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Abstract: The paper describes an ef£cient method for solving an optimal control problem
that arises in robust model-predictive control. The problem is to design the input sequence
that minimizes the peak tracking error between the ouput of a linear dynamical system and a
desired target output, subject to inequality constraints on the inputs. The system is uncertain,
with an impulse response that can take arbitrary values in a given polyhedral set. This problem
can be formulated as a robust linear programming problem with structured uncertainty. The
presented method is based on Mehrotra’s interior-point method for linear programming, and
takes advantage of the problem structure to achieve a complexity that grows linearly with the
control horizon, and increases as a cubic polynomial as a function of the system order, the
number of inputs, and the number of uncertainty parameters.
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1. INTRODUCTION

We describe an ef£cient method for solving the opti-
mal control problem

min. sup
‖ρ‖∞≤1

max
t=1,...,N

|c(ρ)T x(t)− ydes(t)|
s.t. x(1) = Ax0 +Bu(0)

x(t +1) = Ax(t)+Bu(t),
1 ≤ t ≤ M−1

x(t +1) = Ax(t), M ≤ t ≤ N −1
−1 � u(t) � 1, 0 ≤ t ≤ M−1,

(1)

where c(ρ) = c0 +ρ1c1 + · · ·+ρpcp, and N ≥ M. The
problem data are A ∈ Rn×n, B ∈ Rn×m, x0 ∈ Rn, the
vectors ck ∈ Rn, k = 0, . . . , p, and the sequence ydes(t),
t = 1, . . . ,N. The optimization variables are u(0), . . . ,
u(M − 1) ∈ Rm, and x(1), . . . , x(N) ∈ Rn, where u(t)
and x(t) are the input and the state of a discrete-time
linear dynamical system

x(t +1) = Ax(t)+Bu(t), x(0) = x0.

1 Partially supported by the NSF under grants ECS-9733450 and
CCR-9714002.

The constraints also include componentwise upper
and lower bounds −1 � u(t) � 1 on the input. More
complicated constraints, such as input slew rate con-
straints or terminal state constraints, are readily in-
cluded, but we will omit them for the sake of simplic-
ity.

To motivate the objective, we £rst consider the special
case with p = 0, for which the cost function reduces
to

max
t=1,...,N

|cT
0 x(t)− ydes(t)| (2)

We interpret cT
0 x(t) as the output of the system at time

t, and ydes(t) as a given desired output, that we want
to follow as closely as possible. The problem is to £nd
the input sequence u(0), . . . , u(M) that minimizes the
peak tracking error (2), subject to the constraints −1�
u(t) � 1. When p = 0, we will refer to problem (1) as
the output tracking problem.

Problem (1) is an extension of the output tracking
problem in which we include uncertainty in the system
parameters. More speci£cally, we assume that the



system output is given by y(t) = c(ρ)T x(t), where the
vector c is an af£ne function of some parameter ρ ∈
Rp, which is unknown but bounded, with components
between −1 and 1. Alternatively, we can say that the
impulse response coef£cients h(1),h(2), . . . have the
form

h(t) = h0(t)+ρ1h1(t)+ · · ·+ρphp(t),

where ρ is unknown with ‖ρ‖∞ ≤ 1, and hk(t) is
de£ned as hk(t) = cT

k At−1B. In problem (1) we min-
imize the worst-case peak tracking error, considering
all possible values of ρ. We therefore refer to the
problem as the robust output tracking problem.

The robust output tracking problem (1) has been ap-
plied in robust model-predictive control by (Allwright
and Papavasiliou 1992) and (Zheng and Morari 2000).
Both papers use a linear programming (LP) formula-
tion (see §5), and solve the resulting LP using general-
purpose solvers. The purpose of this paper is to discuss
a more ef£cient algorithm, and show that the cost of
solving the robust problem is not much higher than
the cost of solving the nonrobust problem.

More speci£cally, we will see that if we reformu-
late problem (1) as an LP, using the formulation
of (Allwright and Papavasiliou 1992) and (Zheng and
Morari 2000), we obtain an LP with N(n + p) +
Mm + 1 variables, 2(N(n + p) + Mm) inequalities,
and Nn equality constraints. We can therefore expect
that the computational effort in a general-purpose LP
method strongly depends on the control horizons N
and M, and that the cost of solving the robust prob-
lem (p > 0) is much higher than the cost of solving
the nonrobust problem (p = 0). The main contribu-
tion of this paper is to show that we can take ad-
vantage of problem structure and reduce the cost per
iteration of an LP interior-point method to 2N pn2 +
3Nn3 +M(4mn2 +4m2n+m3/3) ¤oating-point oper-
ations (¤ops). In other words, the computational com-
plexity grows linearly with N and M, and the com-
plexity of the robust problem is comparable to the
complexity of the nonrobust problem.

Numerical algorithms for linear and quadratic pro-
gramming have been applied to optimal control since
the 60s, and are widely used in model-predictive con-
trol, see (Morari and Lee 1999, Rawlings 2000). More
recently, it was pointed out in (Boyd et al. 1998) that
new interior-point methods for nonlinear convex op-
timization (for example, for second-order cone pro-
gramming or semide£nite programming) allow us to
ef£ciently solve a much wider class of optimal con-
trol problems, including, for example, problems with
uncertain system models, or nonlinear constraints on
inputs and states. It was also noted that the resulting
convex optimization problems are usually quite large,
and may require special-purpose interior-point imple-
mentations that take advantage of problem structure.

We £nd two basic approaches in the literature on nu-
merical implementation of interior-point methods for
control. Both approaches focus on speeding up the
solution of the large sets of linear equations that need
to be solved at each iteration, in order to compute the
search directions. A £rst idea is to use conjugate gra-
dients to solve these linear systems (Boyd et al. 1994,
Hansson 2000). Many different types of structure can
be exploited this way, often resulting in a speedup by
several orders of magnitude. Unfortunately, the perfor-
mance of the conjugate gradient method is also very
sensitive to the problem data, and in general requires
good preconditioners. Moreover, the excellent con-
vergence properties of general-purpose interior-point
implementations (typically 10–50 iterations) often de-
grade when conjugate gradients is used to compute
search directions. The second approach is less gen-
eral, but much more reliable, and is based on direct,
non-iterative, methods for solving the linear systems
fast. Wright, Rao, and Rawlings (Wright 1993, Rao
et al. 1998) and Hansson (Hansson 2000) have stud-
ied quadratic programming formulations of optimal
control problems with linear constraints. They show
that the Riccati recursion of (unconstrained) linear-
quadratic optimal control can be used to compute the
search directions in an interior-point method fast, i.e.,
at a cost that is linear in the control horizon, and
cubic in the system dimensions. The results of this
paper can be viewed as an extension of the quadratic
programming method of (Rao et al. 1998) to the robust
output tracking problem (1).

Notation We denote by Sn the space of symmetric
matrices of size n × n. The symbols �, �, �, and
≺ denote componentwise inequality between vectors,
or matrix inequality, depending on the context. For
example, if x ∈ Rn, then x � 0 means xk ≥ 0 for k =
1, . . . ,n; if x ∈ Sn, it means x is positive semide£nite.
The symbol 1 denotes a vector with all its components
equal to one. If x ∈ Rn and y ∈ Rp, then (x,y) ∈ Rn+p

denotes the vector (x,y) = [xT yT ]T .

2. LINEAR-QUADRATIC OPTIMAL CONTROL

In this section we review the classical method for
solving the linear-quadratic optimal control problem

min.
N

∑
t=1

(
1
2

x(t)T Q(t)x(t)−q(t)T x(t))

+
M−1

∑
t=0

(
1
2

u(t)T R(t)u(t)− r(t)T u(t))

s.t. x(1) = Ax0 +Bu(0)
x(t +1) = Ax(t)+Bu(t),

1 ≤ t ≤ M−1
x(t +1) = Ax(t), M ≤ t ≤ N −1.

The variables are u(t), t = 0, . . . ,M − 1 and x(t), t =
1, . . . ,N. The weights Q(t) ∈ Sn and R(t) ∈ Sm are



given and satisfy Q(t) � 0 and R(t) � 0 for all t. We
also assume that N ≥ M. To simplify notation, we will
express the problem as

minimize
1
2

xT Qx−qT x+
1
2

uT Ru− rT u

subject to Ax+Bu = b
(3)

where x =(x(1), . . . ,x(N))∈RNn, u =(u(0), . . . ,u(M−
1)) ∈ RMm and

b = (−Ax0,0, . . . ,0) ∈ RNn

q = (q(1), . . . ,q(N)) ∈ RNn

r = (r(0), . . . ,r(M−1)) ∈ RMm

A =




−I 0 · · · 0 0
A −I · · · 0 0
0 A · · · 0 0
...

...
. . .

...
...

0 0 · · · A −I


 ∈ RNn×Nn

B =




B · · · 0
...

. . .
...

0 · · · B
0 · · · 0
...

. . .
...

0 · · · 0



∈ RNn×Mm

Q =




Q(1) · · · 0
...

. . .
...

0 · · · Q(N)


 ∈ SNn

R =




R(0) · · · 0
...

. . .
...

0 · · · R(M−1)


 ∈ SMm.

The quadratic optimization problem (3) can be solved
by introducing a Lagrange multiplier y ∈ RNn, asso-
ciated with the equality constraints. The optimality
conditions are

 0 A B
AT Q 0
BT 0 R





 y

x
u


 =


 b

q
r


 , (4)

which is a symmetric inde£nite set of 2Nn + Mm
equations in 2Nn+Mm variables. It follows from our
assumptions (Q � 0, R � 0) that the coef£cient matrix
is nonsingular.

The familiar Riccati recursion from optimal control
(Anderson and Moore 1990) can be interpreted as
a very ef£cient method for solving equations of the
form (4), by taking advantage of the block structure of
A, B, Q, and R. The computational complexity is

3Nn3 +M(4mn2 +4m2n+m3/3)

¤ops. See (Rao et al. 1998, Wright 1993, Vanden-
berghe et al. 2001) for details.

3. MEHROTRA’S METHOD

The algorithms presented in the next two sections are
based on Mehrotra’s method, one of the most popular
algorithms for linear programming. For the sake of
conciseness we only give a high level description of
the method (more details can be found in (Wright
1997, Vandenberghe et al. 2001)). We consider LPs
of the form

minimize dT x̃
subject to Gx̃ � g

Hx̃ = h.
(5)

The variable is x̃ ∈ Rn. The problem data are d ∈ Rn,
G ∈ Rm×n, g ∈ Rm, H ∈ Rp×n, h ∈ Rp.

Mehrotra’s method is an iterative method and typically
converges in about 10–50 iterations, almost indepen-
dently of the problem dimensions and data. The main
computation in each iteration is the solution of a linear
system of the form


−D 0 G

0 0 H
GT HT 0





 ∆z̃

∆ỹ
∆x̃


 =


 r1

r2
r3


 , (6)

where the matrix D is positive diagonal with values
that change at each iteration.

As a practical rule of thumb, we can therefore say that
the cost of solving the LP (5) equals the cost of solving
about 10–50 sets of linear equations of the form (6).

4. THE OUTPUT TRACKING PROBLEM

We now return to problem (1). We £rst describe an
ef£cient method for the special case p = 0, and defer
the general problem to Section §5. Following the ma-
trix notation introduced in §2, we write the nonrobust
problem as

min. ‖C0x−ydes‖∞
s.t. −1 � u � 1

Ax+Bu = b
(7)

where A, x, u, b are de£ned as in §2, and

C0 =




cT
0 · · · 0
...

. . .
...

0 · · · cT
0


 ∈ RN×Nn

ydes = (ydes(1), . . . ,ydes(N)).

Problem (7) is readily formulated as an LP



min. w

s.t.




C0 0 −1
−C0 0 −1

0 I 0
0 −I 0





 x

u
w


 �




ydes
−ydes

1
1




[
A B 0

]
 x

u
w


 = b.

(8)

The variables are x, u, and a scalar w. The LP has the
form (5), so solving it ef£ciently requires solving a
sequence of linear equations of the form (6). It can be
shown (Vandenberghe et al. 2001) that these equations
reduce to a set of equations of the form




0 A B 0
AT Q 0 d
BT 0 R 0
0 dT 0 γ







∆y
∆x
∆u
∆w


 =




r1
r2
r3
r4


 , (9)

where R is positive diagonal, and

Q = CT
0 D0C0, d = CT

0 D̃01, γ = TrD0,

with D0 positive diagonal, and D̃0 diagonal.

Note that eliminating ∆w from (9) would result in a
3 × 3 block matrix with a large dense matrix Q −
(1/γ)ddT in the (2,2)-position. Instead of eliminating
∆w, we therefore solve two equations


 0 A B

AT Q 0
BT 0 R





 ∆y1

∆x1
∆u1


 =


 r1

r2
r3


 ,


 0 A B

AT Q 0
BT 0 R





 ∆yx

∆x2
∆u2


 =


 0

d
0


 ,

and then make a linear combination to satisfy the last
equation, i.e., calculate the solution of (9) as


 ∆x

∆y
∆u


 =


 ∆x1

∆y1
∆u1


−∆w


 ∆x2

∆y2
∆u2




where ∆w = (r4 − dT ∆x1)/(γ − dT ∆x2). The equa-
tions (10) have exactly the same form as (4). Moreover
R is positive diagonal, and Q is block diagonal with
positive semide£nite diagonal blocks

Q(t) = D0(t)c0cT
0 , t = 1, . . . ,N,

where the diagonal elements of D0 are denoted by
D0(t). We can therefore apply the Riccati method
described in §2, and solve (9) in roughly

3Nn3 +M(4mn2 +4m2n+m3/3) ¤ops.

5. THE ROBUST TRACKING PROBLEM

The method of the previous paragraph can be extended
to the robust tracking problem (1), which can be
expressed concisely as

min. sup
‖ρ‖∞≤1

‖(C0 +
p

∑
i=1

ρiCi)x−ydes‖∞

s.t. Ax+Bu = b
−1 � u � 1

where

Ci =




cT
i 0 · · · 0
0 cT

i · · · 0
...

...
. . .

...
0 0 · · · cT

i


 ∈ RN×Nn.

The other matrices and vectors are de£ned as before.
This problem can be formulated as an LP

min. w

s.t.




C0 0 E −1
−C0 0 E −1

C 0 −I 0
−C 0 −I 0
0 I 0 0
0 −I 0 0







x
u
v
w


 �




ydes
−ydes

0
0
1
1




,

[
A B 0 0

]



x
u
v
w


 = b,

where

E =
[

I I · · · I
] ∈ RN×N p, C =




C1
...

Cp




and v ∈ RN p is an auxiliary variable.

As in §4 it can be shown that Mehrotra’s applied to
this LP reduces to solving 10–50 linear systems of the
form (9), where R is positive diagonal, and Q is block
diagonal with diagonal blocks

Q(t) =
p

∑
i=0

Di(t)
2 − D̃i(t)

2

Di(t)
cic

T
i

+
1

∑p
i=0 Di(t)−1

(
p

∑
i=0

D̃i(t)
Di(t)

ci

)(
p

∑
i=0

D̃i(t)
Di(t)

ci

)T

,

where Di(t) > 0 and D̃i(t) change at each iteration.
The cost of forming Q is approximately 2N pn2 ¤ops,
ignoring lower-order terms. The total number of ¤ops
per iteration of Mehrotra’s method is therefore about

2N pn2 +3Nn3 +M(4mn2 +4m2n+m3/3).



6. NUMERICAL RESULTS

Both algorithms have been implemented in Matlab
(Version 6) and tested on a 933 Mhz Pentium III
running Linux. Table 1 summarizes the results for a
family of (nonrobust) output tracking problems with
randomly generated problems (using Matlab’s drss
function). The £rst four columns give the problem
dimensions. Columns 5–7 give the number of vari-
ables, inequalities, and equality constraints in the cor-
responding LPs (8). The last three columns give the
number of iterations to reach a relative error of 0.1%,
the total CPU time, and the CPU time per iteration.
Table 2 summarizes the results of a similar experiment
for the robust output tracking problem.

The results con£rm that the number of iterations
grows slowly with problem size, and typically ranges
between 10 and 50. From the last column it is also
clear that the CPU time per iteration grows linearly
with N and M. Within the range of dimensions con-
sidered here (n ≤ 40, m, p ≤ 20), the cost per itera-
tions appears to grow more slowly with n, m, and p,
than predicted by the theory (which predicts a cubic
increase).

Comparing the two tables we note that the cost of
solving the robust output tracking problem is only
slightly higher than the cost of solving the nonrobust
problem, despite the fact that the corresponding LPs
are much larger.

7. CONCLUSION

We have described ef£cient methods for solving a
constrained linear optimal control problem and its ro-
bust counterpart. The methods are based on a primal-
dual interior-point method for linear programming,
and take a number of iterations that typically ranges
between 10 and 50 and appears to grow very slowly
with problem size. The cost per iteration is dominated
by the solution of a large, structured set of linear
equations. By exploiting problem structure, we are
able to reduce these linear equations to the solution
of an unconstrained quadratic linear optimal control
problem, which can be solved ef£ciently by the well-
known Riccati recursion.

We have compared in detail the cost of solving the
output tracking problem and its robust counterpart.
The main contribution of the paper is to show that,
despite the size differences of the equivalent LPs, the
robust output tracking problem can be solved at a cost
that is not much higher than the nonrobust problem.

The techniques discussed here extend to a variety of
related problems, for example, problems with an �1-
objective (Rao and Rawlings 2000) or a quadratic ob-
jective, problems with additional convex constraints
such as slew rate constraints and terminal state con-
straints, and problems with ellipsoidal uncertainty.
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dimensions LP dimensions # iters CPU time time/iter
N M n m #vars. #ineqs. #eqs. (seconds) (seconds)

100 50 5 2 601 1200 1000 8 0.9 0.1
500 450 5 2 3401 6800 5000 9 6.9 0.8

1000 950 5 2 6901 13800 10000 11 17.5 1.6
2000 1950 5 2 13901 27800 20000 13 42.9 3.3

100 50 10 5 1251 2500 2000 10 1.3 0.1
500 450 10 5 7251 14500 10000 14 12.8 0.9

1000 950 10 5 14751 29500 20000 11 20.4 1.9
2000 1950 10 5 29751 59500 40000 14 54.3 3.9

100 50 20 10 2501 5000 4000 13 2.4 0.2
500 450 20 10 14501 29000 20000 15 18.6 1.3

1000 950 20 10 29501 59000 40000 16 41.3 2.6
2000 1950 20 10 59501 119000 80000 21 113.9 5.4

100 50 40 20 5001 10000 8000 17 6.6 0.4
500 450 40 20 29001 58000 40000 15 40.0 2.7

1000 950 40 20 59001 118000 80000 21 121.0 5.8
2000 1950 40 20 119001 238999 160000 27 304.1 11.3

Table 1. Number of iterations and CPU times for a family of output tracking problems with
randomly generated data.

dimensions LP dimensions # iters CPU time time/iter
N M n m p #vars. #ineqs. #eqs. (seconds) (seconds)

100 50 5 2 2 801 1600 1000 10 1.3 0.1
500 450 5 2 2 4401 8800 5000 12 10.4 0.9

1000 950 5 2 2 8901 17800 10000 10 17.6 1.8
2000 1950 5 2 2 17901 35800 20000 12 44.5 3.7

100 50 10 5 5 1751 3500 2000 9 1.4 0.2
500 450 10 5 5 9751 19500 10000 13 13.7 1.1

1000 950 10 5 5 19751 39500 20000 13 28.4 2.2
2000 1950 10 5 5 39751 79500 40000 16 71.5 4.5

100 50 20 10 10 3501 7000 4000 20 4.1 0.2
500 450 20 10 10 19501 39000 20000 16 21.7 1.4

1000 950 20 10 10 39501 79000 40000 21 62.0 3.0
2000 1950 20 10 10 79501 159000 80000 21 126.8 6.0

100 50 40 20 20 7001 14000 8000 18 7.9 0.4
500 450 40 20 20 39001 78000 40000 23 69.8 3.0

1000 950 40 20 20 79001 158000 80000 24 152.7 6.4
2000 1950 40 20 20 159001 318000 160000 22 297.7 13.5

Table 2. Number of iterations and CPU times for a family of robust output tracking
problems with randomly generated data.


