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ABSTRACT

As the d esig n-m anu factu ring interface becom es increasing ly
com plicated with IC technolog y scaling , the correspond ing
process variability poses g reat challeng es for nanoscale ana-
log / R F d esig n. D esig n optim ization based on the enu m era-
tion of process corners has been wid ely u sed , bu t can su ff er
from ineffi ciency and overd esig n. In this paper we propose
to form u late the analog and R F d esig n with variability prob-
lem as a special type of robu st optim ization problem , nam ely
robu st g eom etric prog ram m ing . T he statistical variations in
both the process param eters and d esig n variables are cap-
tu red by a pre-specifi ed confi d ence ellipsoid . U sing su ch op-

tim iza tion w ith ellipsoid a l u n certa in ty approach, robu st d e-
sig n can be obtained with g u aranteed yield bou nd and lower
d esig n cost, and m ost im portantly, the problem size g rows
lin ea rly with nu m ber of u ncertain param eters. N u m erical
ex am ples d em onstrate the effi ciency and reveal the trad e-off
between the d esig n cost versu s the yield req u irem ent. We
will also d em onstrate sig nifi cant im provem ent in the d esig n
cost u sing this approach com pared with corner-enu m eration
optim ization.
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1.INTRODUCTION
With sem icond u ctor fabrication technolog ies scaled below

1 0 0 nm , process variability cau sed by su bwaveleng th lithog -
raphy and nu m erou s m anu factu ring steps im pacts the cir-
cu it perform ance and the param etric yield of analog and R F
IC s sig nifi cantly. D esig n for m anu factu rability (D F M ) tech-
nolog ies are req u ired to enhance the com m u nication across
the d esig n m anu factu ring interface (as shown in F ig u re 1 )
so that the process variability can be consid ered in the early
stag e of analog circu it d esig n ex ploration. T herefore, new al-
g orithm s and the correspond ing m ethod olog ies are com pu l-
sory to ju d iciou sly incorporate the process variability into
the analog d esig n fl ow [1 ].

Variou s m ethod s [2 , 3 , 4 , 5 ] have been proposed to opti-
m ize statistical perform ance inclu d ing the process variabil-
ity. D esig ns O f E x perim ent (D O E ) is u su ally u sed to es-
tablish the relation between hig h ord er process eff ects and
circu it responses. T hen, d etailed circu it sim u lations or even
M onte C arlo analysis for each d esig n are necessary to fi nd
the response su rface m od el that d escribes the circu it sensi-
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tivities and correlations to and among the process parame-
ters and design variables. By centering the design variables
in the most insensitive region, maximum parametric yield
can be obtained. These methods require accurate charac-
terization of the statistical circuit response at the expense
of larger computation especially when the design space is
large. Therefore, they are most useful in the production
phase as fine tuning methods of the design.

To consider process variability in the early stages of design
exploration, the traditional corner-enumeration worst-case
design optimization has been the most widely used technique
(see, e.g., [6 ]). The process parameters tak e values within
a certain range which forms a tolerance “ box” ; the circuit
performance is optimized for all of the “ corners” , or the ver-
tices of the formed polyhedron. This optimization approach
assumes minimum k nowledge of the process parameters and
often leads to a worst-case design. H owever, the applications
of the corner-enumeration optimization approach are limited
for the following reasons. First, by assuming process param-
eters are independently uniformly distributed, this method
intrinsically ignores the useful information about the under-
lying statistical distributions and correlations. Second, the
problem size will increase exponentially with the number of
uncertain parameters. In addition, even when the process
parameters fall inside of the tolerance box, in general there is
no guarantee for circuit performance meeting the specifica-
tions, consequently, no guarantee for the yield requirement.
Furthermore, for a given yield requirement, design for all
corners usually results in over-conservative design with sub-
stantially degenerated circuit performance.

In this paper we propose a new algorithm, OP ERA, in
which the design with variability problem is reformulated
as a special form of robust optimization, specifically robust
geometric programming (G P ). In OP ERA, the normal vari-
ations in both the process parameters and design variables
are modeled using ellipsoidal uncertainty of G P parameters.
Unlik e corner-enumeration worst-case design, the problem
size grows linearly with number of uncertain parameters.
Recent advances in robust optimization show that this type
of optimization with ellipsoidal uncertainty can be solved
efficiently and accurately [7].

We demonstrate the applications of our robust design via
OP ERA using two design examples, a ring oscillator and
an L C oscillator, because the parametric yield of an oscil-
lator is quite sensitive to the variability of the center fre-
quency. The numerical results reveal that robust designs can
be obtained with guaranteed yield bound and lower design
cost. In addition, the trade-off curve of design cost versus
yield requirement can be easily obtained and analyzed. It
is also demonstrated that much less over-design is incurred
when compared with the design from corner-enumeration
optimization.

This paper is organized as follows. Modeling of the manu-
facturing variability and formulation of the robust optimiza-
tion are briefly introduced in §2. In §3, we formulate the de-
sign with variability problem as optimization with ellipsoidal
uncertainty. We also show how to capture the normal pro-
cess variations by a pre-specified confidence ellipsoid. In §4
we address several implementation issues that result from
reformulating G P in posynomial form with normal process
variations as robust G P with ellipsoidal uncertainty. Two
robust design examples are given in §5 as demonstration,
followed by conclusions in §6 .

2. BACKGROUND

2.1 Process variation sources and modeling
The IC performance variability is impacted by two dis-

tinct sets of factors: environmental factors and physical fac-
tors. The environmental factors usually include variations in
power supply voltage and temperature. The physical factors

include variations in the electrical and physical parameters
that characterize the behavior of active and passive devices,
such as Vth, Tox, Le ff etc. The process parameter variability
can be measured through the ratio of the standard devia-
tion (σ) and the mean value (µ). Table 1 compiled from [8 ]
listed the increasing parameter variability of five technolo-
gies in the 250 to 70 nm gate length range.

Yea r Tech n od e Leff Tox Vth W H ρ

1 9 9 7 0 .2 5 µ m 1 0 .7 % 2 .6 7 % 3 .3 3 % 8 .3 3 % 8 .3 3 % 7 .4 1 %

1 9 9 9 0 .1 8 µ m 1 1 .1 % 2 .6 7 % 3 .3 3 % 8 .7 2 % 1 0 .0 0 % 8 .0 0 %

2 0 0 2 0 .1 3 µ m 1 1 .5 % 3 .2 5 % 3 .3 3 % 9 .3 3 % 1 0 .0 0 % 9 .0 9 %

2 0 0 5 0 .1 0 µ m 1 3 .3 % 4 .0 0 % 3 .8 1 % 1 0 .0 0 % 1 1 .2 5 % 1 0 .5 6 %

2 0 0 6 0 .0 7 µ m 1 5 .7 % 5 .3 3 % 4 .4 4 % 1 1 .1 1 % 1 1 .9 0 % 1 1 .1 1 %

Tab le 1: Trends of variab ility (σ/ µ) in DS M tech -
nologies.

To model this variability, we associate a statistical distri-
bution to each parameter type. We may use a uniform distri-
bution over the range of the specifications for environmental
factors. For example, the temperature can be modelled as a
uniform distribution random variable from -25 to 125 degree
Celsius. The physical parameters are typically represented
by some joint probability density function N(µ, Σ), where
µ is a vector of means and Σ is a variance/covariance ma-
trix. The correlation of these parameters must be modeled
since systematic variations are dominant for most nanoscale
technologies [8 ].

2.2 Robust optimization
The idea of robust optimization [9 , 10] is to explicitly in-

corporate a model of data uncertainty in the formulation of
an optimization problem. A large class of robust optimiza-
tion problems can be formulated as

minimize supu∈U f0(y, u)
subject to supu∈U fi(y, u) ≤ 0, i = 1, . . . , m,

(1)

where y is the optimization variable, u represents the uncer-
tain problem data, and the set U describes the uncertainty
in u,

Note that the robust optimization problem (1) is a convex
problem if fi, i = 0, 1, . . . , m are convex in y for each u ∈ U .
H owever, even if the resulting robust optimization prob-
lem is convex, it is often much larger and more difficult
to solve than the corresponding nonrobust convex optimiza-
tion problem, so the added robustness of an optimization
problem can come at a high price.

3. PROPOSED APPROACH
The circuit design with process variability problem can

be cast as an optimization with a specific model uncertainty
problem as in the robust optimization formulation (1). Re-
cently, geometric programming [11] has found successful ap-
plications in the field of circuit design, e.g., [6 , 12, 13].
Therefore, to include the process variability in the early
stage of design, we propose to formulate the circuit design
with variability problem as robust geometric programming,
which can systematically incorporate a model of data un-
certainty in a G P and optimize for all the given scenarios
under this model. Then, the various sources of variations
can be modeled as the ellipsoidal uncertainty.

3.1 Optimization withellipsoidal uncertainty
Assuming that (As, bs) is uncertain, but k nown to belong

to the image of a set U ⊂ R
L under the affine mapping

Ãs(u), b̃s(u) = A0

s +
L

j= 1

ujA
j
s, b

0

s +
L

j= 1

ujb
j
s , (2)

where Aj
s ∈ R

Ks×n, bj
s ∈ R

Ks , j = 0, 1, . . . , L. The corre-
sponding robust geometric program in convex form can then
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be formulated as

minimize cT y

subject to supu∈U lse Ãs(u)y + b̃s(u) ≤ 0, s = 1, . . . , m,

(3)

where lse(z)
∆
= log(ez1 + · · ·+ ezk ) is called the log-sum-exp

function. In addition, in this paper we assume the robust
GP (3) has ellipsoidal uncertainty, in which U is an ellipsoid:

U = ū + Pρ ‖ρ‖2 ≤ 1, ρ ∈ R
L , (4)

where ū ∈ R
L and P ∈ R

L×L.
It is not known whether the robust GP (3) with ellipsoidal

uncertainty (4) can be reformulated as a tractable (convex)
optimization problem. However, a tractable approximation
method that yields a good compromise between solution ac-
curacy and computational efficiency has been proposed. Re-
fer to [7] for more details.

3.2 Capturingprocess variations by confidence
ellipsoid

Recall that a normal random variable u ∈ R
n with mean ū

and covariance matrix Σ = ΣT > 0, i.e., u ∼ N(ū, Σ), has
the probability density function (pdf)

pu(ξ) = (2π)−n/2(det Σ)−1/2e−1/2(ξ−ū)T Σ−1(ξ−ū). (5)

O bviou sly pu(ξ) is constant for (ξ− ū)T Σ−1(ξ− ū) = γ, i.e.,
on the su rface of ellipsoid

Eγ = {ξ | (ξ − ū)T Σ−1(ξ − ū) ≤ γ}. (6 )

H ere Eγ is called a co n fi d en ce ellipso id of u. It is well-k nown
that the nonneg ative rand om variable (u − ū)T Σ−1(u − ū)
has a chi-sq u ared d istribu tion with d eg ree n, i.e.,

Prob(u ∈ Eγ) = Fχ2
n
(γ), (7 )

where Fχ2
n

is the cu m u lated d istribu tion fu nction of χ2
n.

If the process variations are norm ally d istribu ted with the
d ensity fu nction (5), a pre-specifi ed am ou nt of m ass of prob-
ability 0 < α < 1 can be captu red by the confi d ence ellipsoid
Eγ (6 ) with α = Fχ2

n
(γ), as illu strated in F ig u re 2 .

F ig u re 2 : C ap tu rin g corre late d p roc e ss p aram e te r

variation s by a con fi d e n c e e llip soid .

3.3 Yield-guaranteedrobustdesign
S u ppose the u ncertainty param eter u ∈ R

L in the robu st
G P (3) is ra n d o m and norm ally d istribu ted with the d ensity
fu nction (5). G iven 0 < α < 1, we say ŷ ∈ R

n has y ield no
lower than α if

Prob lse Ãi(u)ŷ + b̃i(u) ≤ 0, i = 1, . . . , m ≥ α.

The yield -g u aranteed robu st d esig n can be obtained as
follows. L et the ellipsoid al u ncertainty set U in (4 ) to be
the confi d ence ellipsoid Eγ d efi ne in (6 ). In this case, all
the feasible solu tions of the robu st G P (3) have yield no
lower than Fχ2

n
(γ). Therefore, in the robu st G P fram ework ,

we can captu re both the ind epend ent and the correlated
norm al rand om ness by the ellipsoid al u ncertainty (6 ), and
the resu lting feasible solu tions always have g u aranteed yield
bou nd Fχ2

n
(γ).

4. IMPLEMENTATIONISSUES

4.1 Lognormalapproximationofnarrownor-
maldistributions

L et u be norm ally d istribu ted with m ean µ and vari-
ance σ2; assu m e u is n a rro w , i.e., σ � µ. We k now that
its m ass of probability is m ostly concentrated in the sm all
interval [µ − 3σ, µ + 3σ]. To approx im ate the narrow nor-
m al rand om variable u by a log norm al rand om variable, of
which pd f is d efi ned on po sitive real nu m bers, here we as-
su m e µ − 3σ > 0 su ch that m ost of u (with hig h probabil-
ity) is d istribu ted within a positive interval. Therefore, for
all ξ ∈ [µ − 3σ, µ + 3σ], ξ/ µ ' 1, which fu rther im plies
log (ξ/ µ) ' ξ/ µ − 1. H ence for all ξ ∈ [µ − 3σ, µ + 3σ],

pu(ξ) = (2 π)−1/2σ−1e−(ξ−µ)2/(2σ2)

' (2 π)−1/2((σ/ µ)ξ)−1e−(lo g ξ−lo g µ)2/(2(σ/µ)2).

Therefore, narrow norm al d istribu tions can be accu rately
approx im ated by log norm al d istribu tions:

σ � µ : N(µ, σ2) ' L N(log µ, (σ/ µ)2). (8 )

(The proof of the g eneric log norm al approx im ations of nor-
m al d istribu tions can be fou nd in [14 ].)

4.2 IncorporateprocessvariationsinGPof
posynomialform

M any optim ization-based circu it d esig ns resu lt in g eom et-
ric prog ram s of po sy n o m ia l form . When process variations
are incorporated , the robu st d esig n with g u aranteed yield
bou nd can be form u lated as the following optim ization prob-
lem :

m inim ize cT x
su bject to Prob(fs(x, p) ≤ 1, s = 1, . . . , m) ≥ α,

(9 )

where 0 < α < 1 is the req u ired yield bou nd , x ∈ R
nx are the

d esig n variables, p ∈ R
np represents the process param eters,

and

fs(x, p)
∆
=

Ks

k= 1

dks

np

i= 1

(pi + δpi)
biks

nx

j= 1

(xj + δxj)
ajks .

(10)
H ere the process variations in the process param eter pi and
d esig n variable xi are m od eled by the rand om variables δpi

and δxi respectively. A nother im plicit assu m ption is that
fs(x, p) is posynom ial in x and p when we let δpi = 0, i =
1, . . . , np and δxj = 0, j = 1, . . . , nx.

4.2.1 Variance-linked-to-meanvariations inprocess
parameters

C onsid er the robu st d esig n (9 ) with req u ired yield bou nd α.
A ssu m e δxj = 0, j = 1, . . . , nx in (10), i.e., no variation in
the d esig n variables. We m od el the variance-link ed -to-m ean,
norm al variations in process param eters by

δpi/ pi ∼ N(0, σ2
pi

), i = 1, . . . , np,
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fs(x, p) '

Ks

k=1

dks

np

i=1

(pie
δpi/pi)biks

nx

j=1

x
ajks

j =

Ks

k=1

exp cks +

np

i=1

biksqi +

np

i=1

biksui +

nx

j=1

ajksyj (11)

where σpi
� 1, i = 1, . . . , np are given. Let Σp = ΣT

p >
0 be the covariance matrix of δpi/pi, i = 1, . . . , np. For
values of δpi with high probability, fs(x, p) can be inferred
from (11), in which cks = log dks, qi = log pi, ui = δpi/pi,
and yj = log xj . Therefore, fs(x, p) ≤ 1 can be reformulated
as a log-sum-exp constraint

lse A0
s +

np

j=1

ujA
j
s y, b0

s +

np

j=1

ujb
j
s ≤ 0 (12)

with appropriate Aj
s and bj

s, j = 0, 1, . . . , np. We can re-
formulate each constraint fs(x, p) ≤ 1 of (9) in form of the
above log-sum-exp constraint and then obtain a robust GP
of the form (3) with the ellipsoidal uncertainty:

U = {u ∈ R
np | uT Σ−1

p u ≤ γ}, (13)

where γ satisfying Fχ2
n
(γ) = α. Assume ŷ ∈ R

nx is a feasible

solution of the resulting robust GP. Then x̂j = eŷj , j =
1, . . . , nx satisfy (9), i.e., x̂ ∈ R

nx has yield no lower than α.

4.2.2 Variance-not-linked-to-mean variations in de-
sign variables and process parameters

Consider the robust design (9) with required yield bound α.
Assume upper and lower bounds for each design variable are
given:

0 < Lj ≤ xj ≤ Uj , j = 1, . . . , nx. (14)

We model the variance-not-linked-to-mean, normal varia-
tions in process parameters and design variables by

δpi ∼ N(0, σ2
pi

), i = 1, . . . , np,

δxj ∼ N(0, σ2
xj

), j = 1, . . . , nx.

Here we assume σpi
� pi, i = 1, . . . , np. In addition, we

assume σxj
� xj , j = 1, . . . , nx. (N ote that in general

we can verify if this assumption holds since in many circuit
designs it is easy to determine reasonable range of values for
each design variable, e.g., (14).) We also assume pi−3σpi

>
0, i = 1, . . . , np and xj−3σxj

> 0, j = 1, . . . , nx. Therefore,
by (8),

pi + δpi ' LN log pi, (σpi
/pi)

2 , i = 1, . . . , np,

xj + δxj ' LN log xj , (σxj
/xj)

2 , j = 1, . . . , nx.

Recall that a lognormal random variable v ∼ LN(µ, σ2)
can be inferred from v = eµ+σu with u ∼ N(0, 1). Then
fs(x, p) can be inferred from (15), in which cks = log dks,
qi = log pi, and yj = log xj . Here ui ∼ N(0, 1), i =
1, . . . , np and ûj ∼ N(0, 1), j = 1, . . . , nx; αj + βjyj , j =
1, . . . , nx are linear approximations of e−yj subject to yj ∈
[log Lj , log Uj ], j = 1, . . . , nx respectively. (Many methods,
e.g., least-square fitting, can be used to find good linear
approximations for e−yj within the interval [log Lj , log Uj ].)
Therefore, we can reformulate each constraint fs(x, p) ≤ 1
in (9) as a log-sum-exp constraint (like (12)) to obtain a
robust GP of the form (3) with the ellipsoidal uncertainty:

U = {ξ = (u, û) | ξT Σ−1
ξ ξ ≤ γ, ξ ∈ R

np+nx}, (16)

where γ satisfying Fχ2
n
(γ) = α, and Σξ = ΣT

ξ > 0 is the
covariance matrix of ui, i = 1, . . . , np and ûj , j = 1, . . . , nx.

Assuming ŷ ∈ R
nx is a feasible solution of the resulting

robust GP, then x̂j = eŷj , j = 1, . . . , nx satisfy (9), i.e.,
x̂ ∈ R

nx has yield no lower than α.

5. ROBUSTDESIGN EXAMPLES

5.1 Robust design of an RFring oscillator
The first example we will show is the robust design of a

5GHz Ring Oscillator (RO). The specific RO topology we
consider here is shown in Figure 3. This is a widely used
building block to characterize process variations. The per-
formance and design variable relation has been extensively
studied, e.g., [15, 16, 17].

Vdd

W
P
/L
P

W
N
/L
N

Figure 3 : Topology of th e ring oscillator.

To simplify the robust GP formulation, we consider three
design variables and three performance specifications for this
RO design. The three design variables are: eff ective width
We ff = Wn + Wp, gate length L = Ln = Lp, and gate over
drive ∆V . They are related to the sizing and biasing of the
N MOS and PMOS transistors.

The RO is designed to consume minimal dynamic power
for a certain center frequency. In addition, the phase noise
must be kept below a given threshold. The design optimiza-
tion can be formulated as:

minimize P (We ff , L, ∆V )
subject to N(We ff , L, ∆V ) ≤ N m a x,

fre son a n t(We ff , L, ∆V ) = f0,
(17)

where f0 is the given resonant center frequency, P is the
consumed dynamic power, N is the phase noise and N m a x

denotes its maximum allowable value.
In this example, we consider four variance-not-linked-to-

mean independent normal variations in process parameter
and design variables. They are the gate width variation
∆W , the gate length variation ∆L, the gate oxide thickness
variation ∆Tox and the threshold voltage variation ∆Vth .
Here the gate oxide thickness variation ∆Tox is refl ected by
coeffi cient perturbation in the GP of posynomial form (i.e.,
δpi in (10)), and other three parameter variations are re-
fl ected by design variable perturbation (i.e., δxi in (10) and
∆Vth is considered as the gate overdrive voltage perturba-
tion). Then the design optimization (17) can be formulated
as the GP of posynomial form considered in §4.2.2, which
can be further reformulated in form of the robust GP (3)
to carry out robust design with guaranteed yield bound, as
described in §3.3.

The process parameter values used in the numerical ex-
ample are extracted from the IB M 7HP 0.18µm B iCMOS
technology. The design is optimized when the confidence
ellipsoid captures 90% of process variations and the cen-
ter frequency is relaxed by 20% , i.e., within the interval
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fs(x, p) '

Ki

k=1

dks

np

i=1

exp log pi +
σpi

pi
ui

biks
nx

j=1

exp log xj +
σxj

xj
ûj

ajks

'

Ki

k=1

exp cks +

np

i=1

biksqi +

np

i=1

biks
σpi

pi
ui +

nx

j=1

ajksσxj
αj ûj +

nx

j=1

ajksyj +

nx

j=1

ajksσxj
βj ûjyj (15)

[4GHz, 6GHz]. The design resulting from robust GP is com-
pared with the design resulting from GP as listed in Table 2
and their performance mean values are listed in Table 3.

D esign variable GP design Robust GP design
Weff 4.53µm 6.68µm
L 0.26µm 0.24µm
∆V 0.42V 0.387V

Table 2: RO design results.

Performance mean GP design Robust GP design
Power 1.87mW 2.59mW
Phase noise -100dBc/ Hz -101dBc/ Hz
Frequency 5GHz 4.85GHz

Table 3: RO performance mean values.

A Monte Carlo analysis with 10,000 sample points is used
to evaluate the performance variability and the parametric
yield. Histograms of the phase noise performance of two
designs resulting from GP and robust GP optimization are
shown in Figure 4. It can be concluded that higher yield can
be obtained through the robust design with more design cost
compared with the nominal design.
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Figure 4 : Phase noise histograms.

We further use the concentric ellipsoids Eγ (16) with var-
ious values of γ to capture different percentages of process
variations. The trade-off between the design cost and the
yield bound is shown in Figure 5, where the design cost
(power consumption in this example) increases when higher
yield bound is requested. It is also observed that a drastic
increase in the design cost will be incurred to obtain yield
close to 100%.

5.2 Robust design of an LCoscillator
We next use a 2.1GHz LC oscillator design example based

on the topology and tank model shown in Figure 6 to com-
pare the robust optimization and the corner-enumeration
optimization.

Five design variables and five performance specifications
are considered for this LC oscillator design. The five design
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Figure 5 : Ring oscillator: design cost versus yield

req uirement.

Figure 6 : Topology and lumped tank mod e l of a n

L C osc illa tor.

variables are: th e biasin g tail c u rren t Ibias, th e ou tpu t swin g
voltag e VS W , th e in d u c tan ce L, th e tan k con d u c tan ce gtan k ,
an d th e tan k capacitan ce Ctan k . T h e latter th ree are key
d esig n variables in th e lu m ped tan k m od el.

T h e L C osc illator was d esig n ed to con su m e m in im al d y -
n am ic power for a certain cen ter freq u en c y [1 3 ]. T h e d esig n
optim ization h as th e followin g form :

m in im ize P (Ibias)
su bject to N(Ibias, gtan k , Ctan k , L, VS W ) ≤ N m ax ,

freso n an t(Ctan k , L) = f0,
G(Ibias, gtan k ) ≥ Gm in ,
VS W ≤ Vd d ,

VS W ≤
Ibias

gtan k

,

(1 8 )

wh ere f0 is th e reson an t cen ter freq u en c y , P is th e con su m ed
d y n am ic power, N is th e ph ase n oise, G is th e loop g ain , Vd d

is th e power su pply voltag e, an d th e m in im u m or m ax im u m
are th e u pper bou n d or lower bou n d of th e correspon d in g
spec ifi cation .

In th e L C osc illator d esig n , we con sid er th ree varian ce-
lin ked -to-m ean , correlated n orm al variation s in process pa-
ram eters. T h ey are th e relative tan k con d u c tan ce varia-
tion ∆gtan k / gtan k , th e relative tan k capacitan ce variation
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∆Ctank/Ctank, and the relative inductance variation ∆L/L.
Then the design optimization (18) can be formulated as the
G P of posynomial form considered in §4 .2 .1, which can be
further reformulated in form of the robust G P (3) to carry
out robust design with guaranteed yield bound, as described
in §3.3.

In the numerical example, the process parameter values
are extracted from the H itachi 9 0 G H z 0 .2 5 µm B iCM O S
technology. The design is optimized when the confidence
ellipsoid captures 9 0 % of process variations and the center
frequency is relaxed within the interval [1.7 G H z, 2 .5 G H z].
N ote that the corner cases are defined as the vertices of the
regular polyhedron where the ellipsoid used in the robust op-
timization is inscribed. We compare the robust optimization
results with the corner-enumeration optimization results as
listed in Table 4 . It is shown that the corner-enumeration
optimization will incur higher design cost (Ibias in this ex-
ample).

O ptimization with ellip-
soidal uncertainty

O ptimization using
corner enumeration

Ibias 2 .4 1mA 2 .7 2 mA
Ctank 1.33pF 1.2 6 pF
gtank 0 .89 4 mS 1.0 18mS
L 2 .83nH 2 .82 nH
Vsw 2 .5 V 2 .5 V

Tab le 4 : LC oscillator desig n resu lts comp arison.

We also use the concentric ellipsoids Eγ (13) with vari-
ous values of γ to capture diff erent percentages of process
variations. D esign costs (power consumption) of the two
optimization schemes will both increase when the yield re-
quirement increases, as compared in Figure 7 . For the same
yield requirement, the design cost of robust optimization
is always lower than that of corner-enumeration optimiza-
tion. The actual yield of each design is found using 10 ,0 0 0
points in a M onte Carlo analysis. The design cost versus
actual yield for the two optimization schemes in compared
in Figure 8. It is shown in this example that about 2 0 %
overdesign is observed in the corner-enumeration optimiza-
tion compared with the robust optimization when ±3σ ac-
tual yield is obtained.

6. CONCLUSIONS
In this paper, optimization w ith ellipsoid al u ncertainty is

proposed to treat the design with variability problem. The
statistical variations of the process parameters are captured
by a confidence ellipsoid. The linear growth of the problem
size is obtained using this formulation. We demonstrate this
approach using two examples, in which the robust designs
with guaranteed yield bound can be obtained with much
less design cost compared with the corner-enumeration op-
timization.
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