,(d),(d)(P

1, d)rt
]vir

, then Gg,d = d2gGg,1.

Proof. The second statement follows from the first by Proposition 3.1. We now prove the first.

10



Let ν : Jac → Mrt
g,2 be the universal Jacobian or Picard stack over Mrt

g,2. Let Jac[d] :=

ker( Jac
×d // Jac ) be the d-torsion substack. (Points of Jac[d] correspond to curves along with a

d-torsion point.)

Let p and q be the names of the points of the genus g curve parametrized by Mrt
g,2. Let sp−q :

Mrt
g,2 → Jac be the section corresponding to the line bundle O(p − q). There is a natural (stack-

theoretic) isomorphism

(7) Mg,(d),(d)(P
1)rt∼

∼= Jac[d] ∩ sp−q(M
rt
g,2),

as follows. Given any family of such relative stable maps (with rational tails), let p and q be the
preimage of 0 and ∞ respectively. Note that the target P1 never degenerates (or sprouts) in such a
family. Thus O(dp−dq) ∼= O, and hence O(p− q) is indeed d-torsion. Conversely, given any family
of curves in Mrt

g,2 where O(p − q) is d-torsion, we obtain a unique family of relative stable maps

with unrigidified target of the desired sort. (It is essential to note that this isomorphism holds over
the boundary of Mrt

g,2 as well.)

Mg,(d),(d)(P
1)rt∼ = Jac[d] ∩ sp−q(M

rt
g,2)

µ

**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

// Jac

ν

��
Mrt

g,2

sp−q

UU

Both sides of the isomorphism (7) have natural virtual fundamental classes, the latter by inter-
secting the section sp−q(M

rt
g,2) with the local complete intersection Jac[d] →֒ Jac. We claim that

these virtual fundamental classes agree. (It is easy to show that away from the boundary of Mrt
g,2,

both will agree with the actual fundamental class, but we shall not need this fact.) We show this
by showing that they have the same deformation-obstruction theory over Mrt

g,2.

We use the description of the deformation-obstruction theory of Mg,(d),(d)(P
1) over Mg,2 given

in [GV3, Sec. 2.8]. On the locus, at a relative stable map [f : C → P1], the relative deformation
space is identified with H0(C, f∗TP1(−[0]− [∞])) = H0(C, f∗OP1) in [GV3, equ. (1)]. (The formula
given in [GV3] is more involved, as it applies in more general situations. In particular, in the locus,
the target never sprouts, so the notation f † in [GV3] agrees with f∗. Also TP1(− log[0]− log[∞]) =
TP1(−[0]−[∞]), as P1 has dimension 1.) Thus the relative deformation space is canonically identified
with H0(C,OC), which is one-dimensional. But such deformations correspond precisely to the
C∗-action induced by its action on the target (keeping the map otherwise fixed), so the relative
deformation space of maps to P1 with unrigidified target is 0.

The relative obstruction space RelOb(f) at a relative stable map [f : C → P1] has a natural
filtration [GV3, equ. (2)]

0 → H1(C, f∗TP1(−[0] − [∞])) → RelOb(f) → H0(C, f−1Ext1(ΩP1(−[0] − [∞]),OP1)) → 0.

Now Ext1(OP1 ,OP1) = 0, so this filtration gives a natural isomorphism

H1(C,OC )
∼ // RelOb(f) .

But this is the relative obstruction space of the intersection: the normal bundle to the d-torsion
locus Jac[d] is canonically H1(C,OC). Thus we have shown that the isomorphism (7) indeed extends
to an isomorphism of virtual fundamental classes.

We conclude by noting that [Jac[d]] = d2g[Jac[1]] in A∗(Jac). This follows from [DM, Sec. 2.15],
as observed in the proof of [Lo, Lem. 2.10]. �

Remark. Gg,1 will be our “natural generator” of R2g−1(Mg,1). The generator used by Looijenga
in [Lo] is the hyperelliptic locus Hyp. They are related as follows: (2g + 2)(2g + 1)Hyp = (22g −
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1)Gg,1,∼ (both count hyperelliptic covers with two fixed branch points), and Gg,1 = 2gGg,1,∼ from
Proposition 3.1; see Corollary 6.5 and its proof.

3.2. Faber-Hurwitz classes. We define Hurwitz classes, following [GV3]. Our motivation is as
follows. Suppose we are interested in dimension j classes on Mg,n. One way of producing a family
of genus g curves with n-marked points is by considering branched covers of P1 with fixed branching
over ∞ corresponding to a partition (α1, . . . , αn) of d with n parts. The curve in question will be
the source of the map to P1, and the n points will be the points over ∞. This Hurwitz scheme (the
moduli space of such maps) will have dimension rgα. In order to get a class of dimension j, we fix
all but j branch points. We can then push forward this class to Mg,n. The definition of “Hurwitz
class” involves doing this “virtually”:

H
g,α
j := µ∗

(
br∗(L)r

g
α−j ∩ [Mg,α(P

1)]vir
)

where µ is the forgetful map Mg,α(P
1) → Mg,n and br is the branch morphism (5). Here, as in

Proposition 3.1, L is the class in Symr
g
α(P1) corresponding to unordered tuples of points containing

a given fixed point p0.

Define the Faber-Hurwitz class Fg,α by

(8) Fg,α := Hg,α|Mrt
g,n

∈ A2g−1(M
rt
g,n).

Equivalently, we can consider the space of relative stable maps with rational tails Mg,α(P
1)rt, along

with its virtual fundamental class; fix all but 2g− 1 branch points; and push forward to the moduli
space Mrt

g,n. Let

(9) rFab

g,α := rgα − (2g − 1) = d+ l(α) − 1

be the number of fixed branch points on P1 in this construction.

We shall now understand this class in two ways, by degeneration and localization. The first will
connect us to a Hurwitz-type problem (and join-cut type recursion) that we can solve. The second
will connect us to the tautological ring.

Readers less comfortable with these ideas from Gromov-Witten theory may go directly to the
recursions that are obtained by these means without losing the thread of the paper. These recursions
are treated quite cleanly through transforms of the corresponding partial differential equations (see
Section 4).

3.3. Degeneration of Faber-Hurwitz classes. We now describe a join-cut type recursive for-
mula for the Faber-Hurwitz classes Fg,α. This will allow us to compute Fg,α in terms of the putative
generator Gg,1, first recursively, and later, in closed form. We use Jun Li’s degeneration formula

[Li1, Li2], which in our case states that, if we degenerate [Mg,α(P
1)•]

vir by degenerating the target
into two components P1

L ∪ P1
R, where the point corresponding to α is on the right component P1

R,
then

(10) [Mg,α(P
1)•]

vir =
∑

g1,g2,γ

(
∏

i

γi

)
[Mg1,γ(P

1)•]
vir

⊠ [Mg2,γ,α(P
1)•]

vir

where the sum is over all “splitting of the data”: |γ| = |α|, g1 + g2 + l(γ) − 1 = g, and the
genus g1 cover C1 is glued to the genus g2 cover C2 over the node P1

L ∩ P1
R by gluing the point

corresponding to γi on C1 to the point corresponding to γi on C2. There is the obvious variation for
[Mg,α,β(P

1)•]
vir for stable maps relative to two points. If we are interested in spaces with connected

source, i.e. Mg,α(P
1) rather than Mg,α(P

1)•, then we include only the summands where the union
C1 ∪ C2 is connected. We shall “cap” these equalities with pullbacks under the branch morphism,
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and interpret them as considering maps with given branch points, where we shall specify how many
branch points degenerate to P1

L and P1
R, respectively.

Lemma 3.6. If j < 2g − 1, then the restriction of µ∗(H
g,α
j ) to the rational-tails locus Mrt

g,n is 0.

Proof. Degenerate the target P1 into a chain of (rgα− j) P1’s, where each of the rgα− j fixed branch
points lies in a different component of the target. Then by the degeneration formula, this class
will be obtained as a sum (over all choices of splittings of the data) of classes glued together from
virtual fundamental classes of various spaces of relative stable maps to each component. But any
such relative stable map to one component, with points 0 and ∞ connecting it to adjacent elements
of the chain (with the obvious variation if it is the end of the chain) has at most j + 1 < 2g branch
points away from 0 and ∞. Hence by Remark 3.4, there is no curve of geometric genus g mapping
to this component. Thus, after degeneration, the source curve can have no irreducible component
of genus g, and hence the class is 0 in Mrt

g,n. �

Theorem 3.7 (Degeneration Theorem — Join-cut recursion). If rFab
g,α > 0, then

Fg,α =
∑

i+j=αk

ijH0
α′F

g,α′′

(
rFab
g,α − 1

rFab

g,α′′

)
+
∑

αi,αj

(αi + αj)F
g,α′

+

l(α)∑

i=1

α2g+1
i H0

αGg,1.

where α′, α′′, etc., are as defined in the proof below.

This recursion inductively determines Fg,α in terms of Gg,1 (Theorem 3.8). There is no “base
case” necessary. This result is best stated in terms of generating series (see Corollary 3.9).

Proof. We obtain a recursion for Faber-Hurwitz classes by a similar argument to that used in
Lemma 3.6 above. We degenerate the target into two pieces P1

L ∪ P1
R, where ∞ and one of the

rFab
g,α = rgα − (2g − 1) = d + l(α) − 1 fixed branch points are on the right component P1

R, and

the remaining rFab
g,α − 1 fixed branch points are on the left component P1

L. By the degeneration
formula (10), this class will be obtained as a sum (over all choices of splittings of the data) of
classes glued together from virtual fundamental classes of various spaces of relative stable maps to
each component. We discard every term that does not have a smooth component of genus g.

There are two cases: the genus g curve maps to the left component P1
L or the right component

P1
R.

Case 1: If the genus g curve maps to the right component P1
R, then by Remark 3.4, all the

moving branch points must also map to P1
R (we need 2g branching total away from P1

L ∩ P1
R and

∞ in order to have a genus g curve in the cover). Also by Remark 3.4(a), the cover of P1
R must be

a union of trivial covers, together with one cover by a connected arithmetic genus g curve that is
completely branched over ∞ and P1

L ∩P1
R. In particular, the partition over the node P1

L ∩P1
R must

be the same as the partition α over ∞, and the genus g component can be on the component of
the source corresponding to any αj . Also, the cover of P1

L must be genus 0 and connected, and the
number of such covers is the genus 0 Hurwitz number

(11) H0
α = (d− 2 + l(α))! dl(α)−3

l(α)∏

i=1

αi
αi

αi!
.

(This celebrated formula was first given by Hurwitz, and has now been proved in many ways, see
for example [GJ2].) This case is depicted pictorially in Figure 4; here the genus g curve corresponds
to α1. We thus get a contribution to Fg,d of

(12)

l(α)∑

i=1

αiH
0
αGg,αi

=

l(α)∑

i=1

α2g+1
i H0

αGg,1.
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The equality in (12) is through Theorem 3.5. The contributions to the left side of (12) are as follows:
we have a contribution of Gg,αi

from the map to P1
L. We have a contribution of Gg,αi

∏
j 6=i(1/αj)

from the map to P1
R (since the trivial cover contributes the order αk of the automorphism group

and we are therefore counting objects weighted by 1/αk.). We have a multiplicity of
∏
αi from the

kissing condition.

genus g

RL

α1

α2

genus 0genus 0

Figure 4. First case in degeneration argument in proof of Theorem 3.7

Case 2a: If otherwise the genus g curve maps to the left component P1
L, then by Lemma 3.6,

all the non-fixed branch points must also map to P1
L (as we need at least 2g − 1 moving branch

points in order to get a non-zero contribution), so the only branching over P1
R away from its 0 and

∞ is simple branching over one (fixed) point. By Remark 3.3, the cover of P1
R is a union of trivial

covers, with one almost-trivial cover. If the almost-trivial cover of P1
R is completely branched over

P1
L ∩ P1

R, and has two preimages over ∞ (e.g. as shown in Figure 3), then it can connect any two
of the points over ∞ (corresponding to two parts of the partition α, say αi and αj). The virtual
fundamental class of this space of relative stable maps to P1

R is then αiαj/
∏
αi: any trivial cover

corresponding to αk (k 6= i, j) is weighted by 1/αk. The space of relative maps to P1
L corresponds

to maps from a connected curve of genus g curve, with branching over P1
L ∩ P1

R corresponding to
the partition α′ obtained by removing αi and αj from α, and adding αi + αj , with all but 2g − 1

branch points fixed. In other words, the contribution is precisely Fg,α
′

. Finally, the multiplicity in
the degeneration formula is the product of the multiplicities of the kissing over the node P1

L ∩ P1
R,

i.e.
∏
α′
i = (

∏
αi)(αi + αj)/(αiαj). Thus we obtain a contribution to Fg,α of

∑

αi,αj

(αi + αj)F
g,α′

.

Case 2b: Finally, if the almost-trivial cover over P1
R has one preimage over ∞ (corresponding

to αk, say), and two preimages over P1
L ∩ P1

R (q1 and q2, say, branching with multiplicity i and j
respectively, where i+ j = αk), then we have contributions of αk/

∏
αi from the cover of P1

R, and∏
αi × ij/αk from the kissing multiplicities. We next examine the contribution from the stable

relative maps to P1
L. The cover must have two connected components, one containing the point

q1 and one containing the point q2. As the map has a component of geometric genus g, one of
these two components must be arithmetic genus g, and the other must be arithmetic genus 0.
Suppose the genus 0 curve contains to q1, and the genus g curve contains q2. Suppose the partition
corresponding to the genus 0 curve is α′ (i.e. its ramification above the node P1

L ∩ P1
R), and the

partition corresponding to the genus g curve is α′′, so α′ + α′′ = α − αk + {i, j}, and i ∈ α′,
j ∈ α′′. In order for the contribution to be non-zero, by Lemma 3.6, all of the (2g − 1) “moving”
branching must belong to the genus g component, so all of the genus 0 curve’s branch points must

be fixed. There are
(rFab

g,α−1

rFab

g,α′′

)
ways of choosing which fixed branch point on P1

L belongs to the genus

0 curve, and which belongs to the genus g curve. Hence the contribution of the cover of P1
L is
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H0
α′F

g,α
(rFab

g,α−1

rFab

g,α′′

)
, so the combined contribution to Fg,α from this case is

∑

i+j=αk

ijH0
α′F

g,α′′

(
rFab
g,α − 1

rFab

g,α′′

)
.

Summing the three types of contribution, we obtain the result. �

Theorem 3.8. For each fixed g, Fg,α is a rational multiple of Gg,1, as determined by the recursion
of Theorem 3.7.

Proof. By Remark 3.4(a), if rFab
g,α = 0, then Fg,α = 0; this is the trivial base case of the recursion in

Theorem 3.7. The result follows by induction. �

For convenience, we define the Faber-Hurwitz number F gα ∈ Q to be this multiple of Gg,1, to
remind us that these classes are all commensurate:

(13) F gαGg,1 := Fg,α.

(Corollary 6.6 is a sign that F gα is a well-behaved quantity to consider.)

Theorem 3.7 is best formulated in terms of generating series. A natural generating series for
genus 0 Hurwitz numbers is

(14) Ĥ0(z;p) :=
∑

α∈P

z|α|
pα

|Autα|

H0
α

r0α!
,

where p = (p1, p2, . . .), and a natural generating series for Faber-Hurwitz numbers, which we shall
call the Faber-Hurwitz series, is

(15) F g(z;p) :=
∑

α∈P

z|α|
pα

|Autα|

F gα
rFab
g,α !

.

Then the recursion of Theorem 3.7, for classes, becomes the following (linear) partial differential
equation for F g.

Corollary 3.9 (Degeneration Theorem — Join-cut Equation for Faber-Hurwitz Series). For g ≥ 1,
F g(z;p) is the unique formal power series solution to



z ∂
∂z

− 1 +
∑

i≥1

pi
∂

∂pi



F g =
∑

i,j≥1

pi+j

(
i
∂

∂pi
Ĥ0

)(
j
∂

∂pj
F g
)

+
1

2

∑

i,j≥1

pipj(i+ j)
∂

∂pi+j
F g +

∑

i≥1

i2g+1pi
∂

∂pi
Ĥ0,

In Corollary 3.9, we have changed from classes to numbers by erasing Gg,1 from Theorem 3.7
via (13). To obtain a generating series for Faber-Hurwitz classes, we would simply multiply this
series by Gg,1.

3.4. Localization of Faber-Hurwitz classes. This section contains the Localization Tree Theo-
rem for Faber-Hurwitz classes. It is to be thought of in conjunction with the Degeneration Theorem.
The theorem gives the fundamental relationship between Faber-Hurwitz classes on the one hand,
and intersection numbers and (genus 0) single and double Hurwitz numbers on the other. Implic-
itly, it allows us to determine the Faber-Hurwitz numbers. It involves a sum over a set Tg,m, which
is one of three sets of trees defined as follows.
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Definition 3.10 (Localization trees). Consider rooted trees with the following properties. For each
tree t there are three classes of vertices: V0(t), the 0-vertices; V∞(t), the ∞-vertices; Vt(t), the t-
vertices. All t-vertices are monovalent (here t stands for “tail”). The number of non-root 0-vertices
in t is denoted by η0(t). The non-root 0-vertices are labelled (each receives one of η0(t) labels in
all possible ways). The ∞-vertices are not labelled. There are two classes of edges: E0∞(t), the
0∞-edges, each of which joins a 0-vertex to an ∞-vertex; E∞t(t), the ∞t-edges, each of which joins
a non-root ∞-vertex to a t-vertex.

There is at least one edge. Each edge is assigned a positive integer weight, and the integer weight
on an 0∞-edge e is denoted by ǫ(e). The t-vertices incident with an edge of weight k are labelled
among themselves, for each k ≥ 1. The list of the weights on all 0∞-edges incident with a 0-vertex
v is specified by the partition δv(t), the list of the weights on all 0∞-edges incident with an ∞-
vertex v is specified by the partition βv(t), and the list of the weights on all ∞t-edges incident with
a non-root ∞-vertex v is specified by the partition γv(t). For each non-root ∞-vertex v, we impose
the condition that

(16) |βv(t)| = |γv(t)|.

The root-vertex may be either a 0-vertex or an ∞-vertex, and is denoted by •. For m ≥ 1, we
define Tg,m to be the set of rooted trees above in which the root-vertex is a 0-vertex of degree m.
For j ≥ 1, we define T0,j to be the subset of Tg,1 in which the edge incident with the root-vertex has
weight j. For j ≥ 1, we define T∞,j to be the set of rooted trees above in which the root-vertex is a
monovalent ∞-vertex, and the edge incident with the root-vertex has weight j.

We refer to the trees in any of the sets Tg,m, T0,j and T∞,j as “localization trees”.

Hereinafter for any localization tree t we shall subsume the dependence on t of the above sets of
vertices and edges, and the partitions, by suppressing the occurrence of t as an argument. We also
define some more notation. Let

(17) r∞ :=
∑

v∈V∞

r0γv ,βv ,

and let

(18) α :=
∐

v∈V∞

γv

be the partition formed by all the parts of each of the γv’s for non-root ∞-vertices v, and let d = |α|.
Examples of such trees without a specified root are given in Figure 5 (these examples correspond to
the geometric picture of Figure 6).

ǫ3 = 1

ǫ2 = 2

ǫ3 = 1

0∞-edges ∞t-edges ∞t-edges0∞-edges

α = (1, 1, 2, 2, 2)

root

r0
0 = 3r0

0 = 3

root ǫ5 = 2

ǫ4 = 1

ǫ5 = 2

r1
∞

= 3

r3
∞

= 0

ǫ4 = 1

r2
∞

= 1

r∞ = 4

0-vertices ∞-vertices t-vertices 0-vertices ∞-vertices t-vertices

δ1 = (2)

r1
0 = 1

δ2 = (1, 2)

r2
0 = 3

δ0 = (1, 2) δ0 = (1, 2)

r2
0 = 3

δ2 = (1, 2)

r1
0 = 1

δ1 = (2)

s∞ = −5

r∞ = ri
∞

= 0
α = (1, 1, 2, 2, 2)

ǫ1 = 2
β1 = (2, 2) γ1 = (1, 1, 2)

1

γ2 = (2)

2

2

2

1

1

2

2

β2 = (1, 1)

2

1β1 = (2) = γ1

β2 = (2) = γ2

β3 = (1) = γ3

β4 = (1) = γ4

β5 = (2) = γ5 β3 = (2) = γ3

s∞ = −1

ǫ1 = 2

ǫ2 = 2

Figure 5. Sample decorated trees (Def. 3.10) corresponding roughly to the exam-
ples of Figure 6. Omitted are further combinatorial labelling of vertices.
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We now define some terminology that will allow us to write the relative virtual localization
calculation cleanly. Let P

g
m(α1, . . . , αm) be the dimension 2g − 1 portion of

1 − λ1 + · · · + (−1)gλg
(1 − α1ψ1) · · · (1 − αmψm)

on Mrt
g,m, viz.,

(19) Pgm(α1, . . ., αm) :=
∑

a1,...,am,k≥0,
a1+···+am+k=g−2+m

(−1)k〈τa1 · · ·τamλk〉
Fab
g αa11 · · ·αam

m .

Note that P
g
m is a (Chow-valued) polynomial in the numbers α1, . . . , αm, symmetric of degree

between m − 2 and g − 2 + m, and its leading coefficients (the portion of homogeneous degree
g− 2+m) are precisely the subject of Faber’s Intersection Number Conjecture. (It is easy to show
that the homogeneous degree m− 2 and m− 1 portions of this polynomial vanish, but we shall not
need this fact.) We shall refer to P

g
m as the Faber polynomial.

For any localization tree t, let

(20) B(t) :=
∏

e∈E0∞

ǫ(e), C(t) :=
∏

v∈V0

H0
δv

r0δv !
, D(t) :=

∏

v∈V∞

H0
γv,βv

r0γv,βv !
.

and, for t ∈ Tg,m, let

(21) A(t) := Pgm(δ•)
∏ ǫ(e)ǫ(e)

ǫ(e)!
,

where the product is over all edges e incident with the root-vertex • of t. Let “ ‡ ” as a superscript
on a product denote the removal of the contribution of the root-vertex from that product.

Theorem 3.11 (Localization Tree Theorem — tree summation). For g ≥ 1 and α = (α1, . . . , αm) ⊢
d,

(22) Fg,α =
∑

m≥1

∑

t∈Tg,m

(−1)r∞rFab

g,α !

(
rgα − r∞
rFab
g,α

)
1

η0(t)!
A(t)B(t)C‡(t)D(t)

where the sum is subject to (18).

Note that the sum in (22) is finite, and that the binomial coefficient in it is zero unless r∞ is small
(at most rgα − rFab

g,α = 2g − 1).

Before proving Theorem 3.11, we digress to observe that just the “shape” of the formula (22)
quickly yields the result (I) promised in Section 1.

Theorem 3.12 (Socle statement for Mrt
g,n). R2g−1(M

rt
g,n)

∼= Q.

Proof. We shall show that any monomial in the ψ-classes (pushed forward to Mg,1) is a mul-
tiple of Gg,1. This (with Faber’s Non-vanishing Theorem 2.2 and Remark 2.3 (iii)) implies that
R2g−1(M

rt
g,n) is generated by a single element. In particular, Gg,1 6= 0 and

(23) Q
×Gg,1 // R2g−1(Mg,1)

is an isomorphism.

We show first that P
g
n(α) is a multiple of Gg,1 for each partition α, by induction on |α| =

∑
i αi.

Now Fg,α is a multiple of Gg,1 (Thm. 3.8), and the contribution of the unique graph with r∞ = 0
(“the simplest graph in Tg,m”) to Theorem 3.11 is a non-zero multiple of P

g
n(α). The contribution

of any other graph is a multiple of P
g
n′(α′) for some smaller |α′|. Thus, by induction, P

g
n(α) is a

multiple of Gg,1 as desired.
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Next, we apply the “polynomiality trick” used in [GV1] and [GV3]. We fix g and n, and hence
the polynomial P

g
n(·). For arbitrary choices of α1, . . . , αn, P

g
n(α) is a multiple of Gg,1. But by

knowing enough values of a polynomial of known degree, we can determine its coefficients as linear
combinations of these values. Hence all coefficients of P

g
n(α) are multiples of Gg,1, and in particular,

the monomials in ψ-classes (of degree g − 2 + n) are multiples of Gg,1. �

Proof of Theorem 3.11. We apply relative virtual localization as developed in [GV3] (based on the
foundational [GrP]). As with many virtual localization calculations, Faber classes will be expressed
as sums over certain graphs. We show that the set of trees Tg,m is precisely the set of graphs that
is required for this purpose by supplying a geometric meaning to the vertices, edges, partitions,
weights and constants associated with t ∈ Tg,m through a geometry-combinatorics lexicon.

Classification of torus-fixed loci: We shall have a contribution from each torus-fixed locus of stable
relative maps. Recall that Faber-Hurwitz classes are defined by considering the pullback of a linear
space under the branch map, applied to the virtual fundamental class of the moduli space of stable
relative maps (equ. (8)). As in the proof of the “tautological vanishing theorem” of [GV3], we
choose a linearization on the branch-class that corresponds to requiring the rFab

g,α = rgα−2g+1 fixed
branch points to go to 0. Hence in any contributing torus-fixed locus, the amount of branching
over ∞ is at most 2g − 1.

We now classify the fixed loci which can appear in the “rational tails” case, where we must have
a smooth irreducible component of genus g, and then consider the evaluation of their contributions
(L1 to L5 below), although some require further elaboration. Fixed loci correspond to maps of the
following sort (see Figure 6), and in each case we shall see that the same statements hold for both the
left hand side (the simple case) and the right hand side (the composite case) of Figure 6, although
the arguments differ slightly. The components mapping surjectively onto P1 are trivial covers (see
L1). Over 0, there can be smooth points (as in Figure 6(a)) (see L3), nodes (Figure 6(b)), or
contracted components (Figure 6(c)) (see L2). Over ∞, either there is no “sprouting”, and the
preimage of ∞ consists of smooth points (the “simple” case, see the left side of Figure 6), or the
target “sprouts”, and we obtain a relative stable map to an unrigidified target (that we denote by
TR), with possibly-disconnected source (the “composite” case, see the right side of Figure 6) (see
L4). In the composite case, let z be the node where the “sprouted” portion TR of the target meets
the “unsprouted” portion. If TL denotes the “unsprouted” portion of T, then ∞TL

and 0TR
are

identified. Note that in the composite case, the sprouted portion of T need not be a single P1; it
could be a chain of P1’s.

Over ∞, we can have no genus g components by Remark 3.4 — the only possible branching
is over the two endpoints (z and ∞T ), together with at most 2g − 1 more. Thus the genus g
component must lie over 0, and all irreducible curves over ∞ must be genus 0. (In particular, in
the second figure in Figure 6, there cannot be any contracted components mapping to TR, so the
picture is misleading.)

Geometry-combinatorics lexicon: With the following combinatorial elements, we associate the fol-
lowing geometrical information.
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f1

0

0 ∞X

(a)

(b)

(c)

f−1(0)

C

T

X

∞T

f
−1
1

(∞T )

(d)

TR

z

f−1(∞X ) = f
−1
1

(∞T )

0 ∞T

0 ∞X

(a)

(b)

(c)

f−1(0)

C

T

X

f1

Figure 6. Sketches of two examples of torus-fixed relative stable maps to X =
(P1,∞). T is the “sprouted target”.

Vertices and edges of t ∈ Tg,m:

– 0-vertex : ↔ connected component of the preimage of 0 (contracted curve, node or smooth
point).
– ∞-vertex : ↔ connected component of pre-images of ∞X .
– t-vertex : ↔ preimage of ∞T .
– 0∞-edge: ↔ trivial cover of P1; edge joins vertices corresponding to the loci it meets.
– root •: ↔ genus g (contracted) curve.
Edge weights:
– weight ǫ(e) on the 0∞-edge e: ↔ degree of corresponding trivial cover.
– weight on an ∞t-edge: ↔ contribution to ramification over ∞X on component specified by
the ∞-vertex.

Partitions:
– δv for a 0-vertex v: Comb. formed by weights on 0∞-edges incident with v. Geom. formed
by the degrees of the trivial covers meeting that component.
– βv for an ∞-vertex v: Comb. formed by weights on 0∞-edges incident with v. Geom. formed
by the degrees of the trivial covers meeting that component.
– γv for an ∞-vertex v: Comb. formed by weights on ∞t-edges incident with v. Geom. specifies
ramification over ∞X on that component.
– α: Comb. see equation (18). Geom. ramification over ∞.

Conditions:
– |βv| = |γv|: Comb. see equation (16). Geom. the degree of the map from this component to
TR is |βv| (by examining the preimage of z) and |γv| (from the preimage of ∞T ).
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Constants:
– η0(t): Comb. number of non-root 0-vertices. Geom. number of connected components of the
preimage of 0 excluding the component containing the contracted genus g curve.
– n: Comb. l(α). Geom. number of pre-images of ∞T .
– m: Comb. degree of the root-vertex • (note m ≤ n). Geom. number of trivial covers of P1

meeting the genus g contracted curve.
– r∞: Comb. see equation (17). Geom. the total branching over ∞X .
– r0δv for a 0-vertex v: Comb. see equation (4). Geom. the total branching contributed by the
component corresponding to v.
– r0γv,βv for an ∞-vertex v: Comb. see equation (6). Geom. the total branching contributed by
the component corresponding to v
– d: Comb. d = |α|. Geom. degree of the relative stable map

Relative virtual localization: Relative virtual localization ([GV3, Thm. 3.6], see [GV3, Sec. 3.7] for
the special case of target P1, and [GrP, Sec. 4] for the non-relative case) tells us that the contribution
of a fixed locus can be deduced by looking at the various parts of Figure 6. In what follows, t is the
generator of the equivariant cohomology (or Chow) ring of a point, t ∈ A1

C∗(pt) = Q[t], although we
will quickly forget the t. The relative virtual localization formula (abbreviated to L below) gives
the following contributions associated with the salient “parts” of the graph. Each of the factors in
the summand of (22) will be readily derivable, with the exception of the sign and D(t) which will
require more attention.

Items L1 to L4 below come from the description of the fixed loci, and L5 arises from the
cohomology class corresponding to fixing some branch points. Moreover, L1 to L3 hold for both
the simple and the composite case.

The results for the simple case and the composite case are the same, but the arguments are
slightly different.

L1: For each trivial cover of the target P1 of degree a, we have contribution aa/(a!ta). Hence

we obtain the product
∏ qq

q!
in (22) by collecting those contributions associated with the (genus

g) root 0-vertex.

L2: For each contracted curve above 0 of genus h (Figure 6(c)), meeting trivial covers (compo-
nents mapping surjectively onto P1) of degree α1, . . . , αm respectively, we have a contribution

(24) t−1(th − λ1t
h−1 + · · · + (−1)hλh)

m∏

i=1

t

t/αi − ψi
.

This contribution is on the factor Mh,m corresponding to the contracted curve. We will have h = 0
or h = g, as all components have one of these two genera.

L3: For each node above 0 (Figure 6(b)) joining trivial covers of degrees α1 and α2, we get a
contribution of t−1α1α2/(α1 +α2). For each smooth point above 0 (Figure 6(a)), on a trivial cover
of degree α1, we get t−1/α1. Using the contribution

∏
(ααi

i /αi!) from L1, we obtain the factor

H0
δj/r

0
δj ! in (22) for each (non-root) 0-vertex of degree 1 or 2, using the formula (11) for genus 0

single Hurwitz numbers. We also obtain the product of the ǫ(e) in (22) corresponding to 0∞-edges

e meeting a degree 1 or 2 (genus 0, non-root) 0-vertex.

L4: In the composite case (Figure 6(d)), we have a contribution of 1/(−t−ψz), where ψz is the
first Chern class of the line bundle corresponding to the cotangent space of TR at z.
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L5: From the pullback of the linear space by the branch morphism (informally, requiring rFab
g,α

branch points to map to 0), we have a contribution of ((2g − r∞)t) ((2g + 1 − r∞)t) · · · ((rgα − r∞)t)

(there are rFab
g,α factors), from which we obtain rFab

g,α !

(
rgα − r∞
rFab
g,α

)
in (22).

So L1–L4 arise from the fixed loci, and L5 arises from the cohomology class corresponding to
fixing some branch points. We take the product of these contributions, and read off the constant
(t0) term to obtain the contribution of this fixed locus.

The result is a (2g − 1)-dimensional class on Mrt
g,n. One of the ingredients (from L3) is a

(tautological) class on Mg,m corresponding to the contracted genus g curve mapping to 0. Now

all tautological classes of dimension less than 2g − 1 vanish on M
rt
g,m by Remark 2.3(i). Thus a

non-zero contribution is possible only by taking the contribution of a class of dimension precisely
2g − 1 on Mrt

g,m, and thus the contributions from every other ingredient must have dimension 0.
In light of this observation, we list the contributions from each of the parts of Figure 6, ignoring
the equivariant parameter t. Also, from L3, the contribution by the contracted genus g curve is

Pgm(δ0) so, with the contribution from L1, we obtain the term A(t) , a term in (22). In addition,

we obtain the product of the ǫ(e) over those edges e meeting the (genus g) root 0-vertex.

From (24) (using h = 0), any contracted genus 0 component over 0 ∈ P1 meeting trivial covers

of degrees δj1, . . . , δjp (p ≥ 3 by the stability condition) gives the dimension 0 contribution
(

p∏

i=1

δji

)∫

M0,p

1

(1 − δj1ψ1) · · · (1 − δjpψp)
.

Combining this with
∏p
i=1

δ
j
i

δ
j
i

δ
j
i !

from L1, using the ELSV formula [ELSV1, ELSV2, GV2] we obtain

(
∏
δji )H

0
δj/r

0
δj !. (We could have bypassed the ELSV formula, using instead the formula (11) for

genus 0 Hurwitz numbers and the string equation, given in Proposition 2.6.) Thus we obtain the

factor H0
δj/r

0
δj ! for each non-root 0-vertex of degree at least three. We also obtain the product of

the ǫ(e) corresponding to 0∞-edges e meeting all (genus 0, non-root) 0-vertices of degree at least

3. L3 gives the same values for degree 1 and 2 so, combining the three sources for the ǫ’s, we now

obtain the entire product B(t) , and combining the two sources for the H0
δj/r

0
δj !, we obtain the

entire product C(t) .

The contributions from L1–L3, and L5 are now exhausted.

It remains to obtain the sign (−1)r∞ , the term D(t), and the division by η0(t)!. To do so, we now
appeal to L4. In the composite case (if the target “sprouts”, Figure 6(d)), suppose M := Mβ,α

is the moduli space of relative stable maps to the unrigidified TR, where β is the kissing partition
above z. It is the moduli space of relative stable maps, where the source is a disjoint union of genus
0 curves. As always for maps to unrigidified targets, the virtual dimension of this space is one less
than the number of “moving branch points” rM. Then the contribution is the dimension 0 portion

of 1
−1−ψz

[M]vir which is

(25) (−1)rMψ
r
M

−1
z [M]vir.

The sign gives us the factor
∏

(−1)
r0
γi,βi which, from (17), is equal to (−1)r∞ , the sign in (22).

The proof of [GV3, Lem. 4.8] (see also [GV3, Fig. 2]) shows that ψa applied to M can be
interpreted as requiring that the target break into a + 1 components. More precisely, ψa applied
to [M]vir is the same as gluing virtual fundamental classes of relative stable maps to the a + 1
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components of TR (in the same sense as the degeneration formula, with kissing multiplicities arising

for each node of the target TR), divided by (a+ 1)!. This latter term gives a factor of 1/r∞! .

In particular, ψrM−1 corresponds to the target breaking into rM components. Because the
resulting map must be stable, there must be some branching on each of these components (away
from the nodes of TR, and z and ∞T ). Thus as the total amount of branching is rM away from the
nodes of TR, and there is precisely this number of components, we must have branching number 1
on each irreducible component of TR. By Remark 3.3(b), above each component of the TR, we
must have precisely one almost-trivial cover, along with some trivial covers.

Thus the contribution of (25) is the size of a discrete set (counted modulo automorphisms). This
set counts the number of branched covers of TR (a chain of rM P1’s), with one simple branching
on each component, and given branching ǫ over z (a point at the end of the chain) and α over ∞T

(a point at the other end of the chain), satisfying the kissing condition over each node of TR. By
the gluing formula (or indeed, the much older technique of just studying the degeneration), this is
the number of branched covers of P1 by a union of genus 0 curves with branching given by ǫ and α
over two points z and ∞T , and simple branching over rM other given fixed points.

We shall now see that this is (up to a combinatorial factor) a product of genus 0 double Hurwitz
numbers. Recall that a genus 0 double Hurwitz number

(26) H0
α,ε

(where α and ε are partitions of some number e) counts the number of degree e covers of P1 by P1,
with branching α at one fixed point, ε at another, and simple branching at r0α,ε other fixed points.

Suppose we are considering covers by N P1’s, where component i corresponds to the subpartition
βi of ε (over z) and the subpartition γi of α (over ∞T ). (Thus |βi| = |γi| is the degree of that
subcover, ε =

∐
i β

i, and α =
∐
i γ

i.) Then component i has simple branching over ri∞ := r0
βi,γi

of the fixed simple branch points. There are
( P

i r
i
∞

r1∞,...,rN
∞

)
ways of partitioning the branch points into

these N sets. Once this partition is chosen, there are
∏N
i=1H

0
βi,γi such branched covers. (One

caution: we have cavalierly described H0
βi,γi as enumerating a set. In reality, each cover is counted

with multiplicity equal to the inverse of the size of its automorphism group, so H0
βi,γi need not

be integral, and in fact is not precisely for βi = γi = (di); trivial covers of degree di “count for”

1/di.) We have obtained the factors H0
βk,γk and

(
r∞

r1∞, . . . , r
N
∞

)
in (22). (The numerator r∞! in

the multinomial coefficient cancels the 1/r∞! from earlier.) This is the term D(t).

Finally, the 1/η0(t)! in (22) is present because the trees have labelled non-root 0-vertices

(Def. 3.10). �

Part 3. ALGEBRAIC COMBINATORICS

At this point, we have defined the Faber-Hurwitz classes Fg,α, which “virtually” correspond to
“rational tail” curves admitting a branched cover of P1 with branching at ∞ corresponding to
α, and “all but 2g − 1 branching fixed”. Such classes are a multiple of a basic class Gg,1; this
multiple is the Faber-Hurwitz number F g,α. By degeneration, we have obtained Corollary 3.9,
the Degeneration Theorem for the generating series F g for these numbers, involving the genus 0

Hurwitz series Ĥ0. By localization, we have also obtained Theorem 3.11, the Localization Tree
Theorem, which describes these classes (or numbers) as a sum over certain rooted, labelled trees,
involving genus 0 Hurwitz, double Hurwitz numbers and the desired intersection numbers (of ψ-
classes). Theorem 3.12 shows us that we can “invert” this expression, to determine intersection
numbers in terms of Hurwitz numbers and double Hurwitz numbers. Our goal is to formalize this.
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The strategy is to show that Localization Tree Theorem and the Degeneration Theorem, taken
together, give a non-singular system of linear equations for the top Faber intersection numbers, so
it has a unique solution, and that the conjectural values satisfy it.

We accomplish this by a sequence of transformations, which yield a number of refined versions of
the Localization Tree Theorem and the Degeneration Theorem. These versions of the Localization
Tree Theorem (we say that these are results for the “localization side”) are given by the sequence

Thm. 3.11 ; Thm. 4.4 ; Cor. 5.1 ; Cor. 7.1

These versions of the Degeneration Theorem (we say that these are results for the “degeneration

side”) are given by the sequence

Thm. 3.7 ; Cor. 3.9 ; Cor. 5.2 ; Lem. 7.5

4. Exponential generating series for localization trees

The purpose of this section is to “evaluate” the sum over localization trees that arises from the
localization arguments in Theorem 3.11. Localization trees are a class of rooted, labelled trees, and
we use the standard multivariate exponential generating series for combinatorial structures with
many sets of labels, as well as variants of the standard branch decomposition for rooted trees.

4.1. Exponential generating series and the ⋆-product. For a localization tree t, let ηk(t)
denote the number of t-vertices in t that are incident with an edge of weight k, k ≥ 1.

Definition 4.1. Let A be a set of localization trees, with weight function wt. Then the exponential
generating series for A with respect to wt is

[A,wt]η :=
∑

t∈A

p
η1(t)
1 p

η2(t)
2 · · ·

η0(t)!η1(t)!η2(t)!· · ·
wt(t).

For now, we shall allow the range of the weight function to be any ring, or even a vector space, and
in particular we allow geometric classes. Note that, as a formal power series in p1, p2, . . ., [A,wt]η is

always well-formed because of the balance condition (16), which ensures that there is only a finite
number of localization trees t with ηk(t) = ik, k ≥ 1, for each i1, i2, . . . (so the coefficients are finite
sums of weight function values).

Since localization trees are labelled objects, we consider a particular version of the standard
⋆-product for them, which is the Cartesian product together with a “label-distribution” operation.
We define this ⋆-product as follows. Consider two localization trees t1 and t2. Suppose that
ηk(t1) = ik, and ηk(t2) = jk, for k ≥ 0. Now choose subsets αk ⊆ [ik + jk], with |αk| = ik, for
k ≥ 0, and let βk = [ik + jk] \ αk (so |βk| = j + k) (we use the notation [n] = {1, . . ., n}). Let α(t1)
be the tree obtained from t1 by relabelling the labelled vertices as follows: replace the label m on
a non-root 0-vertex by the mth smallest element of α0, for m = 1, . . ., i0; replace the label m on
a t-vertex incident with an edge of weight k by the mth smallest element of αk, for m = 1, . . ., ik,
k ≥ 1. Let β(t2) be the tree obtained from t2 by relabelling the labelled vertices with the elements
of β0, β1, . . ., in the analogous manner. We call (α, β) a compatible relabelling (of (t1, t2)). Where
convenient, we also refer to t1 and t2 as canonically labelled.

Definition 4.2. Let A,B be sets of localization trees. Then

A ⋆ B := {(α(t1), β(t2)) : (t1, t2) ∈ A× B, (α, β) a compatible relabelling of (t1, t2)}.

The reason for using exponential generating series for labelled combinatorial objects is the Prod-
uct Lemma, given in the following result. For a proof, see, e.g., Goulden and Jackson [GJ1,
Lem. 3.2.11].
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Lemma 4.3 (Product Lemma (for localization tree generating series)). Let S,A,B be sets of
localization trees, with weight functions wt,wt1,wt2, respectively. Suppose there is a bijection

S
∼
−→ A ⋆ B : t 7→ (α(t1), β(t2)),

subject to wt(t) = wt1(t1)wt2(t2) and ηk(t) = ηk(t1) + ηk(t2), k ≥ 0. Then

[S,wt]η = [A,wt1]η[B,wt2]η .

For any set S of localization trees S, let S⋆k := S ⋆ · · · ⋆ S, where there are k S’s in this k-fold
⋆-product. We define Uk(S) := S⋆k/Sk, under the natural action of Sk, for k ≥ 0.

4.2. Branch decompositions for localization trees. In order to decompose localization trees,
we require three variants of the standard branch decomposition, described below. These are for-
malized as combinatorial mappings, called Ωbr, Ωbr

0 and Ωbr
∞.

First, we give Ωbr: If the root-vertex • and incident edges are deleted from a localization tree t,
then we obtain a list (t1, . . ., tm) of rooted trees on mutually distinct sets of vertices, each inheriting
as root vertex its unique vertex that was adjacent to • in t, where m is the degree of the root-vertex
of t. Now let t

′
i be obtained from ti by joining the root vertex of ti to a new copy of • (which

becomes the new root-vertex of t
′
i), joined by an edge whose weight is equal to the weight of the

edge joining • to the root-vertex of ti in t. Since • is unlabelled in t, then (t′1, . . ., t
′
m) is equal to

(α1(t
′′
1), . . ., αm(t′′m)), a compatible relabelling of canonical localization trees (t′′1 , . . ., t

′′
m). Then we

define Ωbr(t) = (α1(t
′′
1), . . ., αm(t′′m)). This corresponds to removing the root from the tree, and

describing the remainder as a list of trees.

Second, we give Ωbr
0 : Suppose that t is a localization tree whose root-vertex • is a monovalent

0-vertex. Let the ∞-vertex adjacent to • be u, and let t
′ be the tree obtained by deleting • and

incident edge from t, and deleting all t-vertices adjacent to u, together with their incident edges,
and rooting the resulting tree at u. Now form a new graph G, containing these deleted t-vertices
(labelled as in t), joined to a new ∞-vertex w by an edge of the same weight as the deleted incident
edge in t. Then we define Ωbr

0 (t) = (G,Ωbr(t′)). Now consider partition γ = (1a12a2 . . .), and let wγ

be the graph consisting of a single ∞-vertex, joined by an edge of weight k to ak canonically labelled
monovalent t-vertices, k ≥ 1. Then note that Ωbr

0 (t) = (α0(wγ), α1(t
′′
1), . . ., αm(t′′m)), a compatible

relabelling of the canonical (wγ , t
′′
1 , . . ., t

′′
m), where γ = γu(t), |γ| = |βu(t)| (because of the balance

condition (16) at u), and βu(t) has m+ 1 parts, m ≥ 0.

Third, we give Ωbr
∞: Suppose that t is a localization tree whose root-vertex • is a monovalent ∞-

vertex. Let the 0-vertex adjacent to • be v, with label i, then let t
′ be the tree obtained by removing

• from t, and removing the label from the vertex v, and rooting the resulting tree at v. Let vi be
the graph consisting of a single, 0-vertex, labelled i. Then we define Ωbr

∞(t) = (vi,Ω
br(t′)), and note

that Ωbr
∞(t) = (α0(v1), α1(t

′′
1), . . ., αm(t′′m)), a compatible relabelling of the canonical (v1, t

′′
1 , . . ., t

′′
m),

where δv(t) has m+ 1 parts, m ≥ 0.

4.3. Generating series form for the Localization Tree Theorem. In the next result, The-
orem 4.4, which is the second form of the Localization Tree Theorem, we introduce a generating
series, Tg, for the tree summation that arose in Theorem 3.11, which was the first form of the Lo-
calization Tree Theorem. We also introduce two ancillary classes of generating series fj, gj , j ≥ 1.
These are all exponential generating series with respect to particular weight functions, and the
proofs of the equations that relate them are combinatorial, applying the variants of the branch
decomposition, together with the ⋆-product and the Product Lemma. However, the statement
of Theorem 4.4 is purely algebraic (without reference to trees), and the series Tg, fj, gj are all
uniquely defined by the equations in the statement. Note that the coefficients in Tg are geometric
classes, while the coefficients in fj, gj , F

g are rationals.

24



The statement of the theorem involves the generating series Ĥ0 for genus 0 Hurwitz numbers,
defined in (14), and the generating series for genus 0 double Hurwitz numbers, given by

(27) H0(z, u;p;q) :=
∑

α,β∈P,
|α|=|β|

z|β|pαqβu
l(β)

H0
α,β

r0α,β!|Autα| |Autβ|
,

where p = (p1, p2, . . .), q = (q1, q2, . . .), and r0α,β is defined in (6).

Theorem 4.4 (Localization Tree Theorem — functional equations). For g ≥ 1, we have

a) F g(z;p) Gg,1 = [u2g−1] Tg
(

z

1 − u
,−u;

−u

1 − u
p

)
,

where

b) Tg(z, u;p) =
∑

n≥1

1

n!

∑

a1,...,an,k≥0,
a1+···+an+k=g−2+n

(−1)k〈τa1 · · ·τanλk〉
Fab
g

n∏

j=1

ξ(aj )(z, u;p),

with

(28) ξ(i)(z, u;p) :=
∑

j≥1

jj+i

j!
fj(z, u;p), i ≥ 0,

and, for j ≥ 1, c) fj = u−2
(
j ∂
∂qj
H0(z, u;p;q)

)∣∣∣
qi=gi,i≥1

, d) gj =
(
j ∂
∂qj
Ĥ0(1;q)

)∣∣∣
qi=fi,i≥1

,

with fj = fj(z, u;p), gj = gj(z, u;p).

Proof. As special cases of weight functions for localization trees t, consider wtg(t) := A(t)wt0(t),

wt0(t) := B(t)C‡(t)D(t)
∏
v∈V∞

ul(β
v)−2z|β

v|, and wt∞(t) := B(t)C(t)D‡(t)
∏‡
v∈V∞

ul(β
v)−2z|β

v|,

where A,B,C,D were defined in (21), (20). Now define generating series

Tg(z, u;p) := [∪m≥1Tg,m,wtg]η, g ≥ 1, fj := [T0,j ,wt0]η , gj := [T∞,j,wt∞]η, j ≥ 1.

For part (a), in Tg we have p
η1(t)
1 p

η2(t)
2 · · ·/η1(t)!η2(t)!· · · = pα/|Autα|, from (18). Thus, for

g ≥ 1 and |α| = d ≥ 1, we have Fg,α = rFab
g,α !|Autα|

∑
r∞

(
r

g
α−r∞
rFab
g,α

)
(−1)r∞

[
pαu

r∞−l(α)zd
]

Tg(z, u;p),

from Theorem 3.11. But
(
r

g
α−r∞
rFab
g,α

)
= [u2g−1−r∞ ](1 − u)−(d+l(α)), so Fg,α = rFab

g,α !|Autα| [pαu
2g−1zd]

Tg
(

z
1−u ,−u;

−u
1−up

)
. Then part (a) follows from (15) and (13).

For part (b), define Tg,δ to be the set of localization trees t in Tg,m with δ•(t) = δ, for any

partition δ with m parts, m ≥ 1. Then variant Ωbr of the branch decomposition gives a bijection

Ωbr : Tg,δ
∼

−→ Ua1(T0,1) ⋆ Ua2(T0,2) ⋆ · · · : t 7→ (α1(t
′′
1), . . ., αm(t′′m)),

where δ = (1a12a2 · · ·) with a1 + a2 + · · · = m. It is straightforward to check in this bijection

that ηk(t) = ηk(t
′′
1) + · · · + ηk(t

′′
m), for k ≥ 0. Moreover, wtg(t) = P

g
m(1a12a2 · · ·)

(∏
j≥1

(
jj/j!

)aj

)

wt0(t
′′
1)· · ·wt0(t

′′
m), so from the Product Lemma we obtain

[Tg,δ,wtg]η = Pgm(1a12a2 · · ·)
∏

j≥1

(
jjfj/j!

)aj

aj !
,

and part (b) follows by summing this over all a1, a2, . . . ≥ 0 with a1 + a2 + · · · = m, and m ≥ 1,
and applying (19).

For part (c), for j ≥ 1, variant Ωbr
0 of the branch decomposition gives a bijection

Ωbr

0 : T0,j
∼

−→
⋃

{wγ} ⋆ Ub1(T∞,1) ⋆ Ub2(T∞,2) ⋆ · · · : t 7→ (α0(wγ), α1(t
′′
1), . . ., αm(t′′m)),
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where the union is over all γ = (1a12a2 · · ·), β = (1b1 · · ·(j − 1)bj−1jbj+1(j + 1)bj+1 · · ·) with |γ| =
|β| ≥ j, and l(β) = m+ 1, m ≥ 0 (here, γ = γu(t) and β = βu(t), where u is the ∞-vertex adjacent
to • in t, as given in the description of Ωbr

0 above). It is straightforward to check in this bijection

that ηk(t) = ηk(wγ)+ ηk(t
′′
1) + · · ·+ ηk(t

′′
m), for k ≥ 0. Moreover, wt0(t) = j

(
H0
γ,βu

l(β)−2z|β|/r0γ,β!
)

wt∞(t′′1)· · ·wt∞(t′′m), so from the Product Lemma we obtain

fj = u−2j
∑ H0

γ,βu
l(β)z|β|

r0γ,β !

∏

i≥1

pai

i

ai!

gbii
bi!
,

since [wγ , 1]η =
∏
i≥1

p
ai
i

ai!
, and part (c) follows immediately from (27).

For part (d), variant Ωbr
∞ of the branch decomposition gives a bijection

Ωbr

∞ : T∞,j
∼

−→
⋃

{v1} ⋆ Ua1(T0,1) ⋆ Ua2(T0,2) ⋆ · · · : t 7→ (α0(v1), α1(t
′′
1), . . ., αm(t′′m)),

where the union is over all δ = (1a1 · · ·(j− 1)aj−1jaj+1(j+ 1)aj+1 · · ·) with |δ| ≥ j, and l(δ) = m+ 1,
m ≥ 0. (Here, δ = δv(t), where v is the 0-vertex adjacent to • in t, as given in the description of Ωbr

∞

above.) It is straightforward to check in this bijection that ηk(t) = ηk(v1)+ηk(t
′′
1)+ · · ·+ηk(t

′′
m), for

k ≥ 0, and that wt∞(t) = j
(
H0
δ /r

0
δ !
)
wt0(t

′′
1)· · ·wt0(t

′′
m). Then from the Product Lemma we obtain

gj = j
1

1!

∑ H0
δ

r0δ !

∏

i≥1

fai

i

ai!
,

since [{v1}, 1]η = 1/1!, and part (d) follows immediately from (14). �

5. Symmetrization and a polynomial transformation

At this stage, we have established the two generating series results that we need to prove Faber’s
Conjecture. The first of these results, on the degeneration side, is Corollary 3.9, the second form of
the Degeneration Theorem, which gives a linear partial differential equation for the Faber-Hurwitz

series F g, in terms of the genus 0 Hurwitz series Ĥ0. The second of these results, on the localization

side, is Theorem 4.4, the second form of the Localization Tree Theorem, which expresses Faber-

Hurwitz classes as a linear combination of the intersections 〈τa1 · · ·τanλk〉
Fab
g , in terms of Ĥ0 and

the genus 0 double Hurwitz series H0.

In this section, in order to prove Faber’s Intersection Number Conjecture, we introduce three
operators, giving us a three-step transformation that will enable us to apply Corollary 3.9 and
Theorem 4.4 conveniently, so that we can extract the intersection numbers of top degree, that are
the subject of Faber’s Conjecture. The first step is a symmetrization operator Ξm, and the second
step is a change of variables C. The composition CΞm yields polynomials in the new variables, and
the third step is the operator T′, that restricts to terms of maximum total degree. We shall refer
to T′CΞm = TΞm as the fundamental transformation.

Note that our fundamental transformation is only a slight modification of the three-step trans-
formation that was used in [GJV3] to give another proof of Getzler and Pandharipande’s λg-
Conjecture. There the transformation was applied to the Hurwitz number generating series in
arbitrary genus, and the first two steps, of symmetrizing and changing variables, were identical.
In that Hurwitz case, polynomiality also held, but the third step was to restrict to (full) terms of
minimum total degree, so that the intersection numbers of bottom degree, that are the subject of
the λg-Conjecture, could be extracted. Changes of variables for similar purposes arise in work of
Kazarian and Lando [KL] and Shadrin and Zvonkine [SZ], as well as in [GJ2, GJVn, GJV1, GJV2].
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5.1. Symmetrization. The first step of the fundamental transformation is the linear symmetriza-
tion operator Ξm.

Definition of Ξm (Step 1): Following [GJV2], we define

(29) Ξm(pαz
|α|) :=

∑

σ∈Sm

xα1

σ(1)· · ·x
αm

σ(m), m ≥ 1,

if l(α) = m (with α = (α1, . . ., αm)), and zero otherwise.

In order to provide more compact expressions when applying Ξm, some notation is required. For
ρ = {ρ1, . . ., ρl} ⊆ {1, . . .,m}, let xρ = {xρ1 , . . ., xρl

}. Given i1, . . ., ik ≥ 1, with i1 + · · · + ik = m,
let sj = i1 + · · · + ij , for j = 1, . . ., k, and s0 = 0. Also let

(30) ρj = {sj−1 + 1, . . ., sj},

for j = 1, . . ., k. Then symi1,...,ik
is a summation operator, over the set of ordered set partitions

(ν1, . . ., νk) of {1, . . .,m}, in which, in the summand, xρj
is replaced by xνj

, for j = 1, . . ., k.

We require the symmetrized series

(31)

{
F gm(x1, . . ., xm) := ΞmF

g(z;p), Ĥ0
m(x1, . . ., xm) := ΞmĤ

0(z;p),

T
g
m(x1, . . ., xm, u) := ΞmTg(z, u;p), ξ

(i)
m (x1, . . ., xm, u) := Ξmξ

(i)(z, u;p)),

for m ≥ 1. When the arguments of these series are suppressed, they are the ones stated above.

5.2. Symmetrizing on the localization and degeneration sides. On the localization side, the
following result is the third form of the Localization Tree Theorem. It is the symmetrized form of
Theorem 4.4, and uses the substitution operator

(32) Λ: u 7→ −u, xi 7→ (1 − u)−1xi, i = 1, . . .,m.

Corollary 5.1 (Localization Tree Theorem — symmetrized functional equations). For m, g ≥ 1,

a) F gmGg,1 = [u2g−1]

(
−u

1 − u

)m
ΛTgm,

where

b) Tgm =
∑

n≥1

1

n!

∑

a1,...,an,k≥0,
a1+···+an+k=g−2+n,

i1,...,in≥1,
i1+···+in=m

(−1)k〈τa1 · · ·τanλk〉
Fab
g symi1,...,in

n∏

j=1

ξ
(aj)
ij

(xρj
).

Proof. The result follows by applying Ξm to Theorem 4.4(a) and (b), for m ≥ 1, and using the
properties of Ξm given in Lemmas 4.1–4.3 of [GJVn]. �

On the degeneration side, the following result is the symmetrized form of Corollary 3.9. For each
1 ≤ i < j ≤ m, note that there are two terms in the result with denominator xi − xj , and that
the numerator is antisymmetric in xi, xj , so these terms combine to give a formal power series.
To account for each individual term (xi − xj)

−1 that arises in the statement, we adopt the total

ordering xi ≺ xj if i < j, and then define (xi − xj)
−1 by (xi − xj)

−1 := x−1
j (1 − xix

−1
j )−1. This

gives us an ordered Laurent series ring in x1, . . . , xm.

Corollary 5.2 (Degeneration Theorem — symmetrized Join-cut Equation). For m, g ≥ 1,
(

m∑

i=1

xi
∂

∂xi
+m− 1

)

F gm =
∑

i2,i3≥0,
i2+i3=m−1

sym1,i2,i3

(
x1

∂

∂x1
Ĥ0

1+i2(x1, xρ2)

)(
x1

∂

∂x1
F g1+i3(x1, xρ3)

)

+sym1,1,m−2
x2

x1 − x2
x1

∂

∂x1
F gm−1(x1, xρ3) +

m∑

i=1

(
xi

∂

∂xi

)2g+1

Ĥ0
m.
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Proof. The result follows by applying Ξm to Corollary 3.9 for m ≥ 1, and using the properties of
Ξm given in Lemmas 4.1–4.3 of [GJVn]. �

Note that the second term on the right hand side of Corollary 5.2 vanishes in the case m = 1.

5.3. Polynomiality and terms of top degree. The second step of the fundamental transfor-
mation is the change of variables C.

Definition of C (Step 2): Let

(33) a) w(x) :=
∑

n≥1

nn−1

n!
xn, b) y(x) :=

1

1 − w(x)
=
∑

n≥0

nn

n!
xn,

where the second equality in the expression for y(x) is well-known (see, e.g., [GJ2, Prop. 3.2.1]).
Let wi := w(xi) and yi = y(xi), for i = 1, . . .,m, and let C be an operator, applied to a formal
power series in x1, . . ., xm, that changes variables from the indeterminates x1, . . ., xm to y1, . . ., ym.
Thus, a direct way to apply C is to substitute xi = G(yi − 1), where G(z) is the compositional
inverse of the formal power series

∑
n≥1 n

nzn/n!. In this paper, we do not apply this substitution

directly to the symmetrized series F gm, Λ T
g
m, Λ ξ

(i)
m , but instead quite indirectly. The details are

intricate, but the key to our method is that in all cases the result is a polynomial in y1, . . ., ym (we
say that a Laurent series in another indeterminate, either u or t in this paper, is polynomial if each
of its coefficients is polynomial).

This key fact is recorded in the following result. The proof involves a number of transforma-
tions for implicitly defined series, and is deferred until Appendix A to avoid interrupting the present
development. Note that part (b) follows from part (a) by Theorem 4.4(a),(b), and by (13) and The-
orem 3.12 (which allows us to “divide” 〈τa1 · · ·τanλk〉

Fab
g by Gg,1). Consequently, in the Appendix

it suffices to prove part (a) of Theorem 5.3 only.

Theorem 5.3. For m = 1, 2, 3, we have

a) C Λ ξ(i)m ∈ Q[y1, . . . , ym]((u)), i ≥ 1, b) C F gm ∈ Q[y1, . . . , ym], g ≥ 1.

Theorem 5.3 is essential to our proof of Faber’s Intersection Conjecture for at most 3 parts. In
order for us to extend our proof to, say, n parts, we would first need to prove Theorem 5.3 for all
m ≤ n. We are presently able to prove this result for m ≤ 5, but not for larger values of m, since we
require the symmetrized double Hurwitz series in our method of proof, and we only have explicit
expressions for this when m ≤ 5, as given in [GJV2]. We conjecture that Theorem 5.3 holds for all
positive integers m.

The third and final step of the fundamental transformation is the operator T′, that restricts a
polynomial to terms of maximum total degree (these are referred to as the “top” terms).

Definition of T′ (Step 3): Let Si be the operator that restricts a polynomial in y1, . . ., ym to the

terms of total degree i. Then we define T′, when applied to C F gm, to denote S4g+3m−5. It turns
out that there are no terms of higher degree in C F gm, so we say that T′ restricts to the terms of top
degree, though we understand that this is informal, since it assumes that the terms of total degree
4g + 3m− 5 are not all zero.

If C Λ ξ
(i)
m =

∑
k aku

k, we define T′ C Λ ξ
(i)
m :=

∑
k (S2g+2m−2+kak)u

k. Again, it turns out that
there are no terms is any of the ak of higher total degree, so in this case also T′ restricts to terms

of top degree. We define T′, when applied to C Ĥ0
m, to denote S3m−6. Again there are no terms of

higher total degree, so in this case also T′ restricts to terms of top degree.

Finally, in all other cases, we define T′ as a homomorphism, and we define T := T′ C.

5.4. Polynomiality and terms of top degree on the localization and degeneration sides.
On the localization side, we can apply the fundamental transformation via Theorem 4.4, because
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of the polynomiality of Λ ξ
(i)
m that was established in Theorem 5.3(a) for m = 1, 2, 3. This requires

the top terms, T Λ ξ
(i)
m , which are given in the following result for m = 1, 2, 3. Again, the proof

is intricate, and is deferred until Appendix A to avoid interrupting the present development. The
result uses the notation

(34) Yi(u) :=
yi

1 − uyi
, i ≥ 1.

Theorem 5.4. For i ≥ 0,

a) uT Λ ξ
(i)
1 = −(2i− 1)!!Y1(u)

2i+1, b) u2T Λ ξ
(i)
2 = −(2i+ 1)!!u sym1,1

y2
1y2

y1 − y2
Y1(u)

2i+3,

c)
(−u)3T Λ ξ

(i)
3

(2i+ 1)!!
= u2sym1,1,1

y3
1y

4
2y3

(y2 − y3)(y1 − y2)2
Y1(u)

2i+3Y2(u)

−sym1,2

(
uy1Y1(u)

2i+5Y2(u)Y3(u) − u2y3
1

∂

∂y1

y3
1y2y3

(y2 − y1)(y3 − y1)
Y1(u)

2i+4

)
.

On the degeneration side, we can apply the fundamental transformation via Corollary 5.2 if we
can apply the change of variables C to the partial differential operator xi

∂
∂xi

and to the symmetrized

generating series Ĥ0
m for Hurwitz numbers, genus 0. This is straightforward in both cases.

For the partial differential operator, from (33a,b) we have the functional equations yi = 1/(1−wi),

yi = 1+xi
dwi

dxi
, and together these imply xi

dyi

dxi
= y2

i (yi− 1). This immediately implies the operator
identities

(35) a) Cxi
∂

∂xi
= y2

i (yi − 1)
∂

∂yi
C, b) Txi

∂

∂xi
= y3

i

∂

∂yi
T.

For the symmetrized generating series Ĥ0
m, (11) and (33b) give

(36) Ĥ0
m =




m∑

j=1

xj
∂

∂xj




m−3

m∏

i=1

(yi − 1),

for m ≥ 1 (note that (35) applied to (36) immediately identifies C Ĥ0
m as having degree 3m − 6,

consistent with the definition of T′ above). Also, we have

(37) a) x1
∂

∂x1
Ĥ0

1 = 1 − y−1
1 , b) Ĥ0

2 = log

(
y1 − y2

y1y2(x1 − x2)

)
+ y−1

1 + y−1
2 − 2,

where the first of these expressions arises by applying x1
d
dx1

to (36) when m = 1, and using (35a),

and the second is given in [GJVn, p. 38].

6. Intersection numbers with one part

In this section, we use our strategy for the first time. This involves applying the fundamental
transformation to give results for the symmetrized Faber-Hurwitz series F gm on both the degeneration

and localization sides, to obtain results for Faber’s intersection numbers. Here, these results are
given in Section 6.1 for the case of a single (m = 1) part. Faber’s Intersection Number Conjecture,

giving 〈τg−1〉
Fab
g = ψg−1

1 , is immediate in this case, but it gives us an equation relating the two

generators ψg−1
1 and Gg,1 of A2g−1(M

rt
g,n). There is non-trivial geometric information to be gained

by relating these generators, which is described in Section 6.2.
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6.1. Intersection numbers with one part. We begin with a result for the localization side.

Theorem 6.1. For g ≥ 1, we have TF g1 (x1)Gg,1 = (2g − 3)!!
(4g−3
2g−1

)
y4g−2
1 ψg−1

1 .

Proof. From Corollary 5.1(b) we have T
g
1 =

∑g−1
k=0(−1)k〈τg−1−kλk〉

Fab
g ξ

(g−1−k)
1 . Together with The-

orem 5.4(a), this gives

[u2g−1](−u)1TΛ T
g
1(x1, u) = [u2g−1]〈τg−1〉

Fab
g (2g − 3)!!Y1(u)

2g−1 = [u2g−1](2g − 3)!!Y1(u)
2g−1ψg−1

1

where, for the second equality, we have used the immediate fact that 〈τg−1〉
Fab
g = ψg−1

1 for g ≥ 1.

But Y1(u)
2g−1 =

∑
i≥0

(−(2g−1)
i

)
(−1)iy2g−1+i

1 ui =
∑

i≥0

(2g−2+i
i

)
y2g−1+i
1 ui, and the result follows

immediately. �

Now we turn to the corresponding result for the degeneration side.

Theorem 6.2. For g ≥ 1, we have TF g1 (x1) = (4g − 3)!!
y
4g−2

1

4g−2 .

Proof. Let m = 1 in Corollary 5.2, to obtain x1
∂
∂x1

F g1 =
(
x1

∂
∂x1

Ĥ0
1

)(
x1

∂
∂x1

F g1

)
+
(
x1

∂
∂x1

)2g+1
Ĥ0

1.

Solving for x1
∂
∂x1

F g1 , and using (37a), we obtain

(38) x1
∂

∂x1
F g1 = y1

(
x1

∂

∂x1

)2g−1

(y1 − 1).

The polynomiality of F g1 follows immediately from (35a) (or we can use Theorem 5.3(b), with

m = 1), so from (35b) we have y3
1
∂
∂y1

TF g1 = y1

(
y3
1
∂
∂y1

)2g−1
y1 = (4g − 3)!! y4g

1 , where the second

equality follows by induction. The result follows by integrating in y1. �

6.2. Some immediate geometric consequences. Comparing the above two results, we obtain
the following result, which relates the generator Gg,1 of A2g−1(M

rt
g,n) with the generator ψg−1

1
suggested by Faber’s Intersection Number Conjecture.

Corollary 6.3. For g ≥ 1, Gg,1 = 2g

(g−1)!ψ
g−1
1 on A2g−1(Mg,1).

In particular, ψg−1
1 = 〈τg−1〉

Fab
g is another non-zero element (=basis) of the one-dimensional

vector space A2g−1(Mg,1), and this describes the change of basis from Gg,1 to ψg−1
1 .

Proof. Comparing Theorems 6.1 and 6.2, we obtain (2g − 3)!!
(4g−3
2g−1

)
ψg−1

1 = (4g−3)!!
4g−2 Gg,1, and the

result follows immediately. �

Corollary 6.4 ([P1, Thm. 4]).
∑g−2

i=0 (−1)iλiψ
g−1−i
1 = 2g−1ψg−1

1 /g!

Proof. Applying the usual (non-relative) virtual localization formula to Gg,1,∼, we obtain Gg,1,∼ =

ψ2g−1
1 −ψ2g−2

1 λ1 + · · ·+ (−1)gψg−1
1 λg. The result then follows from Corollary 6.3 and the fact that

Gg,1 = 2gGg,1,∼ (Proposition 3.1). �

Corollary 6.5. The class of the hyperelliptic curves in Mg is (22g−1)2g−1

g!(2g+1)(2g+2)κg−2.

(This was stated, for example, in the concluding remarks of [F1].) The argument carries through
for the locus of degree d covers fully ramified over two points.

Sketch of proof. The class Gg,2,∼ corresponds to the points [C, p, q] ∈ Mrt
g,2 where OC(p − q) is a

2-torsion point (along with a virtual class). The locus where OC(p − q) is trivial corresponds to
Gg,1. Thus the locus where OC(p − q) is 2-torsion but non-trivial has virtual class (22g − 1)Gg,1
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by Theorem 3.5. It is straightforward to check the virtual fundamental class on this locus is the
actual fundamental class (as mentioned in the proof of Theorem 3.5). This locus corresponds to
hyperelliptic curves with two marked Weierstrass points. Thus the locus in Mg,1 of hyperelliptic

curves with choice of one Weierstrass point has class 22g−1
2g+1 Gg,1 = (22g−1)2g−1

g!(2g+1) ψg−1
1 . Pushing forward

to Mg, and forgetting the choice of one of the 2g+2 Weierstrass points, we get the desired result. �

Corollary 6.6. For d, g ≥ 1, we have F g(d) = 1
d

∑d
i=1

(
d
i

)
i2g+i−1(d− i)d−i.

This is a corollary of the proof of Theorem 6.2, not of the result itself.

Proof. From (38) and (33b), we have x1
∂
∂x1

F g1 =
∑

n≥0
nn

n! x
n
1

∑
i≥1

i2g+i−1

i! xi1, and the result follows

from (31) and (15). �

Thus, for example, the class of non-singular genus g curves C admitting a degree d cover of P1

via O(dp) for some p ∈ C, ramified over an appropriate number of points is

1

d

d∑

i=1

(
d

i

)
i2g+i−1(d− i)d−iGg,1 =

1

d

d∑

i=1

(
d

i

)
i2g+i−1(d− i)d−i

2gκg−2

(g − 1)!
∈ A2g−1(Mg).

7. A strategy for an inductive proof of Faber’s Intersection Number Conjecture

In this section, we consider an inductive strategy for proving the Conjecture.

7.1. Final form of the Localization Tree Theorem. First, we define two generating series, in
which the genus g is marked by the indeterminate t.

The localization tree generating series is

Ψm(y1, . . ., ym, t) :=
∑

g≥1

t2g

(2g − 1)!!
[u2g−1](−u)mTΛ Tgm(x1, . . ., xm, u)/ψ

g−1
1 , m ≥ 1.(39)

The Faber generating series is

Φm(y1, . . ., ym, t) :=
∑

g≥1

22g−1 t2g

(2g − 1)!
TF gm(x1, . . ., xm), m ≥ 1.(40)

For Ψm, thanks to the fact that R2g−1(Mg,1) ∼= Q (Thm. 3.12), we “divide by ψg−1
1 ” using the

isomorphism

Q
×ψg−1

1 // R2g−1(Mg,1)

(combining (23) and Cor. 6.3), and thus we define the Faber intersection number

(41) 〈· · · 〉Fab

g := 〈 · · · 〉Fab
g /ψg−1

1 = 〈 · · · 〉Fab
g /〈τg−1〉

Fab
g .

Note that Ψm and Φm, since they require the operator T, are only defined when the operator C

yields a polynomial. So far, we have proved this polynomiality only for m = 1, 2, 3, in Theorem 5.3.
Subject to this, Ψm and Φm are both generating series with rational coefficients, and the next result
shows that they are equal.

Corollary 7.1 (Localization Tree Theorem — for genus generating series). For m ≥ 1,

Ψm(y1, . . ., ym, t) = Φm(y1, . . ., ym, t).
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Proof. The result follows from Corollary 5.1(a) by noting that
Gg,1

(2g−1)!! =
2gψ

g−1

1

(g−1)!(2g−1)!! =
22g−1ψ

g−1

1

(2g−1)!

for g ≥ 1, from Corollary 6.3. �

Corollary 7.1 is the final form of Theorem 3.11. It summarizes the relationship between the
localization side (dealing with Ψm) and the degeneration side (dealing with Φm) as the equality
of Ψm and Φm. Our strategy for exploiting this relationship in order to prove the Faber Conjecture
for a fixed number of parts is indirect. We prove in the following lemma that Corollary 7.1 implies
sufficiently many linearly independent linear equations for Faber’s intersection numbers to uniquely
identify them. This means that we can prove the Faber Conjecture iteratively on the number of
parts, by simply verifying the equality Ψm = Φm of Corollary 7.1 with Faber’s conjectured values
substituted for the intersection numbers. In fact, as we shall see, with these substituted values, we
are able to verify the equality Ψm = Φm for particular m simply by equating polynomials.

Lemma 7.2. For any n ≥ 2, if the Faber Conjecture is true for up to n− 1 parts, and

Ψn(y1, . . ., yn, t) = Φn(y1, . . ., yn, t)

with Faber’s conjectured values substituted for the intersection numbers with up to n parts, then the
Faber Conjecture is true for up to n parts.

Proof. Consider the equality Ψn(y1, . . ., yn, t) = Φn(y1, . . ., yn, t), and equate coefficients of t2g for
each fixed g ≥ 2. This gives an equation involving Faber’s intersection numbers with at most n
parts, and from Corollary 5.1(b), (39) and Theorem 5.4(a), we deduce that the only terms involving
the intersection numbers with exactly n, positive, parts are given by

(42)






∑
a1,...,an≥1,

a1+···+an=g+n−2
〈τa1 · · ·τan〉

Fab
g

1
(2g−1)!! [u

2g−1]
∏n
j=1(2aj − 1)!!Yj(u)

2aj+1

=
∑

a1,...,an≥1,
a1+···+an=g+n−2

∑
m1,...,mn≥0,

m1+···+mn=2g−1
〈τa1 · · ·τan〉

Fab
g

Qn
j=1(2aj−1)!!(2aj+mj

mj
)y

2aj+mj+1

j

(2g−1)!! .

Now under the hypothesis that the Faber Conjecture has been proved for up to n − 1 parts, we
are able to evaluate all Faber intersection numbers in the above equation with up to n − 1 parts,
as well as those with n parts, at least one of which is zero (by use of the string equation), and
we consider Faber’s intersection numbers with exactly n, positive, parts as unknowns. Now equate
coefficients of yi11 · · ·yinn in this equation for each i1, . . ., in ≥ 3 with i1 + · · · + in = 4g − 5 + 3n,
to obtain a linear equation that we shall refer to as Bi1,...,in . Then we thus obtain a system of(
4g−6+n
n−1

)
equations Bi1,...,in in the

(
g−3+n
n−1

)
“unknowns” 〈τa1 · · · τan〉

Fab
g , where a1, . . ., an ≥ 1, with

a1 + · · · + an = g − 2 + n. Let the coefficient matrix for this system be denoted by M, and note
that

(4g−6+n
n−1

)
≥
(
g−3+n
n−1

)
, since g, n ≥ 2. (We will not use the symmetry of these unknowns.)

Now we prove that this system has at most one solution. To do so, suppose that we consider
the unknowns in lexicographic order of the a1. . .an, and the equations in lexicographic order of
the i1. . .in (so we have ordered the rows and columns of M.) Note that, from (42), the entry in
row i1. . .in and column a1. . .an is non-zero if and only if ij ≥ 2aj + 1 for all j = 1, . . ., n. Then it
is straightforward to check that the submatrix of M consisting of all columns, and rows i1, . . ., in
with i1, . . ., in−1 ≥ 3 and odd, and i1 + · · · + in−1 ≤ 2g − 7 + 3n, is lower triangular, with non-zero
coefficients on the diagonal. Thus these rows of M are linearly independent, so the system has at
most one solution. The result follows since, if Faber’s conjectured values satisfy this system, then
they are uniquely the correct values for these intersection numbers. �

7.2. A lemma for the localization tree generating series. We consider first the localization

side. In order to determine a compact rational expression for the localization tree generating series
Ψm, we shall need the following lemma, where Ef denotes the even subseries of the formal power
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series f in the indeterminate t. Also, for i ≥ 1 we let

(43) Bi :=
√

1 − 4y2
i t, Ai :=

1 −Bi
2yi

.

Lemma 7.3. For a formal power series f ,
∑

g≥1 t
2g
[
u2g−1

]
f(u)Y1(u)

2g−1 = 1
2E t

(
1 +B−1

1

)
f(A1).

Proof. Now
[
u2g−1

]
f(u)Y1(u)

2g−1 =
[
t2g−1

] f(s)

1−t d
ds
Y1(s)

, from Lagrange’s Implicit Function Theorem

(see, e.g., [GJ1, Thm. 1.2.4]), where s is the unique formal power series solution (in t) of s = tY1(s),
which is the equation y1s

2 − s + y1t = 0, and so s = A1. But d
ds
Y1(s) = Y1(s)

2, so with s = A1,

we have 1− t d
ds
Y1(s) = 2B1

1+B1
. Then

[
u2g−1

]
f(u)Y1(u)

2g−1 =
[
t2g−1

]
1
2

(
1 +B−1

1

)
f(A1). The result

follows. �

7.3. Final form of the Degeneration Theorem. For the degeneration side, we describe the
general results that will allow us to obtain an explicit rational expression for the Faber generating
series Φm. First we give a compact expression for Φ1.

Corollary 7.4. y1
∂
∂y1

Φ1(y1, t) = E tB−1
1 .

Proof. From (40) with m = 1, and Theorem 6.2, we obtain

y1
∂

∂y1
Φ1(y1, t) =

∑

g≥1

22g−1 (4g − 3)!!

(2g − 1)!
y4g−2
1 t2g = t

∑

g≥1

(
−1

2

2g − 1

)(
−4y2

1t
)2g−1

,

and the result follows immediately. �

In the next result, we consider the top terms in Corollary 5.2, to obtain a simple iterative
equation for the Faber generating series Φm, m ≥ 2. Similarly to Corollary 5.2, there are two terms
in this result with denominator yi−yj , and the numerator is antisymmetric in yi, yj, so these terms
combine to give a formal power series. Also, to account for each individual term (yi − yj)

−1, we
adopt the total ordering yi ≺ yj if i < j, to obtain an ordered Laurent series ring in y1, . . . , ym.

The statement of the result uses the operator

(44) ∆k :=
∑

i≥1

yki
∂

∂yi
, k ≥ 2,

and the generating series

(45) Υm(y1, . . ., ym, t) :=
∑

g≥1

22g−1 t2g

(2g − 1)!
T

m∑

i=1

(
xi

∂

∂xi

)2g+1

Ĥ0
m(x1, . . ., xm), m ≥ 1.

Lemma 7.5 (Degeneration Theorem — Join-cut equation for Φm). For m ≥ 2 we have

∆2Φm(y1, . . ., ym, t) =
∑

i2≥2,i3≥0,
i2+i3=m−1

sym1,i2,i3

(
y3
1

∂

∂y1
T Ĥ0

1+i2(x1, xρ2)

)(
y3
1

∂

∂y1
Φ1+i3(y1, yρ3 , t)

)

+sym1,1,m−2
y5
1y2

y1 − y2

∂

∂y1
Φm−1(y1, yρ3 , t) + Υm(y1, . . ., ym, t).

Proof. From the symmetrized Join-cut equation (Cor. 5.2), and moving the contribution for i2 = 0
from the summation on the right hand side to the left hand side, and using (37a) and (35a), we

have
(∑m

i=1
xi

yi

∂
∂xi

+m− 1
)
F gm on the left hand side. But, from (37b) and (35a), we have

x1
∂

∂x1
Ĥ0

2 =
y2
1(y1 − 1)

y1 − y2
− y1(y1 − 1) − (y1 − 1) −

x1

x1 − x2
=
y2
1(y2 − 1)

y1 − y2
−

x2

x1 − x2
,
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and we apply this result to combine the contribution for i2 = 1 in the summation on the right hand
side with the sym1,1,m−2 term on the right hand side, to give

∑

i2≥2,i3≥0,
i2+i3=m−1

sym1,i2,i3

(
x1

∂

∂x1
Ĥ0

1+i2(x1, xρ2)

)(
x1

∂

∂x1
F g1+i3(x1, xρ3)

)

+sym1,1,m−2

y2
1(y2 − 1)

y1 − y2
x1

∂

∂x1
F gm−1(x1, xρ3) +

m∑

i=1

(
xi

∂

∂xi

)2g+1

Ĥ0
m,

on the right hand side. Now, multiply on both sides by 22g−1 t2g

(2g−1)! , sum over g ≥ 1, and apply T,

to obtain the result, from (40) and (35b). �

Lemma 7.5 is the final form of Theorem 3.7. In order to apply this result, we require a technical
result about the invertibility of the partial differential operator ∆k.

Proposition 7.6. For m ≥ 1, k ≥ 2, the operator ∆k is invertible for formal power series in
y1, . . ., ym in which every monomial has positive exponent for each of y1, . . ., ym.

Proof. Let A :=
∑

n1,...,nm≥1 a(n1,...,nm)y
n1

1 · · ·ynm
m and B :=

∑
n1,...,nm≥1 b(n1,...,nm)y

n1

1 · · ·ynm
m , and

suppose that ∆kA = ∆kB. We prove that a(n1,...,nm) = b(n1,...,nm) for all n1, . . ., nm ≥ 1 by putting
a partial order ≺ℓ on the (n1, . . ., nm): we let (n1, . . ., nm)≤ be the vector of length m containing the
ni in weakly increasing order, and we define (n1, . . ., nm) ≺ℓ (i1, . . ., im) if and only if (n1, . . ., nm)≤
precedes (i1, . . ., im)≤ in lexicographic order.

To prove the result for (n1, . . ., nm), suppose that ni = max{n1, . . ., nm} (make an arbitrary choice

of i if there is more than one, equal, maximum element), and equate coefficients of yn1

1 · · ·yni+k−1
i · · ·ynm

m

in ∆kA = ∆kB, to obtain

(46)






nia(n1,...,nm) +
∑

j 6=i,
nj≥k

(nj − k + 1) a(n1,...,nj−k+1,...,ni+k−1,...,nm)

= nib(n1,...,nm) +
∑

j 6=i,
nj≥k

(nj − k + 1) b(n1,...,nj−k+1,...,ni+k−1,...,nm).

Now consider any fixed linear extension of ≺ℓ, and note that, for any term in the summations
in (46), we have (n1, . . ., nj − k + 1, . . ., ni + k − 1, . . ., nm) ≺ℓ (n1, . . ., nm). The result follows
from (46), by induction on the position in this linear extension. �

8. Proof of Faber’s Intersection Number Conjecture for 2 and 3 parts, with

comments about the general case of m parts

8.1. Faber’s Intersection Number Conjecture for two parts. In this section, we prove
Faber’s Conjecture for the case of two parts. It will be convenient to “smooth” the result to
allow zeros, by applying the string equation. For cases of (2) when some di = 0, we can use the
string equation to deduce a consistent value. For example, when n = 2, d1 = g, d2 = 0, the string
equation gives 〈τgτ0〉

Fab
g = 〈τg−1〉

Fab
g = 1, which agrees with (2), so Faber’s Conjecture for n = 2

becomes

(47) 〈τd1τd2〉
Fab

g =
(2g − 1)!!

(2d1 − 1)!!(2d2 − 1)!!
, d1 + d2 = g, d1, d2 ≥ 0, g ≥ 1.

For the localization side, we have the following result. In the proof, we use the notation

(48) Ŷm := Ym(A1), m ≥ 1,

where Ym, A1 are defined in (43), (34), respectively.
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Theorem 8.1. If the Faber Conjecture is true for n = 2, then

Ψ2(y1, y2, t) = E sym1,1

(
y3
1y2t

y1 − y2
−

y4
1y

2
2t

(y1 − y2)(y
2
1 − y2

2 + 4y2
1y

2
2t)

)
B−1

1 .

Proof. From Corollary 5.1(b) we have T
g
2 =

∑
a1,a2≥0,
a1+a2≤g

(−1)g−a1−a2〈τa1τa2λg−a1−a2〉
Fab
g ξ

(a1)
1 (x1)

ξ
(a2)
1 (x2) +

∑g−1
k=0 (−1)k〈τg−1−kλk〉

Fab
g ξ

(g−1−k)
2 , where we have used the symmetry of the Faber

symbol in the first summation. Together with Theorem 5.4(a),(b) and (39), this gives

Ψ2(y1, y2, t) =
∑

g≥1

t2g

(2g − 1)!!
[u2g−1]

∑

a1,a2≥0,
a1+a2=g

〈τa1τa2〉
Fab

g

2∏

j=1

(2aj − 1)!!Yj(u)
2aj+1

−
∑

g≥1

t2g

(2g − 1)!!
[u2g−1]〈τg−1〉

Fab

g (2g − 1)!!usym1,1
y2
1y2

y1 − y2
Y1(u)

2g+1.

Now, if the Faber Conjecture is true for n = 2, then from (47), we have

Ψ2(y1, y2, t) =
∑

g≥1

t2g[u2g−1]




∑

a1,a2≥0,
a1+a2=g

Y1(u)
2a1+1Y2(u)

2a2+1 − sym1,1

y2
1y2

y1 − y2
uY1(u)

2g+1



 ,

But
∑

a1,a2≥0,
a1+a2=g

Y1(u)
2a1+1Y2(u)

2a2+1 = sym1,1
Y1(u)2g+3Y2(u)
Y1(u)2−Y2(u)2

, and from Lemma 7.3 we conclude that

Ψ2(y1, y2, t) = 1
2E sym1,1t

(
1 +B−1

1

)
(

Ŷ 4
1 Ŷ2

Ŷ 2
1 − Ŷ 2

2

−
y2
1y2

y1 − y2
A1Ŷ

2
1

)
.

From the proof of Lemma 7.3, we have A1 = ty1/(1 − y1A1), so routinely simplifying, we obtain

Ψ2(y1, y2, t) = E sym1,1

(
y3
1y2tA1(1 − y2A1)B

−1
1

(y1 − y2)(y1 + y2B1)
−
y3
1y2A

2
1B

−1
1

y1 − y2

)

= E sym1,1

(
y3
1y2tB

−1
1

y1 − y2
+

y3
1y

3
2t− y4

1y
2
2tB

−1
1

(y1 − y2)(y
2
1 − y2

2B
2
1)

)
.

Now it is straightforward to verify that E sym1,1
y31y

3
2t

(y1−y2)(y2
1
−y2

2
B2

1
)

= 0, and the result follows with

y2
1 − y2

2B
2
1 = y2

1 − y2
2 + 4y2

1y
2
2t. �

For the degeneration side, we have the following result.

Theorem 8.2. ∆3∆2Φ2(y1, y2, t) = E sym1,1

(
∆3

y4
1
y2

y1−y2
tB−1

1 + 3y5
1y2tB

−5
1

)
.

Proof. We begin by using (36) to obtain ∆3T Ĥ0
2 = y1y2, so, from (35b), we have T

(
x1

∂
∂x1

)2g+1
∆3Ĥ

0
2

=
(
y3
1
∂
∂y1

)2g+1
y1y2 = (4g + 1)!!y4g+3

1 y2, where the second equality follows by induction. This gives

∆3Υ2 = sym1,1

∑

g≥1

22g−1 (4g + 1)!!

(2g − 1)!
y4g+3
1 y2t

2g = sym1,1y
5
1y2t

∑

g≥1

3

(
−5

2

2g − 1

)(
−4y2

1t
)2g−1

= 3E sym1,1y
5
1y2tB

−5
1 .

Now, consider Lemma 7.5 with m = 2, and apply ∆3 to both sides, to obtain ∆3∆2Φ2 =

∆3sym1,1
y5
1
y2

y1−y2
∂
∂y1

Φ1(y1, t) + ∆3Υ2. The result follows from Corollary 7.4 and the expression for

∆3Υ2 above, since ∆3 and sym1,1 commute. �
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Now we compare the results from the localization and degeneration sides, to obtain a proof of
Faber’s Conjecture for two parts.

Theorem 8.3. Faber’s Intersection Number Conjecture is true for n = 2.

Proof. By applying ∆3∆2 to Theorem 8.1, and from Theorem 8.2, we routinely simplify to prove
that ∆3∆2Ψ2(y1, y2, t) and ∆3∆2Φ2(y1, y2, t) (under the condition that the Faber Conjecture is true

for n = 2) are both equal to E sym1,1
2y5

1
y2tB

−5

1

y1−y2

(
3y1 − 2y2 − 10y3

1t+ 4y2
1y2t+ 16y5

1t
2 − 8y4

1y2t
2
)
.

Thus we have proved that if the Faber Conjecture is true for n = 2, then ∆3∆2Ψ2(y1, y2, t) =
∆3∆2Φ2(y1, y2, t). Then Proposition 7.6 implies that Ψ2(y1, y2, t) = Φ2(y1, y2, t), and the result
follows from Lemma 7.2. �

8.2. Faber’s Intersection Number Conjecture for three parts. The proof for three parts
follows the steps and strategy of the proof for two parts, with no further technical difficulties.
However, the full details of some of the expressions are somewhat longer, and we omit many below.

For the localization side, we determine that, if Faber’s Conjecture is true for up to 3 parts, then

Ψ3(y1, y2, y3, t) = 1
2E sym1,2t

d

dt
t
(
1 +B−1

1

) Ŷ 8
1 Ŷ2Ŷ3

(Ŷ 2
1 − Ŷ 2

2 )(Ŷ 2
1 − Ŷ 2

3 )
(49)

−1
2E sym1,1,1t

−2 d

dt
t4
(
1 +B−1

1

) y2
1y2

y1 − y2
A1

Ŷ 6
1 Ŷ3

Ŷ 2
1 − Ŷ 2

3

+1
2E sym1,2t

−2 d

dt
t3
(
1 +B−1

1

) y6
1y2y3

(y2 − y1)(y3 − y1)
Ŷ 4

1

+1
2E sym1,1,1t

(
1 +B−1

1

)
α+ 1

2E sym1,2t
(
1 +B−1

1

)
β,

where

α = −
y2
3y2

y3 − y2
A1

(
Ŷ 4

1 Ŷ
3
3

Ŷ 2
1 − Ŷ 2

3

+ 2
Ŷ 4

1 Ŷ
5
3

(Ŷ 2
1 − Ŷ 2

3 )2

)
+ 2

y2
1y2

y1 − y2
A1

Ŷ 8
1 Ŷ3

(Ŷ 2
1 − Ŷ 2

3 )2

+
y3
1y

4
2y3

(y2 − y3)(y1 − y2)2
A2

1Ŷ
2
1 Ŷ2 +

y6
1y2y3

(y2 − y1)2(y3 − y1)
A2

1Ŷ
3
1 ,

β = (1 − y1)Ŷ
4
1 Ŷ2Ŷ3 + 3

y5
1y2y3

(y2 − y1)(y3 − y1)
A2

1Ŷ
3
1 .

This is a large expression for Ψ3, but the method of proof follows exactly that of Theorem 8.1, and
is routine: we apply Corollary 5.1(b) with m = 3, and parts (a)–(c) of Theorem 5.4, to obtain an
expression for Λ T3, and use a smoothing of Faber’s Conjecture for three parts to account for parts
that are zero. The above expression then follows from (39).

For the degeneration side, we determine that

∆2Φ3(y1, y2, y3, t) = E sym1,2y
5
1y2y3tB

−1
1 + 3E sym1,2y

5
1y2y3tB

−5
1(50)

+1
2E sym1,1,1

(
y5
1y3

y1 − y3

∂

∂y1
+

y5
2y3

y2 − y3

∂

∂y2

)
t(1 +B−1

1 )

(
Ŷ 4

1 Ŷ2

Ŷ 2
1 − Ŷ 2

2

−
y2
1y2

y1 − y2
A1Ŷ

2
1

)
.

The method of proof of this result follows exactly that of Theorem 8.2: we apply Lemma 7.5 with

m = 3, using the expression in Theorem 8.1 for Φ2 = Ψ2 and the fact that TĤ3 = y1y2y3, from (36),
which implies that Υ3(y1, y2, y3, t) = 3E sym1,2 y

5
1y2y3tB

−5
1 , giving the result.

Now we compare the results from the localization and degeneration sides, to obtain a proof of
Faber’s Conjecture for three parts.

Theorem 8.4. Faber’s Intersection Number Conjecture is true for n = 3.
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Proof. Applying ∆2 to (49), and from (50), with routine reductions (using Maple), we prove that
∆2Ψ3(y1, y2, y3, t) = ∆2Φ3(y1, y2, y3, t), under the condition that the Faber Conjecture is true for
n ≤ 3. Then Proposition 7.6 implies that Ψ3(y1, y2, y3, t) = Φ3(y1, y2, y3, t), and the result follows
from Lemma 7.2 and Theorem 8.3. �

8.3. Intersection numbers with four or more parts. For the case of n parts, on the localization

side, we need to determine Λ ξ
(i)
n , for which we need an expression for the double Hurwitz series

H0
n. Explicit expressions for the latter are known for n = 4 [GJV2, Cor. 5.7] and n = 5 [GJV2,

Cor. 5.8], and with the help of Maple, we could in principle thus obtain expressions for Ψ4 and Ψ5

analogous to (49).

For the degeneration side, we apply Lemma 7.5, and note that Φn is obtained recursively from

Φj, j < n, once we have Ĥ0
n, which is given explicitly for all n in (36). Thus we can obtain a

rational expression for Φn for any n, by using Maple to help with the size of the expressions.

Together, via Lemma 7.2, these would enable us to prove Faber’s Conjecture for four and five
parts. However, we are prevented from proving the result for larger values of n because we do
not have explicit expressions for the double Hurwitz series H0

n, and we do not see how to obtain
an explicit formula that holds for all n. In order to use our methodology to prove the result for
arbitrary n, we would need to use our functional equations for the various tree series given in
Theorem 4.4, and then use the Join-cut Equation for the double Hurwitz series.

Appendix A. Proofs of Theorems 5.3 and 5.4

In this Appendix we develop the substantial amount of material that is required to determine

Λ ξ
(i)
m for m = 1, 2, 3, and is not required elsewhere in the paper. A key ingredient is the sym-

metrization of the double Hurwitz generating series.

A.1. Preliminaries. (a) Completing the symmetrization on the localization side: In order to de-

termine Λ ξ
(i)
m we have the following result, which together with Corollary 5.1 completes the sym-

metrization of Theorem 4.4 (the third form of the Localization Tree Theorem). It requires the
symmetrized series

(51)

{
fj,m(x1, . . ., xm, u) := Ξmfj(z, u;p)), gj,m(x1, . . ., xm, u) := Ξmgj(z, u;p)),
H0
m(x1, . . ., xm, u;q) := ΞmH

0(z, u;p,q),

for m ≥ 1, and the substitution operator

(52) Ω: qi 7→
ii−1

i!
, i ≥ 1.

Corollary A.1. For m ≥ 1,

a) ξ(i)m =
∑

j≥1

jj+i

j!
fj,m, i ≥ 0,

where, for j ≥ 1,

b) fj,m =
∑

k≥0,j1,...,jk≥1,
i0,...,ik≥1,
i0+···+ik=m

symi0,...,ik

u−2

k!

(
Ω j

∂k+1

∂qj∂qj1· · ·∂qjk
H0
i0

(xρ0 , u;q)

) k∏

a=1

gja,ia(xρa , u),

c) gj,m =
∑

k≥0,j1,...,jk≥1,
i1,...,ik≥1,
i1+···+ik=m

symi1,...,ik

(j + j1 + · · · + jk)
k−2

k!

jj+1

j!

k∏

a=1

jjaa
ja!

fja,ia(xρa , u).

37



Proof. The result follows by applying Ξm to (28) Theorem 4.4(c) and (d), for m ≥ 1, and using
the properties of Ξm given in Lemmas 4.1–4.3 of [GJVn]. �

We shall determine Λ ξ
(i)
m , m = 1, 2, 3, by applying Corollary A.1 directly. The results that are

needed for the series H0
m and its partial derivatives are given in the next two sections.

(b) The symmetrized double Hurwitz series, genus 0: Now let Q(t) :=
∑

j≥1 qjt
j, and v be the

unique formal power series solution of the functional equation

(53) v = xeuQ(v).

Let

(54) vi := v(xi), Qi := Q(vi), µ(t) := (1 − utQ′(t))−1, µi := µ(vi).

Then in [GJV2], we proved that

(55) x1
∂

∂x1
H0

1 = uQ1, H0
2 = log

(
v1 − v2
x1 − x2

)
− uQ1 − uQ2, H0

3 =
3∑

i=1

(µi − 1)
∏

1≤j≤3,
j 6=i

vj
vi − vj

.

(c) Partial derivatives of the symmetrized double Hurwitz series: Differentiating (53) gives

(56) x1
∂

∂x1
v1 = v1µ1,

∂

∂qj
v1 = uvj+1

1 µ1,

and from (55) and (56) we obtain

(57)
∂

∂qj
H0

2 =
uvj+1

1 µ1 − uvj+1
2 µ2

v1 − v2
− uvj1µ1 − uvj2µ2 = sym1,1

uvj1µ1v2
v1 − v2

.

For partial derivatives of H0
1 in general, we have the following result.

Lemma A.2. (a) For j ≥ 1, ∂
∂qj

H0
1 = u

j
vj1.

(b) For k ≥ 1, j1, . . ., jk ≥ 1, ∂k

∂qjk
···∂qj1

H0
1 = uk

(
µ1v1

∂
∂v1

)k−2 (
µ1v

j1+···+jk
1

)
.

Proof. Differentiating (55), we obtain

∂

∂qj
x1

∂

∂x1
H0

1 = uQ′(v1)
∂v1
∂qj

+ uvj1 = uQ′(v1)uv
j+1
1 µ1 + uvj1 = uvj1µ1,

where we have used (56) for the second equality. Dividing by x1 and integrating, we obtain ∂
∂qj

H0
1 =

∫ x1

0 uvj1µ1
dx1

x1
=
∫ v1
0 uvj−1

1 dv1, where we have used (56) to change variables for the second equality.

Part (a) follows immediately.

We prove part (b) by induction on k. For the base case, note that the result is true for k = 1,
since this is equivalent to part (a) above. Now assume that the result holds for k− 1 ≥ 1, and note
that (56) implies the operator identity µ1v1∂/∂v1 = x1∂/∂x1, so we have

∂k

∂qjk · · ·∂qj1
H0

1 =
∂

∂qjk
uk−1

(
x1

∂

∂x1

)k−2(
µ1v1

∂

∂v1

)−1 (
µ1v

j1+···+jk−1

1

)

= uk−1

(
x1

∂

∂x1

)k−2 ∂

∂qjk

(
v
j1+···+jk−1

1

j1 + · · · + jk−1

)
,

and part (b) follows from (56) and the operator identity. �
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(d) Polynomiality and the symmetrized double Hurwitz series: From Corollary A.1(a), (b), to eval-

uate Λ ξ
(i)
m we need to apply the substitution Λ Ω to partial derivatives of the symmetrized double

Hurwitz series H0
m, which we have shown above can be expressed in terms of vi and µi. Thus define

(58) Vi := Λ Ω vi.

In the following result, the action of the change of variables C, the second step in our fundamental
transformation, is given for expressions in Vi. Note how indirectly we proceed in the proof, especially
for part (a), as referred to in the discussion following (33). This result is the key to polynomiality
on the localization side.

Lemma A.3. For i ≥ 1,

a) C y(Vi) =
(1 − u)yi
1 − uyi

, b) C Λ Ω µi =
1 − uyi
1 − u

, c) C Vi
∂

∂Vi
= y2

i (yi − 1)
1 − u

1 − uyi

∂

∂yi
C.

Proof. For part (a), the series w = w(x) defined in (33a) is the unique formal power series solution
to w = xew, which we shall call the tree equation (see, e.g., [GJ1, Ex. 1.2.5]). Now Vi = V (xi),
where, from (53), V = V (x) is the unique formal power series solution to

(59) V = (1 − u)−1x exp



−u
∑

j≥1

jj−1

j!
V j



 = (1 − u)−1xe−uw(V ),

where the second equality follows from (33a). But the tree equation gives w(V ) = V ew(V ), and

eliminating V between this equation and (59), we obtain (1 − u)w(V ) = xe(1−u)w(V ). Comparing
this to the tree equation, we conclude that (1 − u)w(V (x)) = w(x), and by (33b), this implies

(60) y(Vi) =
(1 − u)yi
1 − uyi

,

where here yi = y(xi) is a series in xi. Part (a) follows immediately.

For part (b), from (54) and (33b) we have

Λ Ω µi =
1

1 + u
∑

j≥1
jj

j! V
j
i

=
1

1 + u(y(Vi) − 1)
,

and part (b) follows immediately from part (a).

For part (c), from (35a), we have

(61) Vi
∂

∂Vi
= y(Vi)

2(y(Vi) − 1)
∂

∂y(Vi)
.

But, by differentiating (60), we obtain

∂y(Vi)

∂yi
=

1 − u

(1 − uyi)2
=

y(Vi)
2

(1 − u)y2
i

,

which implies C y(Vi)
2 ∂
∂y(Vi)

= (1 − u)y2
i
∂
∂yi

C, and part (c) follows immediately from (61). �

(e) Two results: In the proofs of Section A.2, we make use of the identity

(62)
∑

j,k≥1

1

j + k

jj+1

j!
V j

1

kk

k!
V k

2 =
V2

V2 − V1
− y(V1)

2 y(V2) − 1

y(V2) − y(V1)
,

whose proof follows from [GJ2], and the fact (an easy induction) that

(63)

(
y3
i

1 − uyi

∂

∂yi

)i
yi

1 − uyi
= (2i− 1)!!

(
yi

1 − uyi

)2i+1

, i ≥ 1.
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A.2. The proofs. Proofs of Theorem 5.3(a) (m = 1), and Theorem 5.4(a): From Corollary A.1(b)

with m = 1, Lemma A.2(a) and (58), we have

(64) Λ fj,1 = u−2ΛΩ j
∂

∂qj
H0

1 = −u−1ΛΩ vj1 = −u−1V j
1 .

Then from Corollary A.1(a) with m = 1, we obtain

Λ ξ
(i)
1 =

∑

j≥1

jj+i

j!
Λ fj,1 = −u−1

∑

j≥1

jj+i

j!
V j

1 = −u−1

(
V1

∂

∂V1

)i
(y(V1) − 1) ,

from (33b). But Lemma A.3(a) and (c) give

C Λ ξ
(i)
1 = −u−1(1 − u)i

(
y2
1

y1 − 1

1 − uy1

∂

∂y1

)i((1 − u)y1

1 − uy1
− 1

)
,

and Theorem 5.3(a) (m = 1) follows immediately. Then T Λ ξ
(i)
1 = T u−1(1 − u)i+1

(
y3
1

1−uy1
∂
∂y1

)i

y1
1−uy1

, and Theorem 5.4(a) follows immediately from (63). �

Proofs of Theorem 5.3(a) (m = 2), and Theorem 5.4(b): From Corollary A.1(c) withm = 1, and (64),
we obtain

(65) Λ gj1,1(x1, u) =
∑

j2≥1

1

j1 + j2

jj1+1
1

j1!

jj22
j2!

Λ fj2,1(x1, u) = −u−1 j
j1+1
1

j1!

∑

j2≥1

1

j1 + j2

jj22
j2!
V j2

1 ,

and from Corollary A.1(b) with m = 2, we obtain Λ fj,2 = S1 + S2, where

S1 = u−2ΛΩ j
∂

∂qj
H0

2, S2 = u−2sym1,1

∑

j1≥1

Λ gj1,1(x2, u) Ω j
∂2

∂qj∂qj1
H0

1(x1, u).

We can determine S1 immediately from (57), giving S1 = −u−1j sym1,1
V

j
1
V2

V1−V2
ΛΩµ1. To determine

S2, use Lemma A.2 with k = 2 and (65), to obtain S2 = −u−1j sym1,1V
j
1 (ΛΩ µ1)

∑
j1,j2≥1

1
j1+j2

j
j1+1

1

j1!
V j1

1

j
j2
2

j2!
V j2

2 . Adding S1 and S2, and using (62), we get fj,2 = u−1j sym1,1V
j
1 y(V1)

2 y(V2)−1
y(V2)−y(V1) ΛΩ µ1.

Then from Corollary A.1(a) with m = 2, we obtain

Λ ξ
(i)
2 =

∑

j≥1

jj+i

j!
Λfj,2 = u−1sym1,1y(V1)

2 y(V2) − 1

y(V2) − y(V1)
(ΛΩ µ1)

∑

j≥1

jj+i+1

j!
V j

1

= u−1sym1,1y(V1)
2 y(V2) − 1

y(V2) − y(V1)
(ΛΩ µ1)

(
V1

∂

∂V1

)i+1

(y(V1) − 1) ,

from (33b). Now Lemma A.3(a),(b),(c) give

C Λ ξ
(i)
2 = u−1(1 − u)i+1sym1,1

y2
1(y2 − 1)

y2 − y1

(
y2
1

y1 − 1

1 − uy1

∂

∂y1

)i+1((1 − u)y1

1 − uy1
− 1

)
,

and Theorem 5.3(a) (m = 2) follows immediately. Then we have

T Λ ξ
(i)
2 = T u−1(1 − u)i+2sym1,1

y2
1y2

y2 − y1

(
y3
1

1 − uy1

∂

∂y1

)i+1
y1

1 − uy1
,

and Theorem 5.4(b) follows immediately from (63). �

Outline of proofs of Theorem 5.3(a) (m = 3), and Theorem 5.4(c): The method of proof of these
results follows those for the cases m = 1, 2 above, with no further technical difficulties. We give
only an outline. We first determine Λ fj,3 from Corollary A.1(b) This requires Λ gj,2, which we
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determine from Corollary A.1(c), and the partial derivatives ∂3

∂qj∂qj1∂qj2
H0

1,
∂2

∂qj∂qj1
H0

2 and ∂
∂qj

H0
3.

But rational expressions for these partials are routinely obtained, from Lemma A.2(b) for H0
1, and

by applying the chain rule and (56) to (57) and (55). We then use Corollary A.1(a) with m = 3 to

obtain an explicit expression for Λ ξ
(i)
3 , and then apply C to prove Theorem 5.3(a) (m = 3). Then

Theorem 5.4(c) follows immediately. �
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Appendix B. Glossary of Notation

If a symbol in column 1 has an argument, it appears as the first item of the entry in column 3.
In column 2,“C” denotes “Corollary”, “Cn” denotes “Conjecture”, “D” denotes “Definition”, “P”
denotes “Proposition” “T” denotes “Theorem”, “b” denotes “immediately before”, “f” denotes
“immediately following” and “I” denotes “Introduction to”.

‡ f(21) Removal of contribution of
root from corresponding prod-
uct

• D3.10 Root-vertex of tree t

⋆ D4.2 Combinatorial product
[xk]f - Coefficient of xk in a formal

power series f
[., .]η D4.1 A,wt : Exponential generat-

ing series
|α| I§3 Sum of parts of α
〈 · · · 〉Fab

g (3) τa1 · · · τanλk : Faber symbol
for π∗ (ψa11 · · ·ψan

n λk)

〈· · · 〉Fab
g (41) τa1 · · · τanλk : Faber number

α I§3 Ptn. of d: branching over ∞
α (18)

∐
v∈V∞

γv

α(t) bD4.2 Relabelled localization tree
β §3.1.2 Ptn. of d: branching over 0
βv D3.10 List of weights on 0∞-edges

incident with ∞-vertex v
γv D3.10 List of weights on all ∞t-edges

incident with ∞-vertex v
∆k (44) Partial differential operator
δv D3.10 List of weights on 0∞-edges

incident with 0-vertex v
ǫ(e) D3.10 Weight on a 0∞-edge of t

η0(t) D3.10 No. of non-root 0-vertices in t

ηk(t) bD4.1 No. of t-vertices in t incident
with edge of weight k

Υm (45) (y1, . . . , ym)
κi §2.2 “κ-class”
Λ (32) Substitution operator u 7→

−u, xi 7→ (1 − u)−1xi
λi §2.2 λ-class
µ, µi (54) Used for double Hurwitz series
Ξm (29) Symmetrization operator

ξ(i) (28) (z, u;p) : Localization tree se-
ries

ξ
(i)
m (31) (x1, . . . , xm) : Symmetrized lo-

calization tree series
Φm (40) (y1, . . . , ym, t) : Generating se-

ries for TF gm(x1, . . ., xm)

ρj (30) Used in Ξm
Ψm (39) (y1, . . . , ym, t) : Generating se-

ries for TΛ T
g
m/Gg,1

ψi §2.1 First Chern class
Ω (52) Substitution operator qi 7→

ii−1

i!
Ωbr,Ωbr

0 §4.2 Variants of branch decomposi-
tions for treesΩbr

∞

Ai (43) -
A(t) (21) Weight function for t

B(t) (20) Weight function for t

Bi (43) -
br (5) Fantechi-Pandharipande

branch morphism
C(t) (20) Weight function for t

C f(33) Change of variables xi ; yi
D(t) (20) Weight function for t

d §3.1.1 Degree of a cover
E b(43) Even subseries operator
E0∞(t) D3.10 Set of edges 0∞-edges of t

E∞t(t) D3.10 Set of edges ∞t-edges of t

Fg,α (8) Faber-Hurwitz class
F gα (13) Faber-Hurwitz number, ∈ Q;

note Fg,α = F gαGg,1

F g (15) (z;p): Generating series for
Faber numbers F gα

F gm (31) (x1, . . . , xm) Symmetrized
F g(z;p)

fj T4.4 Generating series for T0,j

fj,m (51) (x1, . . ., xm, u): Symmetrized
series for T0,j

Gg,1 T3.5 A “natural generator” of
R2g−1(Mg,1), C6.3

Gg,d T3.5 -
Gg,d,∼ T3.5 -
g §2.1 Genus (of a curve)
gj T4.4 Generating series for T∞,j

gj,m (51) (x1, . . ., xm, u) symmetrized
series for T∞,j

H0
α (11) Genus 0 (single) Hurwitz no.

H0
α,β (26) Genus 0 double Hurwitz no.

42



H
g,α
j §3.2 Hurwitz class

Ĥ0 (14) (z;p): Gen. series for
genus 0 single Hurwitz
nos. H0

α

H0 (27) (z, u;p;q): Gen. series
for genus 0 double Hur-
witz nos. H0

α,β

Ĥ0
m (31) (x1, . . ., xm): Sym-

metrized single Hurwitz
series

H0
m (51) (x1, . . ., xm, u;q): Sym-

metrized double Hurwitz
series, genus 0

L P3.1 Class in Symr
g
α,β(P1)

l(α) I§3 Number of parts of α
Mg §2.1 Moduli space of smooth

curves
Mg,n §2.1 Moduli space of stable b-

pointed genus g curves
Mg,α(P

1) §3.1.1 Moduli space of genus g
relative stable maps to P1

relative to one pt. ∞
Mg,α,β(P

1) §3.1.2 Moduli space of relative
stable maps to P1 relative
to two points 0 and ∞

Mg,α,β(P
1)∼ §3.1.2 Moduli space of “rubber

maps”
Mg,α(P

1)rt §3.1.3 Moduli space of relative
stable maps with rational
tails

Mg,α,β(P
1)rt §3.1.3 Similar to the above

Mg,α(P
1)• §3.1.4 Possibly disconnected

moduli space
P
g
m(. . . ) (19) (α1, . . . , αm): Faber

polynomial
P I§3 Set of all non-empty par-

titions
p (27) (p1, p2, . . .)
pi f(14) Indeterminate marking a

part i in α
Q(t) (54) Generating series for in-

determinates qi
q (27) (q1, q2, . . .)
qi f(27) Indeterminate marking a

part i in β

R∗(Mrt
g,n) I§1 Tautological ring of

Mrt
g,n

rgα (4) “Expected” no. of
branch pts. away from
∞

rgα,β (6) “Expected” no. of
branch pts. away from 0
and ∞

rFab
g,α (9) Number of fixed branch

pts. on P1

r∞ (17) -
Rj(M) S2.2 RdimM−j(M) for open

subset M of Mg,n

Si fT5.3 Operator for terms of to-
tal degree i

symi1,.,ik
f(30) Summation operator for

symmetrization
Tg,m,T0,j D3.10 Sets of localization trees
T∞,j

T, T′ §5.3 Operators for maximum
degree

T Ξm §5 Fundamental transfor-
mation

Tg T4.4(b) (z, u;p): Tree sum re-
lated to generating series
for Fg,α

T
g
m (31) (x1, . . ., xm, u): Sym-

metrized Tg(z, u;p)
t D3.10 Localization tree
V0(t) D3.10 Set of 0-vertices in t

V∞(t) D3.10 Set of ∞-vertices in t

Vt(t) D3.10 Set of t-vertices in t

Uk(S) fL4.3 Unordered list
v, vi (53),(54) Implicitly defined indets.

for double Hurwitz series
vi §4.2 0-vertex labelled i
Vi (58) Transform of vi
w,wi (33a) Rooted tree series
wγ §4.2 Star of t-vertices rooted

at an ∞-vertex
xi (29) Indeterminates for sym-

metrized series

Ŷm (48) -
Yi(u) (34) -
y, yi (33b) Implicitly defined indets.

for symmetrized series
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