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Abstract

Traveling waves for the nonlocal Fisher Equation can exhibit much more complex behaviours
than for the usual Fisher equation. A striking numerical observation is that a traveling wave with
minimal speed can connect a dynamically unstable steady state 0 to a Turing unstable steady state
1, see [11]. This is proved for monotonic waves [1, 5] in the case where the speed is far from minimal.

Here we introduce a simplified nonlocal Fisher equation for which we can build simple analytical
traveling wave solutions that exhibit various behaviours. These traveling waves, with minimal speed
or not, can connect monotonically 0 and 1, can connect these two states but being non monotonic,
and also they can connect 0 to a wavetrain around the Turing unstable state 1. These exist in a
regime where time dynamics converge to another object observed in [2, 7]: a wave that connects 0
to a pulsating wave around 1.
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1 Introduction

What possible states can a traveling wave connect? The case of two stable states or one unstable and one stable states
are standard. Here we investigate the case of a Turing unstable state and a dynamically unstable state using a nonlocal
reaction-diffusion equation. Namely, we consider the equation:

∂tu(t, x) − ∂xxu(t, x) =

(

Au(t, x) for 0 ≤ u(t, x) < θ

1 − u(t, x − a) for u(t, x) ≥ θ
(1)

with θ ∈ (0, 1), a, A > 0 and we want to investigate the various types of wave-like solutions, that is, time-global solutions
which can be written u(t, x) = U(x − ct).

This equation can be considered as a toy model aiming at understanding the dynamics of more general nonlocal
reaction-diffusion equations, such as the Fisher-KPP equation with a nonlocal competition term: Consider the equation

∂tu − ∂xxu = u(1 − φσ ⋆ u) in R × R, (2)

where φσ(z) = 1

σ
φ(z/σ), φ ∈ L1(R) is a smooth nonnegative kernel such that φ(0) > 0 and x2φ(x) ∈ L1(R), σ > 0 is a

parameter measuring the lenght of the nonlocality and ⋆ is the convolution product. This equation arises in various areas
such as ecology [6] or adaptative dynamics [7] (see also [3, 9]). It admits a positive solution of the form u(t, x) = U(x−ct),
with U(+∞) = 0 and lim infx→−∞ U > 0, for all c ≥ 2 [2]. Moreover, if the Fourier transform of φ is positive, for example
if φ is a Gaussian kernel, then U(−∞) = 1 [2]. However, such a convergence is not known in general.
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Numerical simulations of the evolution equation (2) show that nontrivial steady states may exist when σ is large
enough [2, 7]. That is, there might exist some periodic positive solutions p = p(x) of −p′′ = p(1− φσ ⋆ p) over R. These
numerical simulations also suggest that these steady states could be connected to 0 through pulsating traveling waves.
The underlying mechanism which enables the existence of such steady states is of Turing type: due to the nonlocal term
φσ ⋆ u, the steady state 1 could be linearly unstable with respect to some periodic perturbations, creating a bifurcation
branch of stable periodic steady states. Note that such a mecanism cannot arise if one considers the nonlinearity
(φσ ⋆u)(1−u) instead of u(1−φσ ⋆u) since in this case a comparison principle holds, forbidding the existence of positive
nontrivial steady states. Hence, these two nonlinearities are very different, from an analytical as well as a qualitative
point of view.

The existence of traveling waves connecting 0 to 1, that is, solutions (c, U) ∈ R × C2(R) of


−U ′′ − cU ′ = U(1 − φσ ⋆ U) in R,
U(−∞) = 1, U(+∞) = 0, U > 0,

(3)

remains unclear when the steady state 1 is Turing unstable. An alternative numerical approach was developed in [11]
in order to approximate the equation satisfied by the traveling waves (3) instead of the evolution equation (1), giving
different results. Namely, these numerical simulations suggest that positive traveling waves necessarily connect 0 to
1. This is quite surprising, since for the classical (local) Fisher-KPP equation or more generally for reaction-diffusion
equations admitting a comparison principle, unstable steady states can only be connected to stable ones.

The existence of monotone traveling waves for (3) was recently investigated by Fang and Zhao [5]. They proved that
for all c ≥ 2, there exists an explicit threshold parameter σc ∈ (0,∞], such that there exists a decreasing traveling wave
solution of equation (3) if and only if σ ∈ (0, σc). The convergence of this wave to 1 at −∞ immediatly follows from the
monotonicity. This work was inspired by earlier papers on reaction-diffusion equations with delayed competition effect
[8, 10], which exhibit similar phenomenas. As a corollary of this result, that was not noticed by the authors in [5], one
could derive the existence of traveling waves connecting the Turing unstable steady state 1 to the dynamically unstable
one 0. Indeed, if the Fourier transform φ̂ is not nonnegative, then when σ is large enough, the steady state 1 is linearly
unstable with respect to perturbations of some given period range (see [2, 7]). On the other hand, it easily follows from
the explicit expression of σc that limc→+∞ σc = +∞. Hence, there always exists some sufficiently large speed c such that
σ < σc, and thus there exists a traveling wave of speed c connecting 0 to 1 monotonically. The fact that traveling waves
with large speeds necessarily converge to 1 at −∞ was also proved through direct arguments by Alfaro and Coville [1].

If the monotonicity of the traveling wave solutions of (2) is now fully understood, it is still not clear whether non-
monotonic traveling waves converge to 1 or not. Numerical simulations [11] and the case of large speeds [1] suggest
that the convergence to 1 always hold, whatever the Turing stability of this state is. Indeed, in the present paper,
investigating the toy model (1) we find completely different results: many different types of wave-like solutions, that is,
solutions that are stationary in a moving frame with a given speed c, can be constructed. This equation not only admits
monotonic traveling waves but also non-monotonic ones converging to 1, wave-trains oscillating around 1 and traveling
waves connecting 0 to these wavetrains. Hence, our present results suggest that, similarly, equation (2) admits many
types of wave-like solutions. In order to avoid any possible confusion, we underline that we do not consider pulsating
traveling waves here, that is, solutions that are time-periodic in a moving frame.

2 Statement of the results

2.1 Monotone traveling waves connecting 0 to 1.

First, the sign of the spatial nonlocality a > 0 ensures that monotone traveling waves u(x, t) = U(x − ct) always exist.
The profile U satisfies U > 0 in R, U(−∞) = 1, U(+∞) = 0 and

−U ′′(z) − cU ′(z) =

(

AU(z) for 0 ≤ U(z) < θ

1 − U(z − a) for θ ≤ U(z)
over R. (4)

Proposition 2.1 Assume that A ≥ (1 − θ)/θ. For all c ≥ 2
√

A, there exists U ∈ W 2,∞(R) satisfying (4) such that U
is decreasing, U(+∞) = 0 and U(−∞) = 1.

Note that the condition A ≥ (1 − θ)/θ is the equivalent of a KPP condition for the discontinuous equation (1): if
a = 0, it means that the nonlinearity is below its tangent A at u = 0. If this assumption is relaxed, the reader could
check that our method still applies, giving the existence of traveling waves with speeds above a larger and less explicit
threshold.
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This result is not surprising. If the nonlinearity in (1) was continuous, then it would be an immediate consequence
of Fang-Zhao’s condition for the existence of monotonic traveling waves [5] since the linearization of the equation near
u = 1 always admits real exponential solutions. Our proof relies on an explicit construction of the traveling wave.

2.2 Oscillating traveling waves connecting 0 to 1.

The next result states that oscillating traveling waves connecting 0 to 1 exist when a is large enough.

Proposition 2.2 Assume that a > 0 and c ≥ 2
√

A satisfy

c ≤ 2a

3π
e−

3
2

π − 3π

a
, (5)

2a

3π
≤ (c + 2/c)ea/c. (6)

Then there exists a positive bounded solution U ∈ W 2,∞(R) of (4) such that U(−∞) = 1, U(+∞) = 0 and U is not
monotone.

One can easily check that these two inequalities both hold for a large enough.
This result is more surprising since one would have expected oscillating traveling waves to appear only when the

condition ensuring the monotonicty in [5] could not be satisfied anymore (see the numerical simulations in [2, 7, 11]).
On the contrary, Propositions 2.1 and 2.2 show that monotonic and oscillating traveling waves can coexist.

1 1

θ

Figure 1: Monotone (left) and and oscillating (right) traveling waves connecting 0 to 1.

2.3 Wavetrains periodic around 1.

As for reaction-diffusion systems (see for example [4]), we now construct a new type of solutions, which was never
observed numerically or analytically, as far as we know, for nonlocal reaction-diffusion equations.

Definition 2.3 We say that a positive solution u of (1) is a wavetrain of speed c if it can be written as u(t, x) = W (x−ct),
where W ∈ W 2,∞(R) is positive and periodic, that is, there exists L > 0 such that W (z + L) = W (z) for all z ∈ R. We
call W the profile of the wavetrain u. Lastly, we say that a wave train u is nontrivial if u 6≡ 1.

The profile W of a wavetrain of speed c is a weak solution of

−W ′′(z) − cW ′(z) =



AW (z) if 0 < W (z) < θ,
1 − W (z − a) if W (z) ≥ θ.

(7)

Proposition 2.4 Assume that (2k + 1)π ≤ a < (2k + 3)π, with k ∈ N. Then equation (1) admits k + 1 nontrivial
wavetrains of the form

ui(x, t) = 1 + Vi(x − cit), i = 1, . . . , k + 1,

with c1 > · · · > ck+1 > 0. Moreover, any wavetrain u of (1) satisfies

θ ≤ u ≤ 2 − θ, u(x, t) = 1 + CVi(x − cit + ϕ),

for some i ∈ {1, . . . , k + 1} and C, ϕ ∈ R.

Note that any convex combination of such wavetrains u1, ..., uk+1 is still a time-global solution of (1) connecting 0 to
1. However, it is not a wavetrain anymore since the ui have different speeds c1 > ... > ck+1.
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2.4 Connections between 0 and wavetrains

Lastly, we use the wavetrains to construct solutions of the form u(t, x) = U(x − ct), with U > 0 converging to 0 at +∞
and not converging to 1 at −∞, but to a wavetrain.

Proposition 2.5 For all a ≥ a∗ := 3

2
π

p

2A +
√

4A2 + 1, there exists a solution u of (1) which can be written as u(t, x) =
U(x−ct), with c > 0 and U ∈ W 2,∞(R) a positive function such that limz→+∞ U(z) = 0 and limz→−∞

`

U(z)−W (z)
´

= 0,
where W is the profile of a nontrivial wavetrain of speed c.

Such a solution will not be unique in general. Indeed, we know from Proposition 2.4 that there may exist several
wavetrains and, adapting the proof below, one might construct different traveling waves connecting 0 to each of these
wavetrains, under some implicit conditions on a. We leave such a classification to forthcoming works.
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Figure 2: Wavetrain (left) and its connection to 0 (right).

3 Proof of the results

3.1 Construction of the monotone traveling waves

Proof of Proposition 2.1. Let λ > 0 the unique positive solution of fc(λ) := λ2 + λc − e−aλ = 0, which is unique by
monotonicity. The positivity of a ensures that such a solution always exist.

Next, as c ≥ 2
√

A, the polynomial equation η2 − ηc + A = 0 admits two solutions 0 < η− ≤ η+ (if c = 2
√

A, then
η+ = η− =

√
A). For all z ∈ R and for α > 0 to be fixed later, let

V (z) :=



(θ + α)e−η
−

z − αe−η+z if c > 2
√

A,

θ(1 + αz)e−η
−

z if c = 2
√

A.
(8)

It is easy to check that, if α > 0, with the additional assumption α ≤ η− when c = 2
√

A, then −V ′′(z)− cV ′(z) = AV (z)
for all z > 0. We compute

V ′(0) =



α(η+ − η−) − η−θ if c > 2
√

A,

θ(α − η−) if c = 2
√

A.
(9)

Let α ∈ R such that V ′(0) = −λ(1− θ). The condition α ≤ η− is clearly satisfied since V ′(0) ≤ 0. We now need to check
that α is positive. A straightforward computation gives that, in both cases c = 2

√
A and c > 2

√
A, α > 0 if and only if

θη− > λ(1 − θ).

As A ≥ (1 − θ)/θ, a sufficient condition for the positivity of α is λ < η−/A. On the other hand,

fc(η−/A) =
η2
−

A2
+

cη−

A
− e−

aη
−

A

≥ η2
−

A2
+

cη−

A
− 1

=
η2
−

A2
+

η2
− + A

A
− 1 =

η2
−

A2
(1 + A) > 0.

As λ is the unique positive root of the increasing function fc, one gets η−/A > λ, from which we eventually derive α > 0.
Define for all z ∈ R:

U(z) :=



1 − (1 − θ)eλz if z ≤ 0,
V (z) if z > 0.

(10)
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This function is clearly decreasing and converges to 1 at −∞ and 0 at +∞. It is easy to check that U satisfies (4) on
(−∞, 0) and on (0,∞). Moreover, we have constructed V in such a way that V (0) = θ and V ′(0) = −λ(1− θ), meaning
that U ∈ C1(R). Hence, U is a weak solution of (4) over R. 2

3.2 Construction of the oscillating traveling waves

Lemma 3.1 For all λ > 0, if

eaλ(c + 2λ) ≤ 2a

3π
, (11)

then there exists a unique µ(λ) ∈
ˆ

3π
2a

, 2π
a

´

such that

− sin
`

aµ(λ)
´

µ(λ)
= eaλ(c + 2λ).

Moreover, the function µ is continuous (where it is defined).

Proof. Clearly, µ 7→ − sin(aµ)/µ is decreasing over
ˆ

3π
2a

, 2π
a

˜

. As

− sin
`

a × 3π
2a

´

3π
2a

=
2a

3π
≥ eaλ(c + 2λ) and − sin

`

a × π
a

´

π
a

= 0 < eaλ(c + 2λ),

the intermediate value theorem gives the existence. The monotonicity gives the uniqueness, from which the continuity
easily follows. 2

Proof of Proposition 2.2. As c < 2a
3π

by (5), we can define Λ the unique positive solution of

eaΛ(c + 2Λ) =
2a

3π
.

Then for all λ ∈ [0, Λ], (11) is satisfied and thus µ(λ) is well-defined. Moreover, µ(Λ) = 3π/2a by uniqueness. Let

f(λ) := λ2 + cλ − µ(λ)2 − e−aλ cos
`

aµ(λ)
´

.

This function is continuous and one has

f(0) = −µ(0)2 − cos
`

aµ(0)
´

< 0

since µ(0) ∈
ˆ

3π
2a

, 2π
a

˜

. Moreover,

f(Λ) = Λ2 + cΛ − µ(Λ)2 − e−aΛ cos
`

aµ(Λ)
´

= Λ2 + cΛ −
„

3π

2a

«2

> Λ2 −
„

3π

2a

«2

.

Hence, f(Λ) > 0 if Λ ≥ 3π/2a. On the other hand, the increasing function g : λ 7→ eaλ(c + 2λ) − 2a/3π vanishes at Λ
and (5) gives

g(3π/2a) = e3π/2(c + 3π/a) − 2a/3π ≤ 0.

It follows that Λ ≥ 3π/2a by monotonicity and thus f(Λ) > 0.
It follows from the intermediate value theorem that there exists λ ∈ (0, Λ) such that f(λ) = 0. Defining µ := µ(λ), we

have thus found a couple (λ, µ) ∈ (0,∞)2 satisfying



cλ + λ2 − µ2 = e−aλ cos(aµ),

µ(c + 2λ) = −e−aλ sin(aµ).
(12)

Next, as in the proof of Proposition 2.1, we search for U in the form

U(z) =

(

1 − (1 − θ)eλz cos(µz) for z ≤ 0,

V (z) for z ≥ 0.
(13)
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Our choice of (λ, µ) and the definition (8) of V yield that U satisfies (4) over R\{0}. As in the proof of Proposition 2.1,
it only remains to check that η− > Aλ in order to be able to choose α > 0 so that U is of class W 2,∞, where η− is the
smallest solution of η2 − cη + A = 0. It would thus follow that U is a weak solution of (4) over R, which would conclude
the proof since U(−∞) = 1 and U(+∞) = 0 are clearly satisfied.

First, as 0 = η2
− − cη− + A > A − cη−, one has η− > A/c. Whence η− > Aλ if λ < 1/c. Since λ < Λ, it is then

sufficient to have Λ ≤ 1/c. The latter holds true because, by (6),

g(1/c) = (c + 2/c)ea/c − 2a

3π
≥ 0 = g(Λ).

Thus, we can choose α > 0 so that U is of class C1 and conclude the proof. 2

3.3 Construction of the wavetrains

Lemma 3.2 Assume that u is a wavetrain of equation (1). Then u(t, x) ≥ θ for all (t, x) ∈ R × R.

Proof. Writing u(t, x) = W (x − ct), as W is periodic, we know that it admits a minimum at some point z0 ∈ R. If
W (z0) < θ, then (7) yields that W is C2 in the neighborhood of z0. As it is positive, one has: 0 ≥ −W ′′(z0)− cW ′(z0) =
AW (z0) > 0, a contradiction. 2

Proof of Proposition 2.4. 1. We look for a solution W of (4) of the form W (z) = Re(V (z)), with

V (z) = 1 − Ceiξz , ξ ∈ R, C ∈ (0, 1 − θ].

Since W ≥ θ, equation (4) reduces to

−W ′′(z) − cW ′(z) = 1 − W (z − a) in R.

The complex-valued function V is a solution of the above equation if and only if

−ξ2 + cξi = e−iaξ. (14)

Computing the modulus of both sides we infer that

0 < ξ ≤ 1, c2ξ2 + ξ4 = 1,

from which we get the expression of c as a function of ξ: c(ξ) =
p

ξ−2 − ξ2. We thus look for solutions ξ ∈ (0, 1] of the
equation Γ(ξ) = Γa(ξ), where

Γ(ξ) := −ξ2 + c(ξ)ξi, Γa(ξ) := e−iaξ

are sectors of the unit circle in the complex plane, the first one parametrized counter-clockwise from the angle π/2 to
π, the second one clockwise from the angle 0 to −a. It is then clear that for (2k + 1)π ≤ a < (2k + 3)π, the number of
solutions is exactly k + 1 (see Figure 3). Notice that the associated c’s are distinct because ξ 7→ c(ξ) is decreasing.

Γ

Γa

−a

Figure 3: The curves Γ and Γa.

2. Next, if u is a wavetrain of speed c, then Lemma 3.2 yields that u ≥ θ. Hence, u satisfies

∂tu − ∂xxu = 1 − u(t, x − a).
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Writing u(t, x) = 1 + V (x − ct), with V periodic, we get that (c, V ) is a solution of

V ′′(z) + cV ′(z) = V (z − a) in R. (15)

Let L = 2π/ξ the period of V . Then developing V in Fourier series, a straightforward computation yields that V (z) =
C cos(ξz + ϕ), with C ∈ R, ϕ ∈ R and ξ satisfying (14). As c > 0, it follows from Step 1 that, up to translation by ϕ
and multiplication by C, V is one of the wavetrains constructed in Step 1. 2

3.4 Construction of the connections between 0 and the wavetrains

Proof of Proposition 2.5. Let a ≥ π. Our aim is to connect the fastest wavetrain u1 given by Proposition 2.4 with
a function V of the form (8). As V is defined only for c ≥ 2

√
A, we need the speed c1 of u1 to satisfy c1 ≥ 2

√
A. With

the same notation as in the proof of Proposition 2.4, we have that the decreasing monotonicity of ξ 7→ c(ξ) implies that
c1 = c(ξ1), where ξ1 is the smallest solution of Γ(ξ) = Γa(ξ) in (0, 1]. Since Γa(3π/2a) = i, it is clear that ξ1 < 3π/2a.
Whence,

c1 = c(ξ1) > c(3π/2a) =

s

„

2a

3π

«2

−
„

3π

2a

«2

.

A straightforward computation shows that the latter term is larger than or equal to 2
√

A if and only if

a ≥ a∗ =
3

2
π

q

2A +
p

4A2 + 1.

As a consequence, for a ≥ a∗, we can define V as in (8), with c = c1 and α > 0 to be chosen later.
The profile of u1 is W (z) = 1 − (1 − θ) cos(ξ1z). Let

U(z) :=



V (z) if z ≥ 0,
W (z) if z < 0.

(16)

Choosing α > 0 in such a way that V ′(0) = 0, we have that U ∈ C1(R). Note that in the case c = 2
√

A, we have
θ(α − η−) = V ′(0) = 0 and thus the condition α ≤ η− is still satisfied. Hence, u(t, x) := U(x − ct) satisfies the required
properties. 2.
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