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ABSTRACT. We use a simple description of the outer automorphism of S6 to cleanly de-
scribe the invariant theory of six points in P1, P2, and P3.

In §1.1–1.2, we give two short descriptions of the outer automorphism of S6, complete
with a proof that they indeed describe an outer automorphism. (Our goal is to have a
construction that the reader can fully understand and readily verify.) In §1.3 we give an-
other variation on this theme that is attractive, but longer. The latter two descriptions do
not distinguish any of the six points. Of course, these descriptions are equivalent to the
traditional one (§1.4) — there is after all only one nontrivial outer automorphism (modulo
inner automorphisms). In §2, we use this to cleanly describe the invariant theory of six
points in projective space. This is not just a random application; the descriptions of §1
were discovered by means of this invariant theory. En route we use the outer automor-
phism to describe five-dimensional representations of S5 and S6, §1.5.

The outer automorphism was first described by Hölder in 1895. Most verifications use
some variation of Sylvester’s synthemes, or work directly with generators of S6; non-
trivial calculation is often necessary. Other interpretations are in terms of finite geome-
tries, for example involving finite fields with 2, 3, 4, 5, or 9 elements, and are beautiful,
but require non-trivial verification.

1. THE OUTER AUTOMORPHISM OF S6

1.1. First description of the outer automorphism: the mystic pentagons. Consider a
complete graph on five vertices numbered 1 through 5. The reader will quickly verify
that there are precisely six ways to two-color the edges (up to choices of colors) so that
the edges of one color (and hence the other color) form a 5-cycle, see Figure 1. We dub
these the six mystic pentagons. Then S5 acts on the six mystic pentagons by permuting
the vertices, giving a map i : S5 = S{1,...,5} → S{a,...,f} = S6. This is an inclusion — the
kernel must be one of the normal subgroups {e}, A5, or S5, but we visually verify that
(123) acts nontrivially. Moreover, it is not a usual inclusion as (12) induces permutation
(ad)(bc)(ef) — not a transposition. Hence S6 = S{a,...,f} acts on the six cosets of i(S5),
inducing a map f : S{a,...,f} → S{1,...,6}. This is the outer automorphism. This can be
verified in several ways (e.g., (ad)(bc)(ef) induces the nontrivial permutation (12) ∈
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S{1,...,6}, so f is injective and hence an isomorphism; and i is not a usual inclusion, so f is
not inner), but for the sake of simplicity we do so by way of a second description.
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FIGURE 1. The six mystic pentagons, with black and white (dashed) edges

1.2. Second description of the outer automorphism: labeled triangles. We now make
this construction more symmetric, not distinguishing the element 6 ∈ {1, . . . , 6}. Consider
the

(

6
3

)

= 20 triangles on six vertices labeled {1, . . . , 6}. There are six ways of dividing the
triangles into two sets of 10 so that (i) any two disjoint triangles have opposite colors, and
(ii) every tetrahedron has two triangles of each color. (The bijection between these and the
mystic pentagons a, . . . , f is as follows. The triangle 6AB is colored the same as edge AB.
The triangle CDE (6 6= C, D, E) is colored the opposite of the “complementary” edge AB,
where {A, B} = {1, . . . , 5} − {C, D, E}.) The S6-action on this set is the outer automor-
phism of S6. (Reason: (12) induces a nontrivial permutation (ad)(bc)(ef) of the mystic
pentagons, so the induced map S6 → S{a,...,f}

∼= S6 is injective and hence an isomorphism.
But (12) does not induce a transposition on {a, . . . , f}, so the automorphism is not inner.)
This isomorphism S{1,...,6} → S{a,...,f} is inverse to the isomorphism f of §1.1.

1.3. Another description: labeled icosahedra. Here is another description, which
is pleasantly S6-symmetric. Up to rotations and reflections, there are twelve ways to
number the vertices of an icosahedron 1 through 6, such that antipodal vertices have the
same label. Each icosahedron gives ten triples in {1, . . . , 6}, corresponding to the vertices
around its faces. These twelve icosahedra come in six pairs, where two icosahedra are
“opposite” if they have no triples in common. (It is entertaining to note that if an icosahe-
dron is embedded in Q(φ)3 with vertices at (±1,±φ, 0), (0,±1,±φ), and (±φ, 0,±1), then
conjugation in Gal(Q(φ)/Q) sends the icosahedron to its opposite. Here φ is the golden
section.) Then S6 acts on these six pairs, and this is the outer automorphism. One may
show this via bijections to the descriptions of §1.1 and §1.2. Each pair of mystic icosahedra
corresponds to two-coloring the triangles in {1, . . . , 6}, as in §1.2. For the bijection to §1.1,
the cyclic order of the vertices around vertex 6 gives a mystic pentagon. (This provides a
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hands-on way of understanding the S6-action on the mystic pentagons.) This description
is related to the explanation of the outer automorphism by John Baez in [B].

1.4. Relation to the usual description of the outer automorphism of S6. The usual de-
scription of the outer automorphism is as follows (e.g. [C]). A syntheme is a matching of
the numbers 1, . . . , 6, i.e. an unordered partition of {1, . . . , 6} into three sets of size two. A
pentad is a set of five synthemes whose whose union is the set of all 15 pairs. Then there
are precisely six pentads, and the action of S6 on this set is via the outer automorphism of
S6. We explain how to get pentads from the mystic pentagons. Each mystic pentagon de-
termines a bijection between the white edges and the black edges, where edge AB corre-
sponds with edge CD if AB and CD don’t share a vertex. If E = {1, . . . , 5}−{A, B, C, D},
then to each such pair we obtain the syntheme AB/CD/E6, and there are clearly five such
synthemes, no two of which share an edge, which hence form a pentad. For example,
mystic pentagon a yields the pentad

{12/35/56, 23/14/56, 34/25/16, 45/13/26, 15/24/36}.

Another common description of the outer automorphism relates directly to Figure 1. We
find a subgroup G < S5 of size 20; we take the subgroup preserving figure a of Figure 1.
Then S5 acts transitively on the six cosets of G, giving a map i : S5 → S6. This map is
an inclusion as (123) is not in its kernel. Then S6 acts (transitively) on the six cosets of
i(S5), yielding a map σ : S6 → S6. The image (as it is transitive) has size > 2, hence (as S6

has only 3 normal subgroups) the kernel is e, hence σ is an automorphism. Then it is not
inner, as i(S5) is not one of the six “obvious” S5’s in S6.

1.5. Representations of S5 and S6. In Figure 1, the edges are colored black and white
so that each edge appears in each color precisely three times with this choice. This has
the advantage that any odd permutation in S5 (or S6) permutes the six pentagons and
exchanges the colors.

The pentagons give a convenient way of understanding the two 5-dimensional irre-
ducible representations of S5. The permutation representation induced by this S5 action
on the mystic pentagons splits into an irreducible 5-dimensional representation F5 and a
trivial representation 1. The other irreducible 5-dimensional S5-representation F ′

5 is ob-
tained by tensoring F5 with the sign representation ε, which can be interpreted as the S5

action on the mystic pentagons “with sign corresponding to color-swapping”.

There are four irreducible 5-dimensional representation of S6. One is the standard rep-
resentation (which we here denote B5), obtained by subtracting the trivial representation
1 from the usual permutation representation. A second is obtained by tensoring with the
sign representation ε: B ′

5 := B5 ⊗ ε. A third is analogous to the standard representation,
obtained by subtracting the trivial representation 1 from the (outer) permutation repre-
sentation of S6 on the six mystic pentagons. One might denote this the outer automorphism
representation. The fourth 5-dimensional S6-representation is O′

5 := O5 ⊗ ε. One might
term this the signed outer automorphism representation. It is clear from the construction that
F5 and F ′

5 are obtained by restriction from O5 and O′
5.
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1.6. An alternate description of these representations is as follows. There are twelve 5-
cycles on vertices labeled {1, . . . , 5}, which come in pairs of “opposites”, consisting of
disjoint 5-cycles. Each mystic pentagon is equivalent to such a pair. If x is a 5-cycle,
denote its opposite by x. (The same construction applies for triangles on {1, . . . , 6}, §1.2,
or labeled icosahedra, §1.3.) If we have twelve variables Za, . . . , Zf , Za, . . . , Zf , with the
conditions Zx = −Zx, the S6-action induces the representation O′

5 ⊕ ε. (Of course, the
other three representations can be described similarly, O5 by imposing Zx = Zx instead
and replacing ε by 1, F ′

5 by considering the S5-action, and F5 by making both changes.)

2. THE INVARIANT THEORY OF SIX POINTS IN PROJECTIVE SPACE

We will now relate the outer automorphism of S6 to the space of six ordered points in
projective space, or more precisely the geometric invariant theory quotient (Pn)6//PGL(n+
1). The algebraic statements in this section may be readily checked by any computer alge-
bra program such as Maple, so the details are omitted. They were derived using explicit
representation theory of S6, and again the details are unenlightening and will be omitted.

In some sense these quotients generalize the notion of cross-ratio, the space of four
points in P1. Any two generic sets of six ordered points in Pn are projectively equivalent
if n > 3, so the interesting cases are n = 1, 2, 3. All three cases were studied classically,
and were known to behave beautifully.

2.1. Six points on P1. The space of six points on P1 may be interpreted as a threefold in
P5 cut out by the equations [DO, p. 17]

Z1 + · · ·+ Z6 = Z3
1 + · · · + Z3

6 = 0.

(Aside: This is one of the many ways in which 6 points are special. If m 6= 6, the space
of m points in P1, (P1)m//PGL(2), is cut out by quadrics [HMSV].) This is the Segre cubic
relation, and this moduli space is known as the Segre cubic threefold, which we denote S3.
There is an obvious S6-action on both (P1)6 and the variables Z1, . . . , Z6. One might hope
that these actions are conjugate, which would imply some bijection between the six points
and the six variables. But remarkably, they are related by the outer automorphism of S6.

An alternate interpretation of this quotient is as the space of equilateral hexagons in
real 3-space, with edges labeled 1 through 6 cyclically, up to translations and rotations
[KM]. Rearranging the order of the edges induces a permutation of the Z-variables via
the outer automorphism.

Here is a clue that the outer automorphism is relevant. The cross-ratio of a certain four
of the six points is given by [Z1; . . . ; Z6] 7→ −(Z1 +Z2)/(Z3+Z4). A more symmetric avatar
of the cross-ratio of four points on a line is given by

(P1)4
//___________________ P2

(p1, p2, p3, p4)
�

// [(p2 − p3)(p1 − p4); (p1 − p2)(p3 − p4); (p1 − p3)(p4 − p2)].
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(Here points of P1 are written in projective coordinates for convenience; more correctly
we should write [ui, vi] for pi, where [ui, vi] = [pi, 1].) Note that the S4-symmetry is clear in
this manifestation. The image is the line X +Y +Z = 0 in P2. The traditional cross-ratio is
−X/Y . In this symmetric manifestation, the cross-ratio of a certain four of the six points
is given by [Z1; . . . ; Z6] 7→ [Z1+Z2; Z3+Z4; Z5+Z6]. The correspondence of a pair of points
with a “syntheme” of the Z-variables is a hint that the outer automorphism is somehow
present.

We now describe the moduli map (P1) 99K S3 explicitly. If the points are p1, . . . , p6

(1 ≤ i ≤ 6), the moduli map is given (in terms of the second description of the outer
automorphism, §1.2) by

Zx =
∑

{A,B,C}⊂{1,...,6}

±pApBpC

where x ∈ {a, . . . , f}, and the sign is +1 if triangle ABC is black, and −1 if the triangle
is white. Note that

∑

Zx = 0. As an added bonus, we see that the S6-representation on
H0(S3,O(1)) is the signed outer automorphism representation O′

5 (see §1.6).

2.2. Six points in P3, and the Igusa quartic. The Geometric Invariant Theory quotient
of six points on P3 is the Igusa quartic threefold I4. To my knowledge, the presence of
the outer automorphism was realized surprisingly recently, by van der Geer in 1982 (in
terms of the two isomorphisms of Sp(4, F2) with S6, [vdG, p. 323, 335, 337], see also [DO,
p. 122]):

wa + · · · + wf = 0, (w2
a + · · · + w2

f )
2 − 4(w4

a + · · ·+ w4
f ) = 0.

(Igusa’s original equation [I, p. 400] obscured the S6-action.) Via the Gale transform (also
known as the “association map”), this is birational to the space of six points on P1, where
six distinct points in P1 induce six points on P3 by placing them on a rational normal
curve (e.g. via pi 7→ [1; pi; p

2
i ; p

3
i ]), and six general points on P3 induce six points on P1 by

finding the unique rational normal curve passing through them. We describe the rational
map (P1)6

99K I4, and then the rational map (P3)6
99K I4.

The rational map (P1)6
99K I4 is described as follows, using the first description of the

outer automorphism, §1.1:

Wx =
∑

{A,...,E}={1,...,5}, {α,β,γ}={0,1,2}

NA,...,E(p6pA)α(pBpC)β(pDpE)γ

where N = 2 if the edge BC has the same color as edge DE, and N = −1 otherwise.
(A quick inspection of the mystic pentagons shows that

∑

Wx = 0.) Hence the S6-
representation on H0(I4,O(1)) is O5, the outer automorphism representation. In terms
of the usual description of the outer automorphism §1.4, N = −1 if 6A/BC/DE is a syn-
theme in the pentad, and 2 otherwise.

The birationality to the Segre cubic S3 arises by projective duality (S3 and I4 are dual
hypersurfaces), which should not involve the outer automorphism. Indeed, the duality
map S3 99K I4 is given by

Wx = Z2
x −

1

6

6
∑

y=1

Z2
y,
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and the duality map I4 99K S3 is given by

Zx =

(

6
∑

y=1

W 2
y

)

Wx − 4W 3
x +

2

3

6
∑

y=1

W 3
y .

It is perhaps surprising that these moduli maps are somehow “dual”, while the corre-
sponding S6-representations H0(S3,O(1)) ∼= O′

5 and H0(I4,O(1)) ∼= O5 are not dual.
However, their projectivizations are dual, as they differ by a sign representation ε.

The moduli map (P3)6
99K I4 is frankly less enlightening, but even here the outer au-

tomorphism perspective simplifies the explicit formula. Suppose the six points in P3 are
given by [wi; xi; yi; zi] (1 ≤ i ≤ 6). The usual invariants of this Geometric Invariant Theory
quotient, in terms of tableaux, each have 9624 monomials. In terms of the Z-variables, we
have group orbits of 9 monomials:

Zx =
∑

(σ,τ)∈S5×S4

(σ, τ) ◦
(1

2
w2w4w6x1x2x4y1y3y5z3z5z6 + w1w2w4x5x

2
6y1y2y5z

2
3z4

−
1

2
w2w

2
3x

2
5x6y2y

2
4z

2
1z6 + 2w2w3w4x3x5x6y4y5y6z

2
1z2 − w1w2w4x

2
3x4y

2
5y6z1z2z6

−
2

3
w2w5w6x

2
3x6y

2
1y5z2z

2
4 −

1

2
w1w2w3x1x5x6y2y3y4z4z5z6

+
1

6
w2w3w4x1x2x5y1y4y6z3z5z6 +

1

4
w2

1w2x2x
2
3y

2
5y6z

2
4z6

)

.

Here S5 acts by the “outer action” corresponding to x on the six points {1, . . . , 6}, and S4

acts by permuting the co-ordinates {w, x, y, z} and by sign. (There is significant abuse of
notation in the way the formula is presented, but hopefully the meaning is clear.) This
formula is less horrible than it appears, as the summands can be interpreted as attractive
geometric configurations on the icosahedra of §1.3.

2.3. Six points in P2. Finally, we describe the invariants of six points in P2 in terms of the
mystic pentagons. This quotient is a double cover of P4 branched over the Igusa quartic
I4. The Gale transform sends six points in P2 to six points in P2, and exchanges the sheets.
The branch locus of this double cover (the “self-associated” sextuples in the language of
the Gale transform) corresponds to when the six points lie on a conic; by choosing an
isomorphism of this conic with P1, the rational map (P1)6

99K I4 is precisely the moduli
map described above in §2.2.

Suppose the points in P2 are [xi; yi; zi] (1 ≤ i ≤ 6). We describe the moduli map (P2)6
99K

P4 in terms of the mystic pentagons §1.1:

Wx =
∑

{A,...,B}={1,...,6}

NA,...,F (xAxB)(yCyD)(zEzF ).

Corresponding to each term are two edges (corresponding to the pairs AB, CD, EF not
containing 6). Then N = 2 if the two edges have the same color, and −1 otherwise.
Notice the similarity to the moduli map for the Igusa quartic above, in §2.2; this is not a
coincidence, and we have chosen the variable names Wx for this reason. Again, N = −1
if 6A/BC/DE is a syntheme in the pentad, and 2 otherwise.
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The condition for six points to be on a conic is for their image on the Veronese embed-
ding to be coplanar, hence that the following expression is 0:

V := det





x2
1 y2

1 z2
1 x1y1 y1z1 z1x1

... ... ... ... ... ...
x2

6 y2
6 z2

6 x6y6 y6z6 z6x6



 .

(Alternatively, the vanishing of this determinant ensures the existence of a nontrivial
quadric

αx2x2 + αy2y2 + αz2z2 + αxyxy + αyzyz + αzxzx = 0

satisfied by (xi, yi, zi) for all i between 1 and 6.)

Then the formula for the double fourfold that is the Geometric Invariant Theory quo-
tient of six points on P2 is

(

∑

W 2
x

)2

− 4
∑

W 4
x + 324V 2 = 0

and it is clear that it is branched over the Igusa quartic I4. (See [DO, p. 17, Example 3] for
more information.)

2.4. Relation to the usual description of the invariants of six points on P1. We relate the
explicit invariant theory of §2.1 to the classical or usual description of the invariants of six
points on P1. In the matching diagram language of [HMSV] (basically that of Kempe in
1894), the ring of invariants is generated by the variables

X ~AB· ~CD· ~EF = (pB − pA)(pD − pC)(pF − pE)

where {A, . . . , F} = {1, . . . , 6}. The variables Zx of the Segre cubic threefold S3 are related
to the matching diagrams in a straightforward way:

X ~13· ~26· ~45 = (Za + Zb)/2

(and similarly after application of the S6-action on both sides). Notice that under the outer
automorphism, pairs are exchanged with “synthemes” (= partitions into three pairs), and
that is precisely what we see here.

This can of course be easily inverted, using
Za = (Za + Zb)/2 + (Za + Zc)/2 − (Zb + Zc)/2.

As the X-variables form a 15-dimensional vector space with many relations, there are
many formulas for the Z-variables in terms of the X-variables.

Acknowledgment. We are grateful to the referee for helpful comments.
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