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We study the number of configurations in the East model of statistical physics.
This may be pictured as sites in a line. The site at zero is always occupied. The site
at i > 0 can only be changed if site i− 1 is occupied. If at most n occupied sites are
permitted, we establish upper and lower bounds of the form 2�n2�n! cn where c < 1
for the number of possible configurations. © 2001 Academic Press

1. INTRODUCTION

This paper is motivated by a variety of Markov chains used by chemists
and physicists to study properties of glasses and super-cooled liquids. The
chains are called “facilitated kinetic Ising spin models.” They are based
on a graph or lattice with various sites occupied or empty. At each time,
a site is chosen at random and changed or not according to the familiar
Metropolis dynamics for a given stationary distribution. The difference is
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that the change is allowed only if the neighbors of the chosen site are in
a prescribed configuration; otherwise, no change is made. These neighbor-
hood restrictions do not change the long-term stationary distribution but
can lead to dramatic changes in approach to equilibrium.
The earliest such chains were introduced by Andersen and Fredrickson

[2, 3] who allowed a change when k neighbors on a d-dimensional lat-
tice were occupied. Reiter, Jäckle, and co-workers [10] studied asymmetric
rules; e.g., on a two-dimensional lattice, change is allowed if sites North and
East are occupied. The simplest such model is the East model; this takes
place on a one-dimensional lattice or ring with a transition permitted only
if the neighbor to the immediate left is occupied (This should probably be
called the West model but historically East is East.)
Reiter and Jäckle [10] studied how the kinematic “East” restriction

changes relaxation and correlation times. One of their conjectures was
proved by Aldous and Diaconis [1]. Pitts et al. [8] (following Pitts [9]) stud-
ied the autocorrelation function of a single site in the East model, started in
stationarity. They derive various approximations paralleling mode-coupling
approximations used in the study of real glasses and super-cooled liquids.
They found that spin systems give illuminating toy models for studying the
validity of mode-coupling—just as in more complex systems, mode-coupling
works well in some regions but not in others.
The present paper studies the combinatorics of the East model if at most

n occupied sites are allowed. We give bounds for the entropy (number of
possible states). It is convenient to study the subset of occupied positions.
Thus we consider a graph G�n� formed as follows. The vertex set V �n� of
G is the set of all subsets X ⊆ � = �1� 2� 3� � � �� of cardinality at most n.
A pair �X�X ′� forms an edge of G, written X ∼ X ′, provided X ′ can be
obtained from X by adjoining to (or removing from ) X the element x+ 1
for some x ∈ X, or by adjoining (or removing ) the element 1.
We will be interested in investigating various properties of G. In partic-

ular, we will establish upper and lower bounds on �V �n�� of the form
2�n2�n!cn

for various constants c < 1 (see Theorems 2, 4, and 5).
In Fig. 1, we show the graph G�3�. With the help of Susan Holmes and

Glenn Tesler, we have computed the first few values of �V �n��,
n 1 2 3 4 5

�V �n�� 2 5 26 373 15193

We did not find this sequence in standard lists of integer sequences. Our
bounds show that �V �6�� is about 2�4× 106 which is too large for the brute
force algorithm we employed. The exact value �V �5�� gives an estimate of
c = 0�6583 if �V �n�� ∼ 2�n2�n!cn.
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FIG. 1. G�3�.

2. ELEMENTARY FACTS

Fact 1. (i) A�n� �= max�x ∈ X ∈ V �n� � �X� = 1� = 2n−1;

(ii) B�n� �= max�x ∈ X ∈ V �n�� = 2n − 1.

Proof (by induction on n). The assertion certainly holds for n = 1 since
A�1� = 1 = B�1�. Assume for some n ≥ 1 that A�k� = 2k−1 and B�k� =
2k − 1 for all k ≤ n. Observe that in general if X ∈ V �n� with �X� = r
and Y ∈ V �n − r� then X ∪ �x + Y � ∈ V �n� for any x ∈ X (where x + Y
denotes �x + y � y ∈ Y�). In this case we can think of building a copy
of Y on the “base” x ∈ X. Thus, taking X = �2n−1� ∈ V �n� ⊂ V �n + 1�
and Y = �2n−1� ∈ V �n�, we get X ′ = �2n−1� 2n� ∈ V �n + 1�. Now we can
reverse the process of generating the element 2n−1 in V �n� to remove 2n−1
from X ′, forming X ′′ = �2n� ∈ V �n+ 1�, which shows that A�n+ 1� ≥ 2n.
Now, with X = �2n� ∈ V �n + 1� (as we just showed) and Y ∈ V �n�

with maxY = 2n − 1 (by the induction hypothesis), we can construct X ′ =
X ∪ �2n + Y � ∈ V �n + 1� with maxX ′ = 2n + 2n − 1 = 2n+1 − 1, which
shows B�n+ 1� ≥ 2n+1 − 1.
In the other direction, if �x0� ∈ V �n+ 1� with x0 ≥ 2n + 1, then in order

to remove it (i.e., reach � through a sequence of edges), we would have
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to create a set Y ∈ V �n� with x0 − 1 ∈ Y . But since x0 − 1 ≥ 2n then by
(ii), this is impossible. Thus, A�n+ 1� = 2n. Finally, suppose X ∈ V �n+ 1�
where, without loss of generality, we can assume �X� = n + 1. Since by
hypothesis there is a path in G�n+ 1� from X to � then X must contain a
pair of consecutive integers, say x0 and x0+ 1 (since otherwise we could not
move at all from X). Removing x0 + 1 to form X1, we see (by induction)
that X1 must have a pair of elements x1� x1 + g1, with g1 ≤ 2 (again, since
otherwise X1 would not be connected to �). Remove x1 + g1 to form X2.
The general step in this process forms the (sub)set Xk ⊂ X of size n+ 1−
k, which must then possess a pair of elements xk� xk + gk with gk ≤ 2k. We
remove xk + gk from Xk to form Xk+1, etc. Eventually, we reach Xn ⊂ X
of size 1, which must consist of a single element xn ≤ 2n = A�n + 1�.
Combining all the preceding inequalities shows that

maxX ≤ 2n + 2n−1 + · · · + 2 + 1 = 2n+1 − 1�

Thus, B�n+ 1� ≤ 2n+1 − 1 and Fact 1 is proved.
The same argument can be used to prove the more general fact:

Fact 2. For 1 ≤ k ≤ n,

max�x ∈ X ∈ V �n� � �X� = k� = 2n − 2n−k�

3. UPPER BOUNDS ON �V �n��

For a set X = �X�1� < X�2� < · · · < X�r�� ∈ V �n�, define the sequence
of gaps of X to be the sequence g = g�X� = �g1� g2� � � � � gr� where gi �=
X�i� −X�i− 1�, and by convention, we always take X�0� = 0. The preced-
ing considerations show that the following (polynomial-time) algorithm can
always be used to decide whether a particular set X ⊆ � is in V �n�.

(1) If g�X� has no gap of size ≤ 2n−�X� then HALT. We can conclude
that X �∈ V �n�. Otherwise, if gi = X�i� −X�i − 1� ∈ g�X� has gi ≤ 2n−�X�

then remove X�i� from X to form X ′.
(2) Repeat (1) with X replaced by X ′.
(3) If we succeed in reaching � this way then X ∈ V �n�, and, in

fact, by reversing the preceding steps (and using Fact 1), this shows how to
construct it. Otherwise, we conclude X �∈ V �n�. Notice that there may be
many choices for the elements to be removed at each step. This reduction
algorithm allows for any choice to be made at each step.

Let us assume for now that X ∈ V �n� with �X� = n. We are going to
specify a particular choice to be made at each of the removal steps. Namely,
let R denote the preceding reduction algorithm in which we always remove
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the largest possible integer satisfying the required gap size condition. This
process results in the elements of X being removed in some particular
order, generating a permutation π = πX on �1� 2� � � � � n�, in particular, for
X = �X�1� < X�2� < · · · < X�n�� ∈ V �n�, where X�i� is removed at step
π�i�.
It will be convenient to denote a set X by its corresponding gap sequence

g�X� = �g1� g2� � � � � gn� where gi = X�i� −X�i− 1�. What we will do is to
derive upper bounds on the number N�π� of X ∈ V �n� which generate
the permutation π = πX for each permutation π of �1� 2� � � � � n�. We first
illustrate this idea with several examples.

Example 1. n = 4� π = ( 1
4
2
3
3
2
4
1

)
, g�X� = �g1� g2� g3� g4�. At the first

step of the reduction, since π�4� = 1, then X�4� is removed, leaving
g�X�1�� �= �g1� g2� g3�. This implies in particular that g4 ≤ 1.
At the second step, since π�3� = 2, then X�3� is removed (so g3 ≤ 2),

leaving g�X�2�� �= �g1� g2�. We continue this process for two more steps,
finally reaching �. For the permutation π to be valid, we need the
inequalities

g1 ≤ 1

g2 ≤ 2

g3 ≤ 4

g4 ≤ 8�

Hence, the total number N�π� of possible X ∈ V �4� is at most g1g2g3g4 ≤
1 · 2 · 4 · 8 = 26. The same argument shows that for general n, the reverse
permutation π with π�k� = n+ 1− k� 1 ≤ k ≤ n, has N�π� ≤ ∏n

k=1 2
k−1 =

2�n2�. In general, since each X is determined by its gap sequence g�X�, then
in fact N�σ� ≤ 2�n2� for any permutation σ = σX , which gives the (trivial)
estimate

�V �n�� ≤∑
π

N�π� ≤ n! 2�n2�� (1)

Theorem 1 will improve upon this estimate by an exponential factor.

Example 2. n = 4� π = � 14 23 31 42 �, g�X� = �g1� g2� g3� g4�. Proceeding as
before we find X�3� is the first number removed, so that g3 ≤ 1. However,
since X�4� was not removed (and is to the right of X�3�) then we must
have g4 > 1. Removing X�3� leaves us with the set X ′ with gap sequence
g�X ′� = �g1� g2� g3 + g4�. In general, whenever an internal number X�i�
is removed, the new gap formed is the sum of the two gaps that X�i� is
currently adjacent to. Now at the second step, X�4� is removed, so we must
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have its (new) gap g3 + g4 ≤ 2. However, this is not possible since g3 = 1
and g4 > 1. Hence, no X can have this permutation, i.e., N�π� = 0.
We now consider the general case. We begin with a permutation π on

�1� 2� � � � � n� where X�i� is removed at step π�i� by the (greedy) algorithm
R. Let gi�k� denote the gap associated with X�i� at the beginning of step
k (i.e., when only k− 1 elements have been removed), assuming that X�i�
has not yet been removed. Thus, gi�k� =

∑r
j=0 gi−j where r is the largest

index such that π�i− r� < k. In particular gi�1� = gi. Define hi = gi�π�i��.
Then hi is the gap associated with X�i� just prior to its being removed at
step π�i�. By the definition of algorithm R, we always have

hi ≤ 2π�i�−1� 1 ≤ i ≤ n� (2)

Now, suppose that for some i, we find there is a j < i such that π�j� =
π�i� − 1

j i

• •
π�i� − 1 π�i�

Thus, at step π�i� − 1, X�i� was passed over as a candidate for removal,
and X�j� was selected instead. This implies that

2π�i�−2 < gi�π�i� − 1� ≤ gi�π�i�� = hi�

Combining this with (2), we have

2π�i�−2 + 1 ≤ hi ≤ 2π�i�−1 (3)

(i.e., we lose a factor of 1/2 over the trivial estimate of 2π�i�−1 for the
number of choices for hi). Hence, if there are k such i’s for π, then the
total number of choices for all the hi is at most

2−k · 20+1+���+�n−1� = 2�n2� · 2−k�

It is easy to see by considering the inverse permutation π−1 that the number
of permutations π having exactly k values i with π�j� = π�i� − 1 for some
j < i is just the Eulerian number � n

k
�, which also counts the number of

permutations π of �1� 2� � � � � n� with k rises, i.e., k occurrences of a value
s such that π�s� < π�s + 1� (see [4] for an in-depth discussion of Eulerian
numbers). Hence, we have the estimate:

Theorem 1.

�V �n�� ≤ 2�n2�∑
k

〈n
k

〉
2−k� (4)
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The sum Sn �=∑
k� n

k
�2−k has occurred in various forms in the literature.

In particular, one finds in [7, p. 627] the sum

Pn �=∑
k

〈 n
k

〉
2k−1 (5)

and references where it is shown that∑
n≥0

Pn

zn

n!
= 1
1− ez

(6)

which implies

Pn

n!
= 1
2
�ln 2�−n−1 + ∑

k≥1
Re��ln 2 + 2πik�−n−1�� (7)

One also finds the interesting equality of Gross [5]

Pn = ∑
k≥1

kn

2k+1
� n ≥ 1� (8)

Note that by the symmetry property of � n
k
� = � n

n−k−1�, we have
1

2n−2
Pn =∑

k

〈 n
k

〉
2−n+k+1

=∑
k

〈 n
n− k− 1

〉
2−k

=∑
k

〈 n
k

〉
2−k

= Sn (9)

which implies

Sn = 1
2n−1

∑
k≥1

kn

2k
� (10)

Using dominated convergence in (7) along with (8) shows

Sn ∼ n!
�ln 4�n � (11)

Hence, we have

Theorem 2.

�V �n�� ≤ 2�n2�Sn < 2�n2�n! 1
�ln 4�n (12)

for n sufficiently large.
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A more refined version of this argument can be used to obtain the fol-
lowing stronger upper bound. For a permutation π of �1� 2� � � � � n�, define
for 1 ≤ i ≤ n, the quantity dπ�i� to be the least integer d (if it exists) such
that π�i� < π�i+ d�. If d does not exist then set dπ�i� = ∞. Finally, define

d�π� �=
n∏

i=1

(
1− 1

2dπ�i�

)
�

It can be shown that the following generalization of Theorem 1 holds.

Theorem 3.

�V �G�� ≤ 2�n2�∑
π

d�π�� (13)

The bound in Theorem 1 comes from (13) by just taking account of those
i in π for which dπ�i� = 1 (counted by Eulerian numbers). An intermediate
result arises by just considering those i in π for which dπ�i� ≤ 2 (and taking
other factors in the product d�π� equal to 1). It is straightforward to show
that this results in the following bound.
For a permutation π of �1� 2� � � � � n�, if π�i� < π�i + 1� we say that π

has a rise at i. Similarly, if π�i+ 1� < π�i� < π�i+ 2�, we say that π has a
“213” at i.
Let � n

k�l
� denote the number of permutations π of �1� 2� � � � � n� which

have k rises and l 213’s for 0 ≤ l ≤ k < n. Thus,
∑

l� n
k�l

� = � n
k
�.

Theorem 4.

�V �n�� ≤ 2�n2�∑
k�l

〈 n
k� l

〉
2−k�4/3�−l� (14)

It is easy to see that these “generalized Eulerian” numbers � n
k�l

� satisfy
the recurrence〈 n

k� l

〉
= �l + 1�

〈n− 1
k� l

〉
+ �l + 1�

〈 n− 1
k− 1� l + 1

〉

+�n− k− l�
〈 n− 1
k− 1� l

〉
+ �k− l + 1�

〈 n− 1
k� l − 1

〉
(15)

〈 0
0� 0

〉
= 1�

〈 a
b� c

〉
= 0 if a� b or c < 0�

We show some small values of � n
k�l

� in Table I.
We have not analyzed the asymptotic behavior of the sum in (14). How-

ever, preliminary computations indicate that∑
k�l

〈 n
k� l

〉
2−k�4/3�−l = O�n! cn2 �� (16)

where c2 < 0�95/ ln 4 = 0�68528 � � �, which represents a modest (but real)
improvement over the bound (12).
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TABLE I

0 1
l/k 0
n = 1

1 0 0
0 1 1
l/k 0 1

n = 2

2 0 0 0
1 0 1 0
0 1 3 1
l/k 0 1 2

n = 3

2 0 0 0 0 0
1 0 5 3 0 0
0 1 6 8 1 0
l/k 0 1 2 3 4

n = 4

3 0 0 0 0 0 0
2 0 0 3 0 0 0
1 0 16 32 6 0 0
0 1 10 31 20 1 0
l/k 0 1 2 3 4 5

n = 5

4. LOWER BOUNDS ON �V �n��

To show that �V �n�� is relatively large, we will describe a method
for constructing large subsets of V �n�. We begin with a simple ver-
sion of the construction. Suppose d = �d1 > d2 > · · · > dn� is a
sequence of integers satisfying di ∈ �2n−i−1� 2n−i�, 1 ≤ i ≤ n. Form a
set X = �X�1��X�2�� � � � �X�n�� from d as follows (where, as usual, we
define X�0� = 0).
For the first two steps, choose X�1� = d1, and X�2� = X�1� + d2. Now,

in general, at the kth step, select X�k� to be one of X�i� + dk, 0 ≤ i < k,
where X�i� is required to be different from the X�i′� used in forming X�k−
1� = X�i′� + dk−1. Note that the intermediate set Xk = �X�1�� � � � �X�k��
has the property that the unique smallest gap between consecutive elements
is just dk. This follows by induction since when X�k� is added then either
it is the largest element of Xk, or it falls between two consecutive elements
of Xk−1, say, X�i� < X�k� < X�i′�. Thus, the two new gaps created in this
case are X�k� −X�i� = dk and

X�i′� −X�k� = di′ − dk

≥ dk−2 − dk by hypothesis on the choice of Xk

> 2n−k+1 − 2n−k

= 2n−k ≥ dk�

Hence, in either case, dk is the unique minimum gap size of Xk.
Now observe that we can reduce X to � by removing its elements

sequentially, always choosing the point having the smallest current gap to
be removed. Doing this will remove the X�k� exactly in the reverse order
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X�n��X�n− 1�� � � � �X�1� by the minimum gap size property of the dk just
mentioned. In fact, given the final set X, this reduction will recover both
the sequence d, and the points X�i� on which each X�k� was “based” (i.e.,
X�k� = X�i� + dk). Hence, the total number of different X’s which can be
constructed this way is

�n− 1�!21+2+···+�n−2� = �n− 1�!2�n−12 ��
This implies the estimate

�V �n�� ≥
(
1
2

)n

2�n2��n− 1�! (17)

For the next approximation, we will allow more choices for each dk than
before, but fewer choices for the number of ways that X�k� can be cho-
sen, still however, so that when X�k� is selected, say X�k� = X�i� +
dk, then dk = X�k� − X�i� is always the unique smallest gap in Xk =
�X�1��X�2�� � � � �X�k��. Now for d = �d1 > d2 > · · · > dn�, we will only
require that di ∈ �2n−i−2� 2n−i�� 1 ≤ i ≤ n. However, we will now require in
choosing X�k� = X�i� + dk that X�k� is different from any X�i′� used in
defining X�k− 1� and X�k− 2�. Thus, the number of ways of choosing the
“base points” X�i� in forming X is now only �n− 2�! (instead of �n− 1�!
as in the preceding construction). However, we will more than make up
for this with the increased number of choices of the di. Our next job is to
estimate this number of choices, which we will denote by f0�n�. Further,
define f1�n� to be the number of choices of d = �d1 > d2 > · · · > dn�,
with d1 ∈ �2n−2� 2n−1� and di ∈ �2n−i−1� 2n−i+1�, 2 ≤ i ≤ n, where, for con-
venience, we will henceforth assume n ≥ 10. Thus by considering where d1
is chosen, we have the recurrences

f0�n� = 2n−2f0�n− 1� + f1�n− 1�� (18)

f1�n� =
(
2n−2

2

)
f0�n− 1� + 2n−2f1�n− 1�� n ≥ 10�

Set F0�m� = f0�m�/2�m−1
2 �, F1�m� = f1�m�/2�m2�, 1 ≤ m ≤ n. Then (18)

implies

F0�n� = F0�n− 1� + F1�n− 1�� (19)

F1�n� =
(
1
4
− 1
2n

)
F0�n− 1� + 1

2
F1�n− 1�� n ≥ 10�

Finally, for i = 0 and 1, define

F ′
i�n� = Fi�n�

n∏
j=6

(
1−

(
j

2

)
2−j+2

)−1
� (20)
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Substituting into (19), we obtain

F ′
0�n�

(
1−

(
n

2

)
2−n+2

)
= F ′

0�n− 1� + F ′
1�n− 1�� (21)

F ′
1�n�

(
1−

(
n

2

)
2−n+2

)
=
(
1
4
− 1
2n

)
F ′
0�n− 1� + 1

2
F ′
1�n− 1��

which implies

F ′
0�n� ≥ F ′

0�n− 1� + F ′
1�n− 1�� (22)

F ′
1�n� ≥

1
4
F ′
0�n− 1� + 1

2
F ′
1�n− 1��

for n ≥ 10. Hence, if we define F ′′
0 and F ′′

1 recursively by

F ′′
0 �n� = F ′′

0 �n− 1� + F ′′
1 �n− 1�� (23)

F ′′
1 �n� =

1
4
F ′′
0 �n− 1� + 1

2
F ′′
1 �n− 1��

then we find

F ′′
0 �n� > c

(
3+√

5
4

)n

for a suitable constant c > 0 as n → ∞. This implies

F0�n� > c′
(
3+√

5
4

)n

for some c′ > 0, and so,

f0�n� > c′
(
3+√

5
4

)n

2�n−12 �

= c′
(
3+√

5
8

)n

2�n2�

Thus, by the previous remark on the number of choices for base points, we
have the lower bound

�V �n�� ≥ c′
(
3+√

5
8

)n

2�n2��n− 2�! (24)

for a suitable constant c′ > 0.
Before proceeding to the general construction, we will sketch the next

stage in this approach. Now, we will relax the constraints on choosing d =
�d1 > d2 > · · · > dn� even further, while at the same time, increasing the
constraints on selecting the X�i�. Namely, we now only require that di ∈
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�2n−i−3� 2n−i�� However, in choosing X�k� = X�i� + dk, we require that
X�i� is different from any X�i′� used in defining X�k− j� for j = 1� 2� 3�
As usual, this will guarantee that dk is always the current smallest gap
(and consequently, the dk and (something) where they are attached can be
recovered uniquely from X). However, the number of choices for the X�i�
is now only �n− 3�!. To count the number of choices for d, define

g0�n� = # of choices for d with di ∈ �2n−i−3� 2n−i�� 1 ≤ i ≤ n�

g1�n� = # of choices for d with d1 ∈ �2n−3� 2n−1��
di ∈ �2n−i−2� 2n−i+1�� 2 ≤ i ≤ n�

g2�n� = # of choices for d with d1 ∈ �2n−2� 2n−1��
d2 ∈ �2n−3� 2n−1��
di ∈ �2n−i−1� 2n−i+2�� 3 ≤ i ≤ n�

Again, by considering where d1 and d2 are chosen, we have the recurrences

g0�n� = 2n−2g0�n− 1� + g1�n− 1�� (25)

g1�n� =
(
2n−2

2

)
g0�n− 1� + 2n−2g1�n− 1� + g2�n− 1��

g2�n� =
(
2n−2

3

)
g0�n− 1� +

(
2n−2

2

)
g1�n− 1� + 2n−2g2�n− 1�� n ≥ 10

As before, setting Gi�n� = gi�n�2−�
n−1+i
2 �� 1 ≤ i ≤ 3, and defining

G′
i�n� = Gi�n�

n∏
j=6

(
1−

(
j

2

)
2−j+2

)−1
�

we obtain the system of inequalities

G′
0�n� ≥ G′

0�n− 1� +G′
1�n− 1�� (26)

G′
1�n� ≥

1
4
G′
0�n− 1� + 1

2
G′
1�n− 1� +G′

2�n− 1��

G′
2�n� ≥

1
48

G′
0�n− 1� + 1

16
G′
1�n− 1� + 1

4
G′
2n− 1��

This implies that

G′
0�n� > cρn
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for a suitable c > 0 where ρ ≈ 1�34259 � � � is the largest root of x3 − 7
4x

2 +
9
16x− 1

48 , i.e., ρ is the largest eigenvalue of the matrix

1 1 0
1
4

1
2 1

1
48

1
16

1
4


 �

This implies

�V �n�� > c2

(
ρ

2

)n

2�n2��n− 3�!� (27)

Now, for the general case of this construction, we choose a fixed integer
r > 0, and we want to estimate the number of d = �d1 > d2 > · · · > dn�,
this time with di ∈ �2n−i−r� 2n−i�, 1 ≤ i ≤ n, where n ≥ 10. Correspondingly,
in choosing X�k� = X�i� + dk, we require that X�i� is different from any
X�i′� used in defining X�k− j� for 1 ≤ j ≤ r. Thus, we will have a factor
of �n− r�! when counting the number of choices for X.
Next, for 0 ≤ u ≤ r − 1, let hu�n� denote the number of ways of choosing

d = �d1 > d2 > · · · > dn� with
di ∈ �2n−r+u−i� 2n−1� for 1 ≤ i ≤ u�

di ∈ �2n−r+u−i� 2n+u−i� for u+ 1 ≤ i ≤ n�

By analyzing where the initial u di’s are chosen, we obtain the following
recurrence equations:

hu�n� =
u+1∑
i=0

(
2n−2

u− i+ 1

)
hi�n− 1�� 0 ≤ u ≤ r − 1� (28)

Substituting

Hi�n� = hi�n�2−�
n−1+i
2 ��

we obtain

Hu�n� =
u+1∑
i=0

(
u−i∏
j=0

(
1− j

2n−2

))
1

�u− i+ 1�!
2�i

2�
2�u+12 �

Hi�n− 1�� (29)

As before, if we make the substitution

H ′
i�n� = Hi�n�

n∏
j=6

(
1−

(
j

2

)
2−j+2

)−1

then we find

H ′
u�n� ≥

u+1∑
i=0

1
�u− i+ 1�!

2�i
2�

2�u+12 �
H ′

i�n− 1�� (30)
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This implies that for a suitable constant cr > 0,

H0�n� > cr

(
ρr

2

)n

2�n2��n− r�!�

where ρr is the largest eigenvalue of the r × r matrix

Mr =
(

2�j
2�

�i+ 1− j�!2�i+12 �

)
0≤i�j≤r−1

�

Note that

Mr = UrArU
−1
r �

where Ur is the r × r diagonal matrix with ith entry 2−�i
2� and

Ar =
(

1
2i�i+ 1− j�!

)
0≤i�j≤r−1

�

Thus, ρr is just the largest eigenvalue of Ar . We note that ρr , r → ∞,
is an increasing sequence. Computation produces the following bounds on
the ρr :

r ρr

1 1�309 · · · = 3+√
5

4
2 1�34259 · · ·
3 1�34399 · · ·
4 1�344014945 · · ·
5 1�344015076 · · ·
6 1�344015076 · · ·

This rapid convergence is to be expected because of the smallness of the
entries of Ar as their row indices increase.
Thus, we have the lower bound:

Theorem 5.

�V �n�� > �0�672�n2�n2�n! for n > n0� (31)

Recall the bound in (14) gives (via (16) which we do not prove)

�V �n�� < �0�6852�n2�n2�n!�
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10. J. Reiter and J. Jäckle, Dynamics of the symmetrically constrained Ising chain, Phys. A
215 (1995), 311–330.


	1.INTRODUCTION
	FIG.1.

	2.ELEMENTARY FACTS
	3.UPPER BOUNDS ON |V (n)|
	TABLE I

	4.LOWER BOUNDS ON |V (n)|
	ACKNOWLEDGMENTS
	REFERENCES

