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Abstract

For linear systems with delays, we define a new
class of Lyapunov-like functionals that may be
used to prove stability. We also show how we
may design a stabilizing (delayed) state feed-
back for delay systems using these functionals
and convex optimization techniques.

1 Introduction

We consider linear systems with delays, de-
scribed by the state equation

&(t) = Aga(t —I—ZAQU )+ Bu(t), (1)

where the state z(¢) € R, the input u(t) € RP,
and 0 < 74 < 1o < - < T, are the delays in
the system. We assume that the full state of
the system is available with a delay 7 > 0. Our
objective is to design a constant, delayed state
feedback u(?) = —Ka(t — 7) that stabilizes the
system. We remark that proving stability of sys-
tem (1) (with u(¢) = 0) is in itself a hard prob-
lem. Our approach towards designing K com-
bines a Lyapunov-like method with some recent
advances in convex optimization.

Note that (1) is not a finite dimensional sys-
tem, and therefore Lyapunov functionals rather
than the more conventional Lyapunov functions
are needed. In §2, we will describe one such func-
tional, which we will call the Modified Lyapunov-
Krasovskii (MLK) functional. We then show how
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we may pose the problem of design of a stabiliz-
ing (delayed) state-feedback as a convex feasibil-
ity problem.

2 Stabilizing state feedback

With the delayed state feedback u(t) = —Ka(t—

T), the state equation is
= Agx(t —I—ZA 2(t—1)—BKz(t—71). (2)

In the sequel, we assume that 0 < 7 < 7q; the
case Ty < 7 may be dealt with similarly.
Motivated by the work of Krasovskii [4] (see
also [6]), we propose a class of functionals for
system (2), which we will refer to as Modified
Lyapunov-Krasovskii (MLK) functionals:

V(z,t) = z(t)T Lox(t)+
ST a(t+ )T Lia(t+ s)ds + (3)
[0 a(t+ )T La(t 4 s)ds,

where L, Lg, ..., L, are symmetric positive def-
inite matrices and 79 = 7. The derivative

%V(w t), computed using (2) is

Apx(t) + 321 Aiw(t — )
2e(1)" Lo ( ~BKzx(t—7) )

m x(t — Ti_l)TLix(t - Ti—1)
+ 2 —x(t — Ti)TLix(t - 7)

+ (20T La(t) = a(t = 7)T La(t — 7))

This can be rewritten as d/dt V(z,t) = yT Wy,



where W and y7 are given by

N —LogBK LoAq coo LgApm
-KTBTLy L1 -1L 0 0
AT Lg 0 Ly—L; - 0
b
AT Lo 0 0 cov —Lm
and
[$(t)T7 $(t - T)Tv $(t - Tl)Tv Ty $(t - Tm)T]7

respectively, with N = LoAg + Al Lo + L.
We then have:

If there exist Lo, L,Ly,..., L, and K such
that W as above is negative definite, then sys-
tem (2) is stable.

The proof is along the lines of the one for
Lyapunov-Krasovskii functionals in reference [4].

We now show that finding Lo, L, Ly,..., L,
and K such that W as above is negative defi-
nite can be posed as a convex feasibility prob-
lem. Our manipulations are based on a recent
result on the parametrization of state-feedback
controllers [3].

We multiply every block entry of W on the
left and on the right by Lg' and set My = Lg',
M; = L' LiLgt, i =1,...om, M = Ly LLG!
and Y = KL;', to obtain a new matrix X given

by

N —BY AiMy oo Ap Mg ]
-YBT M, - M 0 0
Mo AT 0 My — My - 0
?
Mo AL 0 0 ceo =My,

where N = Ay M, + MOAOT + M.
We then have: W < 0 if and only if X < 0.
X is a linear function of My, My,---, M,,, M
and Y, and therefore therefore the set

U={X|X<0}

is convex in these variables. Checking its non-
emptiness can then be done via a convex feasi-
bility program.

There exist several methods for solving this
convex feasibility problem. In [6], Skorodinskii
proposes the use of the ellipsoid algorithm [1].
There have been recent advances in convex pro-
gramming which promise much faster algorithms
(5, 2].
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