THREE EXAMPLES OF MONTE-CARLO MARKOV
CHAINS: AT THE INTERFACE BETWEEN STATISTICAL
COMPUTING, COMPUTER SCIENCE, AND STATISTICAL

MECHANICS

PERSI DIACONIS* AND SUSAN HOLMES!

Abstract. The revival of interest in Markov chains is based in part on their re-
cent applicability in solving real world problems and in part on their ability to resolve
issues in theoretical computer science. This paper presents three examples which are
used to illustrate both parts: a Markov chain algorithm for estimating the tails of
the bootstrap also illustrates the Jerrum-Sinclair theory of approximate counting. The
Geyer-Thompson work on Monte-Carlo evaluation of maximum likelihood is compared
with work on evaluation of the partition function. Finally, work of Diaconis-Sturmfels
on conditional inference is complemented by the work of theoretical computer scientists
on approximate computation of the volume of convex polyhedra.

Introduction

This paper presents three examples of what has come to be called
the Markov chain simulation method. The examples blend together ideas
from statistics, computer science, and statistical mechanics. The problems
presented are set in statistical contexts of assessing variability, maximizing
likelihoods, and carrying out goodness of fit tests. All of the examples
involve reversible Markov chains on discrete sample spaces. In each case,
the chains were actually run for a problem of real world interest. Each
example is paired with a healthy theoretical development. As always, there
are tensions and trade offs between practice and theory. This area brings
them closer than usual.

1. The bootstrap and approximate counting

A. The bootstrap

Efron’s bootstrap is a fundamental advance in statistical practice. It
allows accurate estimation of variability without parametric assumptions.
One begins with data z;,z2, --,2, in a space X'. Let T'(xy,29, -, %)
be a statistic of interest (e.g., a mean, median, correlation matrix,---).
We are interested in estimating the variability of T, assuming that z; are
independent and identically chosen from an unknown distribution F on X.

The bootstrap draws resample observations z7,z3,---,z) from
{z1,292, -+, 2z} with replacement and calculates T'(z},z3%,---,2%). Do-
ing this repeatedly gives a set of values which can be proved to give a good
indication of the distribution of T. A splendid up-to-date account of the
bootstrap appears in Efron and Tibshirani (1993). Hall (1992) gives a solid
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theoretical development.

The present section explains a Monte Carlo method for deriving large
deviations estimates of P{T" > t} when this probability is small. The idea is
to run a Markov chain on the set of values {z* = (a1, 23): T(z*) >t}

A step of the chain picks I, 1 < I < n, uniformly at random and
replaces = with a fresh value chosen uniformly from the original set of
values {z1,23,---,z,}. If the new sample vector satisfies T(z) > t, the
change is made. Otherwise the chain stays at the previous sample vector.

This generates a reversible Markov chain on {2:T(z)>1t}. Ithasa
uniform stationary distribution. Assuming the chain is connected (see be-
low) this gives an easy to implement method of sampling from the uniform
distribution.

To estimate P{T > t} we choose a grid &g < ¢ < --- < tp < t with
to chosen in the middle of the distribution of T and t; chosen so that
P{T > t;11|T > t;} is not too small. Here, all probabilities refer to the
uniform distribution on the set of n-tuples chosen with repetition from
{1‘1, Loy, .’Bn}.

With ¢; chosen, first estimate P{T > t,} by ordinary Monte Carlo.

Then, estimate P{T > ,|T" > to} by running the Markov chain on
{z*: T(z*) > to}

and counting what proportion of values satisfy the constraint T > ¢,.

Continue, estimating P{T" > t,|T > t,} - -P{T > t|T > t;}. Multi-
plying these estimates gives an estimate for P{T >t} :

P{T > 1} = P{T > 1o} P{T > t|T > to} -- - B{T > t|T > 1,}.

Example 1.1. The following list of 10 pairs gives the average test score
(LSAT) and grade point average (GPA) of 10 American law schools

LSAT | 576 635 558 578 666 580 555 661 652 605
GPA [3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13

The scatter plot of these numbers in Figure 1.1 suggests a fair amount of
association between LSAT and GPA. The correlation coefficient is T' = .81.
The bootstrap can be used to set confidence intervals for the true popula-
tion correlation coefficient as suggested by Efron (1979). Figure 1.2 shows
the result of 1000 repetitions of the basic bootstrap sampling procedure.
This yields a 90% confidence interval [ 0.51, 0.99 ] for the population corre-
lation coefficient. It provides a simple example of the use of the bootstrap.
See Efron and Tibshirani (1993) for more detail.

We now turn to an example of the Monte Carlo Markov chain method.
Suppose we want to estimate the proportion of the 1010 bootstrap samples
with T > .99. We begin by choosing t; = .9 and estimating P{T" >
.9} = .4613 based on 3000 Monte Carlo samples. Following this, take
ti = .91,1 <1 < 9. The following table gives the Markov chain estimates of
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P{T > t;|T > ti—1}. These are each based on running the Markov chain

described above 3000 steps.
t; 91 .92 .93 .94 .95 .96 97 .98 99
P{T > t;|T > t;_1} | .997 972 .989 .961 .984 .918 .897 .766 .710

These result in the estimate P{T > .99} = .177. For this example, exact
enumeration of the bootstrap distribution of T is possible (see Diaconis
and Holmes (1994a)) and gives P{T > .99} = .1769.

Remark 1.2. (1) In general, ; can be chosen sequentially as an approx-
imate median of T on {z” : T > t;_1}. This can be estimated by a sequence
of preliminary walks. In fact, all that is needed is that P{T" > ¢;|T" > t;_;}
is not exponentially small. In our experience, an intuitive choice of grid
values does fine. We derive the optimal choice in Diaconis and Holmes
(1994b).

(2) Rates of convergence for this type of Markov chain which can be
used as a guide to sample size choice are starting to become available. See
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Diaconis and Saloff-Coste (1993) and Sinclair (1993) for recent surveys.

(3) Confidence intervals for P can be based on central limit and large
deviations theorems for Markov chains. See Hoglund (1974), Gilman (1993)
and the references cited there.

(4) The Markov chain described above is one of a host of chains de-
scribed in Diaconis and Holmes (1994b). For example, there is no need to
change only one value at a time. Any set of values may be chosen. This
can be important for insuring connectivity of the underlying chain.

(5) One advantage of changing only a single value: for many statistics
(including the correlation coefficient) fast updating algorithms can be used
to avoid complete recomputation. See Section 3 in Diaconis and Holmes
(1994a) for further discussion and references.

B. Approximate counting

The algorithm described above is derived from 15 years of development
in the computer science literature. They consider the problem of approxi-
mate counting. Let X be a finite set. The problem is to approximate |X|.
We are given the ability to choose at random from X. Without further
restrictions, the best one could do would be to wait for repeated values in
the sample. This takes order |X |}/2 steps and is virtually useless for the
large #-P complete problems of theoretical computer science.

Suppose further that there is a nested decreasing sequence of subsets
XD X D X D Xy with ki = |X;]/|Xiya| not too small, ko = |X]/|X1]
and |X,| small enough to be easily enumerated. We must also suppose
the ability to sample uniformly from each X; (at least approximately) one
can then estimate |X;]/|Xi+1| by random sampling, providing an estimate

denoted I?, and then finally
X = kok... kn1[%n]

This is just the technique employed in Section A.

These ideas were introduced by Jerrum, Valiant, and Vazirani (1986)
who showed that approximate counting and random generation are equiv-
alent for self-reducible problems. Broder (1986) introduced the Markov
chain aspect in his work on approximation of the permanent. If Aisan
n x n matrix Per(A) = 3, [Ti=; Ain()- The sum is over the symmetric
group. If A is the adjacency matrix of a bipartite graph, Per(A) counts the
number of perfect matchings. Valiant (1979) has shown that evaluation of
the number of matchings is #-P complete. Broder introduced a random
walk on the space of matchings and proved that one could get good ap-
proximations to the number of perfect matchings in polynomial time if this
walk was rapidly mixing by using just self-reducilibity. Rapid mixing of
Broder’s walk for dense graphs was proved by Jerrum and Sinclair (1989)
who introduced several new ideas (conductance arguments and the use of
paths). This necessarily brief history omits mention of several contributors
(Alon, Mihail and others). It also omits a description of the sizable body of
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theory that has developed based on this work (Dyer, Frieze, Kannan, Lo-
vasz, Simonovits and others). Fortunately, Sinclair (1993) gives a readable
treatment of all of these issues.

One point is worth noting. The development in computer science took
place in a theoretical context. The example in Section A may be close to the
first implementation of these ideas. Evidently, applications present a field
of further problems. One can only hope that the conversation continues.

9. Monte Carlo maximum likelihood and evaluation of parti-
tion functions

A. Maximum likelihood by Monte Carlo

In DNA fingerprinting problems one has samples of DNA from several
individuals from which one would like to infer similarities. In one cleaned
up version of the problem due to Geyer and Thompson (1992), the data
consists of a binary matrix ¥;;, 1 <1 <[, 1 <j < J, with each row
representing an individual and the columns representing the lengths of
DNA fragments. Geyer and Thompson used a model combining genetic
insight with statistical mechanical simplicity. Let

Ui = ;Y = # ones for it individual
V; = 3.;Yij =# onesat jth level
Sin = Zj Y;;Ynj = ## common ones for ith and #tM individual.

The model postulates

(2.1) P{Yi, 1 <i<T1<j<T}=c(6) " exp {Z Uiai + Y V3B + zsimih}
i 7

i<k

Here, 0 = {a, Bj,vin} has dimension I+ J + J(J — 1)/2 and c¢(f) is a
normalising factor. Genetic considerations force the constraint v;n > 0.

One problem now is, given a realization Yij, 1<i<I,1<j<J, find
the vector of parameters @ that maximizes the likelihood. In one of their
examples, I = 79,J = 32. This leads to 607 parameters to be estimated.
The practical version of the problem has additional complications: some
binary values were missing and extensive prior knowledge of relatedness
was applicable.

One contribution of the Geyer-Thompson work is a novel method for
maximizing likelihoods. This 1s generally applicable and will be explained
now. We begin by defining a general exponential family. Let A" be a set
and p(dz) a measure defined on a suitable class of subsets of A'. Let T :
X — R¢. The exponential family through 7', p is the family of probability
measures

Py(dz) = c(())_leT(‘”)'e;L((lm), 6€0.
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In (2.2) ¢(f) is a normalizing constant and © is a prespecified subset of R%
such that

¢(8) = / 7= (dg) < oo for 6 € ©.

For fixed z, the maximum likelihood estimator (MLE) § = 6(z) is the value
minimizing— log Py(dz) = —log(c(d)) — T(z) - 8. Thus computation of the
MLE requires knowledge of the normalizing constant. Typically, this is not
available in closed form.

Geyer and Thompson (1992) suggest a Monte Carlo approach for this:
fix a value 6y € © and write

c(f) = feT(x)‘ap(dz) — c(0o)f6T(r)'(9_o°)%ll(dz)
= 0(90)feT(x)(a_oo)Pgu(dw).

Run a Markov chain Xy, X1, X, - with stationary distribution Py,.
Then,

1o .
= 5 2 — e0)fclto)

for large n. So
~2, = ~logdn — T(z) -6 — logc(6o) — logc(8) ~ T(z) - 6.

So the minimizer of Zn approximates 9. Practically, 65 should be well chosen
else the chain will take a long time to converge. The following sequential
scheme is used: after a few iterations with fy, replace 6y by # and iterate
this a few times.

In the DNA fingerprinting example, Geyer and Thompson carried out
such an analysis for the model (2.1). They used the standard Metropolis
algorithm changing single sites of {Y;;} and thinning down as usual to run a
Markov chain with stationary distribution Py,. The estimated parameters
were used to compute correlations between observable quantities. The
resulting correlation matrices were used to cluster the data. The results
made sense in the context of the original problem and seemed useful. We
refer to Geyer and Thompson (1992,1993) for examples and further details.

B. Computing partition functions

In statistical mechanics, the normalizing constant ¢(f) is called the
partition function. There has been a good deal of careful mathematical
work which allows one to prove that exact evaluation or even good approx-
imation of c(f) even at a fired value of is intractable in most cases of
interest. Welsh (1993) and Jerrum-Sinclair (1991) review this work. These
last authors also give an approximation scheme for the widely-studied case
of the ferro-magnetic Ising model which uses randomness.
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The Ising model is a standard exponential family for variables ¥; €
{-1,41}, 1 < i< n, with

Py(Yi;1 < i < n) = ¢(f) eZuimisYi¥i—ATYs

Here v;; are constrained to be zero unless (¢, j) is in E, the set of edges of a
prespecified graph (often a rectangular lattice). If v;; are non-negative, one
is said to be in the ferromagnetic case: configurations with high probability
tend to be all the same ( all ones or all minus ones). Jerrum and Sinclair
(1991) gave a novel algorithm for estimating ¢(6) in the ferromagnetic case.
Their algorithm approximates c(6) to relative error (1£¢). They prove that
their algorithm works with probability 1 —§ and requires only a polynomial
number of steps in |E|,n,log} and 1/¢, uniformly in 6.

It is worth remarking that any use of the Metropolis algorithm for
estimating ¢() is doomed to fail. Indeed, in dimension two or higher, Ising
models have phase transitions which means that there are (at least) two
high energy wells and the chain will spend an exponential time in one of
them and so fail to mix rapidly.

Jerrum and Sinclair overcome this difficulty by re-expressing the par-
tition function in a radically different way derived by physicists.

c(8)=AY W(X)

X<E

where the sum is over all subgraphs X of the underlying graph having all
vertices of odd degree, A is a simple, easy to compute function of 4, and

wx)=u*- T Ay
(i,7)eX

with A;; =tanh(vi;), # =tanh(B) and |X| the number of vertices in X. The
weights W(X) are all positive and this allows Jerrum and Sinclair to run
a Markov chain on the set of subgraphs X with stationary distribution
proportional to W(X). This is not the end of the story; there is a clever
new idea that allows a good estimate ¢(#) of ¢(6) from this chain. For now,
we will stop and state their main result as

THEOREM 2.1. (Jerrum and Sinclair) Let E be a graph with |E| edges
and n vertices. For all v;; > 0 and (3 real.

()

—e<{—= <L 1 -6

P{l-e< ‘c(@)’— 14€}>

Here ¢ is an estimator of ¢ based on
O(e™?|E|*p~*{log(6~1) + |E|}) operations.

The implicit constants are uniform in 8.
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Remark 2.2. We find a comparison between the Geyer-Thompson and
Jerrum-Sinclair work instructive. First, although problems and techniques
are clearly related, these authors worked without knowledge of each other
or associated literature. Geyer-Thompson tried their ideas out in several
examples and proved nothing beyond convergence. Jerrum and Sinclair’s
work strongly suggests that what Geyer-Thompson were trying to do was
impossible!

Jerrum and Sinclair proved convergence in polynomial time, but did
not implement it. In a personal communication they suggest that although
slow, their algorithm should be implementable, perhaps running with the
same efficiency as the volume algorithm studied in the next section.

Their work suggests that there is much more proving and comparing
to be done before the algorithms of Geyer-Thompson are accepted: there
are versions of the Ising model where the partition function is known or
accurately computable (e.g., for planar graphs). At the least the algorithms
should be tried out here. In the other direction, we would like to encourage
computer scientists to get implementable versions of their algorithms. It
often leads to fascinating insights and seems like a simple embarrassment
which the rest of the world has really noticed.

3. Contingency tables and approximate volumes

A. Random walks on contingency tables

A contingency table is an I x J array of non-negative integers. These
arise in statistical analysis of cross-classified data (e.g., a 4 x 7 table might
represent a classification of students by class (freshman, sophomore, junior,
senior) amd seven categories of extra-curricular activity. We will work
with tables having fixed row sums (ry,72,---,77) and fixed column sums
(c1,¢2,-+,¢s5). Thus define

X(L,g):{mijtzxij=7‘i, inj=6j, 1<:¢<I, 1<j<J}
i H

The problem considered is choosing a table uniformly at random from
x(r, ).

This problem arises in statistical work and in many areas of combi-
natorics. A survey of applications is given in the article of Diaconis and
Gangolli in this volume. For even moderate size tables (e.g., 4 x 7) the enu-
meration problem gets wildly out of hand. The following simple random
walk algorithm gives a satisfactory method of proceeding.

Pick a pair of rows (7,7) at random and a pair of columns (j, ;') at
random. These intersect in 4 entries:
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These entries are changed by adding and subtracting 1 from the 4 entries in

the pattern 5 + or + A with probability 1/2. This doesn’t change the row
or column sums. If it forces negative entries, the step is not taken (the walk
stays where it was last). It is clear that this walk is symmetric: the chance
of going from z to y in one step is the same as the chance of going from y
to z: one must pick the same rows and columns and the opposite pattern.
It is easy to see that this walk is connected. A connected symmetric walk
on a finite set converges to the uniform distribution (there is some holding
probability so there are no periodicity problems).

There has been extensive practical work based on this algorithm and
many variations (e.g., one needn’t move one each time and more compli-
cated patterns can be used). These algorithms appear to converge rapidly
and seem to make a previously intractable problem easy.

Here is an example: in testing for statistical independence of row and
column effects one often uses the chi-squared statistic

{zij —ricj/n}?

T(z) = —_— =
(2) %: ricj/n

Here n =71+ ---+7r7r = ¢y + -- -+ cy. Diaconis and Efron (1986) wanted

to know the distribution on X( r.c ). As an example, consider the 5 x 3

table

5 2 3| 10
50 7 5| 62
3 6 4| 13
5 3 3} 11

2 7 30| 39
65 25 45135

This table has T'(z) = 72.18. Gangolli (1991) ran the Markov chain algo-
rithm and recorded the values of T'(z) as the chain progressed. A histogram
of these values is shown in Figure 3.1 below , it is to be noted that these
computations took about 1/30th of the time of the exhaustive method (20
minutes) . In practice, one would use this histogram to estimate the pro-
portion of tables with T'(z) < 72.18 which is about .76086.

Gangolli (1991) also gave a complete enumeration: there are
239,382,173 tables in X(r, ¢), this enumeration took 15 hours and 21
minutes of real time . Based on these, a complete enumeration of the
distribution of T is shown in Figure 3.2. The simulation and the truth
match closely.

These contingency table problems arise in many variations and extensions
(e.g., 3-dimensional arrays). A calculus for deriving basic moves that uses
algebraic geometry is given by Diaconis and Sturmfels (1993) who also dis-
cuss the statistical literature and competing algorithms. Diaconis, Graham
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: and Sturmfels (1993) give further extensions. A rigorous analysis of the
i running times of the suggested walks that applies to small tables (the case
of most interest in statistical work) appears in Diaconis and Saloff-Coste
(1993). Chung, Graham, and Yau (1994) have announced more powerful
results. Gangolli (1991) has developed tempting conjectures about “the
right answer” for running times. Mann (1994) gives exact formulae for

5 2 x J and 3 x J tables which permit checks of validity.

e

freq x 100000

| BlE1 | 800+

6004

l 2004

+ + + + hi-sqr
50 100 150 200

F1G. 3.1. The exact distribution of T(z) (in black)

B. Approximating the volume

The work described above has close connections to a very healthy de-
_ velopment in theoretical computer science. This asks for ways of computing
i the volume of a convex polyhedra in R¢. There is a clear intuitive connec-
tion; the set (1, ¢) consists of the integer points in the convex polyhedron
of all non-negative real arrays with a given set of row and column sums.

The volume problem is clearly basic. The problem is also hard: tech-
nically #-P complete. In fact, if use of randomness is forbidden, it can be
proved that it is hard to get an approximate answer to within a factor of
i 2. Careful description and references are in the readable survey paper of
‘} | Dyer and Frieze (1991).
Bk Recent work shows that it is possible to get good approximations to
the volume accurate to within a factor of 1 4 ¢, in a polynomial number
of operations. Here, the parameters governing the problem may be taken
as N — the number of hyperplanes specifying the polyhedron. The current
best result, due to Lovasz-Kannan-Shimonovitz (1994) is a polynomial of
iy degree 5 in N and log(1/¢). The procedure uses a rapidly mixing Markov

e

‘..._“.._....._.._,_
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FIG. 3.2. A Monte-Carlo approzimation to Figure 3.1

chain to sample from the polyhedron. As this result is of independent
interest in statistical applications, we will spell it out.

Let C be a convex region in R% Let f(z) be a log concave probability
density on C. The problem is to sample from f(z). As an example, C
might be the orthant

C={r1<z2< - < x4}

and f(z) might be the d-dimensional normal density (with mean vector p)
restricted to C. This is the problem of simulating normal vectors with a
given order structure.

A simple algorithm runs as follows: starting from = € C, pick a point
on a small ball of radius 6 uniformly. Now use the Metropolis algorithm
to thin down this uniform walk to have density f(z). This produces a
reversible Markov chain with stationaary distribution f(z) on C. The
actual algorithm has some further ideas: The body C is first rounded by
an affine transformation and there is some art in choosing a suitable 6. The
proof of rapid mixing uses conductance which is bounded by a version of the
Payne-Weinberger theorem of differential geometry. This coming together
of different fields: statistics, convex geometry, differential geometry, linear
programming and the theory of algorithms seems truly exciting.

At the workshop, Ravi Kannan some spectacular work with Dyer and
Mount. They have found a way to adapt the continuous convex set problem
to generate contingency tables! Briefly, their idea is this: consider the tables
as lattice points in a convex polyhedra of dimension (I ~ 1)(J — 1). Each
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table is in a small “box” of the same size. Adding such boxes for tables
near the edge makes a non-convex figure. They take the convex hull of
this. Now, the continuous algorithm is used to sample from the uniform
distribution on the augmented figure. For each sample point, one associates
the table labeling the box containing the point.

Kannan and Mount prove that this generates approximately uniform
tables in a polynomial number of steps.

The Kannan and Mount work requires a mild restriction on the row
and column sums to guarantee success. Here is the essence of their results:
Suppose r; > J(J — 1)(I — 1) for each 7 and ¢; > I(I — 1)(J — 1) for each
J. Then, there is an algorithm for generating a random table distribution
within € of uniform in variation distance which runs in time bounded by a
polynomial in I, J, max; j(logr;,c;) and log(1/¢).

For I and J small, the restrictions on r; and ¢; allow tables of practical
interest. For example with I = J = 4 the restrictions are r;, c; > 36. The
above is a simplified version of their work which is actually more general.

Moreover, they have programmed versions of their algorithm which at
the time of this writing produces one “clean” table per second. It has given
an independent check on other procedures, which revealed an embarrassing
error had been made. One can hope that it can be adopted for other Monte
Carlo procedures proposed by Diaconis and Sturmfels (1993).

4. Related literature

The use of Markov chains is in a phase of seemingly exponential growth.
We have pointed to some of the pieces above. A completely independent
development is occuring in the area of image processing. The recent survey
volume by Barone, Frigessi and Piccioni (1992) gives a good set of pointers
to this literature. There is an equally healthy development in the language
of statistical computing. Volume 55, no.1 of the Journal of the Royal
Statistical Society has several surveys and discussions by leading workers
in this field. Finally we mention that workers in the computational side
of statistical mechanics have not stopped with the ‘Metropolis’ algorithm!
There has been a steady development over the years. One way to access
this is to browse through the last few years of the Journal of Statistical
Mechanics.

The work described leaves a rich legacy of problems for probablists and
statisticians. Usually, no hint of rates of convergence are available (aside
from essentially meaningless statements about “exponential convergence”
with unspecified constants in and in front of the exponent). The statistical
problems involved when making Markov chain runs also seem wide open.
For instance, should one use all the data afterr an inital inhibiting time,
or even after the initial period only use widely spaced instances. The first
case provides better accuracy, but the correlation involved is difficult to
estimate. The latter pays by lack of efficiency for providing a standard
estimate forr the correlation structure. Another aspect yet to be addressed
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is how to take into account any a priori knowledge.
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THE MOVE-TO-FRONT RULE FOR SELF-ORGANIZING
LISTS WITH MARKOV DEPENDENT REQUESTS*

ROBERT P. DOBROW'! AND JAMES ALLEN FILL}

Abstract. We consider the move-to-front self-organizing linear search heuristic
where the sequence of record requests is a Markov chain. Formulas are derived for
the transition probabilities and stationary distribution of the permutation chain. The
spectral structure of the chain is presented explicitly. Bounds on the discrepancy from
stationarity for the permutation chain are computed in terms of the corresponding dis-
crepancy for the request chain, both for separation and for total variation distance.

AMS(MOS) subject classifications. Primary 60J10; secondary 68P10, 68P05.

Key words. Markov chains, self-organizing search, move-to-front rule, convergence
to stationarity, separation, total variation distance, coupling.

1. Introduction and summary. A collection of n records is ar-
ranged in a sequential list. Associated with the ith record is a weight
r; measuring the long-run frequency of its use. We assume that each r; > 0
and normalize so that Y r; = 1. At each unit of time, item 7 is removed
from the list with probability r; and replaced at the front of the list. This
gives a Markov chain on the permutation group Si.

If we assume that items are requested independently of all other re-
quests, this model for dynamically organizing a sequential file is known as
the move-to-front (MTF) heuristic and has been studied extensively for
over 20 years. Background references include Rivest (1976), Bitner (1979),
Hendricks (1989), Diaconis (1993), and Fill (1995). In the case when all the
weights are equal the model corresponds to a card-shuffling scheme known
as the random-1-to-top shuffle; see Diaconis et al. (1992) for a thorough
analysis in this case.

One objection to this model is that in practice record requests tend to
exhibit “locality of reference.” That is, frequencies of access over the short
run may differ quite substantially from those over the long run. Knuth
(1973) and Bentley and McGeoch (1985), among others, have noted that
MTF tends to work even better in practice than predicted from the i.i.d.
model. Knuth cites computational experiments involving compiler symbol
tables and notes that typically “successive searches are not independent
(small groups of keys tend to occur in bunches).”

Konnecker and Varol (1981) proposed modeling the request sequence
along Markovian or autocorrelative lines. Lam et al. (1984) formally set up
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