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ABSTRACT

As the design-manufacturing interface becomes increasingly
complicated with IC technology scaling, the corresponding
process variability poses great challenges for nanoscale ana-
log/RF design. Design optimization based on the enumera-
tion of process corners has been widely used, but can suffer
from inefficiency and overdesign. In this paper we propose
to formulate the analog and RF design with variability prob-
lem as a special type of robust optimization problem, namely
robust geometric programming. The statistical variations in
both the process parameters and design variables are cap-
tured by a pre-specified confidence ellipsoid. Using such op-
timization with ellipsoidal uncertainty approach, robust de-
sign can be obtained with guaranteed yield bound and lower
design cost, and most importantly, the problem size grows
linearly with number of uncertain parameters. Numerical
examples demonstrate the efficiency and reveal the trade-off
between the design cost versus the yield requirement. We
will also demonstrate significant improvement in the design
cost using this approach compared with corner-enumeration
optimization.
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1. INTRODUCTION

With semiconductor fabrication technologies scaled below
100nm, process variability caused by subwavelength lithog-
raphy and numerous manufacturing steps impacts the cir-
cuit performance and the parametric yield of analog and RF
1Cs significantly. Design for manufacturability (DFM) tech-
nologies are required to enhance the communication across
the design manufacturing interface (as shown in Figure 1)
so that the process variability can be considered in the early
stage of analog circuit design exploration. Therefore, new al-
gorithms and the corresponding methodologies are compul-
sory to judiciously incorporate the process variability into
the analog design flow [1].

Various methods [2, 3, 4, 5] have been proposed to opti-
mize statistical performance including the process variabil-
ity. Designs Of Experiment (DOE) is usually used to es-
tablish the relation between high order process effects and
circuit responses. Then, detailed circuit simulations or even
Monte Carlo analysis for each design are necessary to find
the response surface model that describes the circuit sensi-
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Figure 1: Design-manufacturing interface in modern
analog design flow.



tivities and correlations to and among the process parame-
ters and design variables. By centering the design variables
in the most insensitive region, maximum parametric yield
can be obtained. These methods require accurate charac-
terization of the statistical circuit response at the expense
of larger computation especially when the design space is
large. Therefore, they are most useful in the production
phase as fine tuning methods of the design.

To consider process variability in the early stages of design
exploration, the traditional corner-enumeration worst-case
design optimization has been the most widely used technique
(see, e.g., [6]). The process parameters take values within
a certain range which forms a tolerance “box”; the circuit
performance is optimized for all of the “corners”, or the ver-
tices of the formed polyhedron. This optimization approach
assumes minimum knowledge of the process parameters and
often leads to a worst-case design. However, the applications
of the corner-enumeration optimization approach are limited
for the following reasons. First, by assuming process param-
eters are independently uniformly distributed, this method
intrinsically ignores the useful information about the under-
lying statistical distributions and correlations. Second, the
problem size will increase exponentially with the number of
uncertain parameters. In addition, even when the process
parameters fall inside of the tolerance box, in general there is
no guarantee for circuit performance meeting the specifica-
tions, consequently, no guarantee for the yield requirement.
Furthermore, for a given yield requirement, design for all
corners usually results in over-conservative design with sub-
stantially degenerated circuit performance.

In this paper we propose a new algorithm, OPERA, in
which the design with variability problem is reformulated
as a special form of robust optimization, specifically robust
geometric programming (GP). In OPERA, the normal vari-
ations in both the process parameters and design variables
are modeled using ellipsoidal uncertainty of GP parameters.
Unlike corner-enumeration worst-case design, the problem
size grows linearly with number of uncertain parameters.
Recent advances in robust optimization show that this type
of optimization with ellipsoidal uncertainty can be solved
efficiently and accurately [7].

We demonstrate the applications of our robust design via
OPERA using two design examples, a ring oscillator and
an LC oscillator, because the parametric yield of an oscil-
lator is quite sensitive to the variability of the center fre-
quency. The numerical results reveal that robust designs can
be obtained with guaranteed yield bound and lower design
cost. In addition, the trade-off curve of design cost versus
yield requirement can be easily obtained and analyzed. It
is also demonstrated that much less over-design is incurred
when compared with the design from corner-enumeration
optimization.

This paper is organized as follows. Modeling of the manu-
facturing variability and formulation of the robust optimiza-
tion are briefly introduced in §2. In §3, we formulate the de-
sign with variability problem as optimization with ellipsoidal
uncertainty. We also show how to capture the normal pro-
cess variations by a pre-specified confidence ellipsoid. In §4
we address several implementation issues that result from
reformulating GP in posynomial form with normal process
variations as robust GP with ellipsoidal uncertainty. Two
robust design examples are given in §5 as demonstration,
followed by conclusions in §6.

2. BACKGROUND

2.1 Process variation sources and modeling
The IC performance variability is impacted by two dis-
tinct sets of factors: environmental factors and physical fac-
tors. The environmental factors usually include variations in
power supply voltage and temperature. The physical factors
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include variations in the electrical and physical parameters
that characterize the behavior of active and passive devices,
such as Vin, Tox, Les etc. The process parameter variability
can be measured through the ratio of the standard devia-
tion (o) and the mean value (p). Table 1 compiled from 8]
listed the increasing parameter variability of five technolo-
gies in the 250 to 70 nm gate length range.

[ Year [ Tech node [ Lggr | Tox [ Vin [ W [ H [ »
1997 0.25um 10.7% 2.67% 3.33% 8.33% 8.33% 7.41%
1999 0.18um 11.1% 2.67% 3.33% 8.72% 10.00% 8.00%
2002 0.13um 11.5% 3.25% 3.33% 9.33% 10.00% 9.09%
2005 0.10pm 13.3% 4.00% 3.81% 10.00% 11.25% 10.56%
2006 0.07um 15.7% 5.33% 4.44% 11.11% 11.90% 11.11%
Table 1: Trends of variability (o/u) in DSM tech-

nologies.

To model this variability, we associate a statistical distri-
bution to each parameter type. We may use a uniform distri-
bution over the range of the specifications for environmental
factors. For example, the temperature can be modelled as a
uniform distribution random variable from -25 to 125 degree
Celsius. The physical parameters are typically represented
by some joint probability density function N(u, ), where
u is a vector of means and ¥ is a variance/covariance ma-
trix. The correlation of these parameters must be modeled
since systematic variations are dominant for most nanoscale
technologies [8].

2.2 Robust optimization

The idea of robust optimization [9, 10] is to explicitly in-
corporate a model of data uncertainty in the formulation of
an optimization problem. A large class of robust optimiza-
tion problems can be formulated as

minimize  sup, o, fo(y, u) (1)
subject to  sup, ¢y, fi(y,u) <0,

where y is the optimization variable, u represents the uncer-
tain problem data, and the set U describes the uncertainty
in u,

Note that the robust optimization problem (1) is a convex
problem if f;, i =0,1,...,m are convex in y for each u € U.
However, even if the resulting robust optimization prob-
lem is convex, it is often much larger and more difficult
to solve than the corresponding nonrobust convex optimiza-
tion problem, so the added robustness of an optimization
problem can come at a high price.

i=1,...,m,

3. PROPOSED APPROACH

The circuit design with process variability problem can
be cast as an optimization with a specific model uncertainty
problem as in the robust optimization formulation (1). Re-
cently, geometric programming [11] has found successful ap-
plications in the field of circuit design, e.g., [6, 12, 13].
Therefore, to include the process variability in the early
stage of design, we propose to formulate the circuit design
with variability problem as robust geometric programming,
which can systematically incorporate a model of data un-
certainty in a GP and optimize for all the given scenarios
under this model. Then, the various sources of variations
can be modeled as the ellipsoidal uncertainty.

3.1 Optimization with ellipsoidal uncertainty
Assuming that (As, bs) is uncertain, but known to belong
to the image of a set & C RY under the affine mapping

(As(u), Es(u)) = (AS + ZL:UJ'A‘L bl + iujb‘i) , (2

where A7 € R¥s*" 4l ¢ R¥s j =0,1,...,L. The corre-
sponding robust geometric program in convez form can then



be formulated as
Ty
subject to sup, ¢, Ise (fls(u)y + Z;S(u)) <0, s=1,...,m,
(3)
where lse(z) = log(e®t 4 --- 4 €**) is called the log-sum-exp

function. In addition, in this paper we assume the robust
GP (3) has ellipsoidal uncertainty, in which U is an ellipsoid:

(4)

minimize

u={u+pp \ loll <1, peR" },

where @ € RY and P € REXL,

It is not known whether the robust GP (3) with ellipsoidal
uncertainty (4) can be reformulated as a tractable (convex)
optimization problem. However, a tractable approximation
method that yields a good compromise between solution ac-
curacy and computational efficiency has been proposed. Re-
fer to [7] for more details.

3.2 Capturing process variations by confidence
ellipsoid
Recall that a normal random variable © € R"™ with mean @
and covariance matrix ¥ = X7 > 0, i.e., u ~ N(@, X), has
the probability density function (pdf)

pu(€) = (2m) 2 (det ) V2T /A DIETIE-D ()

Obviously pu(€) is constant for (€ —a)" L™ (€ —u) = 7, i.e.,
on the surface of ellipsoid

&={¢lE-0)'s (€~ <} (6)
Here &, is called a confidence ellipsoid of u. It is well-known

that the nonnegative random variable (v — @)T X! (u — @)
has a chi-squared distribution with degree n, i.e.,

Prob(u € &;) = F,2 (v), (7

where F2 is the cumulated distribution function of x2.
If the process variations are normally distributed with the
density function (5), a pre-specified amount of mass of prob-

ability 0 < a < 1 can be captured by the confidence ellipsoid
&y (6) with o = F\2 (7), as illustrated in Figure 2.

Correlated Parameter Variations Captured by Elipsoid

Parameter #3

Parameter #2

a
Parameter #1

Figure 2: Capturing correlated process parameter
variations by a confidence ellipsoid.

3.3 Yield-guaranteed robust design
Suppose the uncertainty parameter v € RY in the robust
GP (3) is random and normally distributed with the density
function (5). Given 0 < a < 1, we say § € R™ has yield no
lower than « if
Prob (lse (A,- (w)g +

g Bi(u)) <0, z‘:l,...,m) > a.
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The yield-guaranteed robust design can be obtained as
follows. Let the ellipsoidal uncertainty set ¢ in (4) to be
the confidence ellipsoid £, define in (6). In this case, all
the feasible solutions of the robust GP (3) have yield no
lower than F,z (7). Therefore, in the robust GP framework,
we can capture both the independent and the correlated
normal randomness by the ellipsoidal uncertainty (6), and
the resulting feasible solutions always have guaranteed yield
bound Fz (7).

4. IMPLEMENTATION ISSUES

4.1 Lognormal approximation of narrow nor-
mal distributions

Let u be normally distributed with mean g and vari-
ance o%; assume u is narrow, i.e., o < p. We know that
its mass of probability is mostly concentrated in the small
interval [u — 30, p+ 30]. To approximate the narrow nor-
mal random variable u by a lognormal random variable, of
which pdf is defined on positive real numbers, here we as-
sume g — 30 > 0 such that most of u (with high probabil-
ity) is distributed within a positive interval. Therefore, for
all £ € [u— 30, u+ 30], §/u ~ 1, which further implies
log(&/u) ~ &/p — 1. Hence for all € € [ — 30, pu+ 30],

pu(§)

(27r)—1/20—16—(5—#)2/(202)

(27T)*1/2((0/M)5)*16*(10g5*10gu)2/(2(0/u)2).

R

Therefore, narrow normal distributions can be accurately
approximated by lognormal distributions:

N(p,0%) ~ LN (log , (7/)). (8)

(The proof of the generic lognormal approximations of nor-
mal distributions can be found in [14].)

oL W

4.2 Incorporate process variations in GP of
posynomial form
Many optimization-based circuit designs result in geomet-
ric programs of posynomial form. When process variations
are incorporated, the robust design with guaranteed yield
bound can be formulated as the following optimization prob-
lem:

minimize ¢’z

subject to Prob(fs(z,p) <1, s=1,... ©)

,m) Za7

where 0 < a < 1is the required yield bound, z € R"# are the
design variables, p € R™? represents the process parameters,

and
A K np Na
Js(z,p) = Z (dks (pi + Opi)’iks H(mj + 536]-)“7"“3) .
k=1 i=1 =1

(10)
Here the process variations in the process parameter p; and
design variable z; are modeled by the random variables dp;
and Jdx; respectively. Another implicit assumption is that
fs(x,p) is posynomial in z and p when we let dp; =0, i =
1,...,npand dx; =0, j=1,...,n,.

4.2.1 Variance-linked-to-mean variations in process
parameters
Consider the robust design (9) with required yield bound c.
Assume éz; =0, j =1,...,n, in (10), 4.e., no variation in
the design variables. We model the variance-linked-to-mean,
normal variations in process parameters by
opi/pi ~ N(0,03,),

1=1,...,np,
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K p Ny

5177/177 biks H

- (el

where 0p, < 1, i = 1,...,n, are given. Let ¥, = ZZ >
0 be the covariance matrix of dp;/pi;, ¢ = 1,...,n,. For
values of dp; with high probability, fs(x,p) can be inferred
from (11), in which cps = logdis, ¢ = logpi, u; = dp;/pi,
and y; = logx;. Therefore, fs(z,p) < 1 can be reformulated
as a log-sum-exp constraint

np np
o ((AQ +zujAz) " +zujbz) <0
i=1 =1

with appropriate A2 and b}, j = 0,1,...,n,. We can re-
formulate each constraint fs(z,p) < 1 of (9) in form of the
above log-sum-exp constraint and then obtain a robust GP
of the form (3) with the ellipsoidal uncertainty:

k=1

I
iy

U={ueR" | uTZ;lu <~} (13)

where 7 satisfying Fy2 (7) = o Assume § € R"* is a feasible

solution of the resulting robust GP. Then &; = e%, j
1,...,ny satisfy (9), i.e., & € R™ has yield no lower than a.

4.2.2  Variance-not-linked-to-mean variations in de-
sign variables and process parameters

Consider the robust design (9) with required yield bound «.

Assume upper and lower bounds for each design variable are
given:

0<L;j<z; <Uj,

We model the variance-not-linked-to-mean, normal varia-
tions in process parameters and design variables by

ji=1,...,n (14)

5pL ~ N(07 0'12;,;)7
§z; ~ N(0,0%,),

i=1,...,np,

j=1...,n

Here we assume o0,, < < Pi; i =1,...,np. In addition, we
assume o,; < zj, j = 1,...,m2. (Note that in general
we can verify if this assurnptlon holds since in many circuit
designs it is easy to determine reasonable range of values for

each design variable, e.g., (14).) We also assume p; —30,, >
0,i=1,. ..,npandx]—SaxJ>O j=1,...,ng. Therefore,
by (8),
pi+0p; ~ LN (logpi,(opi/pif) , i=1,...,np,
x;+0x; =~ LN(log:rj,(az]./xj)2), j=1...,n

Recall that a lognormal random variable v ~ LN (u,0?)
can be inferred from v = e*T7" with u ~ N(0, 1) Then
fs(z 7p) can be inferred from (15), in which cxs = log dk57
g; = logpi, and y; = logz;. Here u; ~ N(0,1), i =
L,. npandu]NN(O D, j=1....n% a5+ Bjy;, j =
1, ...,ng are linear approximations of e Y subject to y; €
[log Lj,logUj], 7 = 1,...,n, respectively. (Many methods,

g., least-square fitting, can be used to find good linear
approximations for e”% within the interval [log L;, log U;].)
Therefore, we can reformulate each constraint fs(z,p) <1
in (9) as a log-sum-exp constraint (like (12)) to obtain a
robust GP of the form (3) with the ellipsoidal uncertainty:

U={E=(u,a) | 'S e <y, Ee R,

where 7 satisfying Fl2 (7) = «, and ¥¢ = 3¢ > 0 is the
covariance matrix of u;, ¢ =1,...,np and 45, j=1,...,n,.

(16)

) = iexp [(Ck + Z bmsqz)
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Ny

+szksuz Za]ksy] (11)

Assuming § € R™ is a feasible solution of the resulting
robust GP, then &; = €%, j = 1,...,n, satisfy (9), i.e.,
Z € R™ has yield no lower than a.

5. ROBUST DESIGN EXAMPLES
5.1 Robust design of an RF ring oscillator

The first example we will show is the robust design of a
5GHz Ring Oscillator (RO). The specific RO topology we
consider here is shown in Figure 3. This is a widely used
building block to characterize process variations. The per-
formance and design variable relation has been extensively
studied, e.g., [15, 16, 17].

T Vdd

e R
MKg!KJM%J

A4 ~

Figure 3: Topology of the ring oscillator.

To simplify the robust GP formulation, we consider three
design variables and three performance specifications for this
RO design. The three design variables are: effective width
Weg = W, + W)y, gate length L = L,, = L, and gate over
drive AV. They are related to the sizing and biasing of the
NMOS and PMOS transistors.

The RO is designed to consume minimal dynamic power
for a certain center frequency. In addition, the phase noise
must be kept below a given threshold. The design optimiza-
tion can be formulated as:

minimize ~P(Wes, L, AV)
subject to N(Weg, L, AV) < N™&%
Weg, L, AV) =

(17)
f07

where fy is the given resonant center frequency, P is the
consumed dynamic power, N is the phase noise and N™*
denotes its maximum allowable value.

In this example, we consider four variance-not-linked-to-
mean independent normal variations in process parameter
and design variables. They are the gate width variation
AW, the gate length variation AL, the gate oxide thickness
variation AT, and the threshold voltage variation AViy.
Here the gate oxide thickness variation AT,y is reflected by
coefficient perturbation in the GP of posynomial form (i.e.,
0p; in (10)), and other three parameter variations are re-
flected by design variable perturbation (i.e., dx; in (10) and
AVin is considered as the gate overdrive voltage perturba-
tion). Then the design optimization (17) can be formulated
as the GP of posynomial form considered in §4.2.2, which
can be further reformulated in form of the robust GP (3)
to carry out robust design with guaranteed yield bound, as
described in §3.3.

The process parameter values used in the numerical ex-
ample are extracted from the IBM 7HP 0.18um BiCMOS
technology. The design is optimized when the confidence
ellipsoid captures 90% of process variations and the cen-
ter frequency is relaxed by 20%, i.e., within the interval

fresonant(



K; T'p o biks Mo

folm,p) ~ (dks [eXp (IngiJr L U>] 11
k=1 i=1 pi j=1
K;

R

exp [(Cks + Z bisti) + (Z biks
i=1 i=1

k=1

[AGHz, 6GHz]. The design resulting from robust GP is com-
pared with the design resulting from GP as listed in Table 2
and their performance mean values are listed in Table 3.

Design variable | GP design | Robust GP design

Weg 4.53um 6.68um

L 0.26um 0.24pm

AV 0.42V 0.387V

Table 2: RO design results.

Performance mean | GP design Robust GP design
Power 1.87TmW 2.59mW
Phase noise -100dBc/Hz | -101dBc/Hz
Frequency 5GHz 4.85GHz

Table 3: RO performance mean values.

A Monte Carlo analysis with 10,000 sample points is used

to evaluate the performance variability and the parametric
yield. Histograms of the phase noise performance of two
designs resulting from GP and robust GP optimization are
shown in Figure 4. It can be concluded that higher yield can
be obtained through the robust design with more design cost
compared with the nominal design.

Phase noise histogram and Gaussian fitting
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Figure 4: Phase noise histograms.

We further use the concentric ellipsoids £ (16) with var-
ious values of v to capture different percentages of process
variations. The trade-off between the design cost and the
yield bound is shown in Figure 5, where the design cost
(power consumption in this example) increases when higher
yield bound is requested. It is also observed that a drastic
increase in the design cost will be incurred to obtain yield
close to 100%.

5.2 Robust design of an LC oscillator

We next use a 2.1GHz LC oscillator design example based
on the topology and tank model shown in Figure 6 to com-
pare the robust optimization and the corner-enumeration
optimization.

Five design variables and five performance specifications
are considered for this LC oscillator design. The five design
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Figure 5: Ring oscillator: design cost versus yield
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Figure 6: Topology and lumped tank model of an
LC oscillator.

variables are: the biasing tail current Ipias, the output swing
voltage Vsw, the inductance L, the tank conductance giank,
and the tank capacitance Ciank. The latter three are key
design variables in the lumped tank model.

The LC oscillator was designed to consume minimal dy-
namic power for a certain center frequency [13]. The design
optimization has the following form:

P(Ibias)

N(Ibias, Jtank, Ctank, L, VSW) S Nmax’
fresonant (Ctank7 L) :'f07
G(Ibia57gtank) 2 Gmm,

Vaw < Vaa,

< Thias
— Ytank’

minimize
subject to

(18)

Vsw

where fj is the resonant center frequency, P is the consumed
dynamic power, N is the phase noise, G is the loop gain, Viq
is the power supply voltage, and the minimum or maximum
are the upper bound or lower bound of the corresponding
specification.

In the LC oscillator design, we consider three variance-
linked-to-mean, correlated normal variations in process pa-
rameters. They are the relative tank conductance varia-
tion Agiank/grank, the relative tank capacitance variation



AChank/Chank, and the relative inductance variation AL/L.
Then the design optimization (18) can be formulated as the
GP of posynomial form considered in §4.2.1, which can be
further reformulated in form of the robust GP (3) to carry
out robust design with guaranteed yield bound, as described
in §3.3.

In the numerical example, the process parameter values
are extracted from the Hitachi 90GHz 0.25um BiCMOS
technology. The design is optimized when the confidence
ellipsoid captures 90% of process variations and the center
frequency is relaxed within the interval [1.7GHz, 2.5GHz].
Note that the corner cases are defined as the vertices of the
regular polyhedron where the ellipsoid used in the robust op-
timization is inscribed. We compare the robust optimization
results with the corner-enumeration optimization results as
listed in Table 4. It is shown that the corner-enumeration
optimization will incur higher design cost (Ibias in this ex-
ample).

Optimization with ellip- | Optimization using
soidal uncertainty corner enumeration
Tvias 2.41mA 2.72mA
Ctank | 1.33pF 1.26pF
Ggrank | 0.894mS 1.018mS
L 2.83nH 2.82nH
Vew 2.5V 2.5V

Table 4: LC oscillator design results comparison.

We also use the concentric ellipsoids &, (13) with vari-
ous values of v to capture different percentages of process
variations. Design costs (power consumption) of the two
optimization schemes will both increase when the yield re-
quirement increases, as compared in Figure 7. For the same
yield requirement, the design cost of robust optimization
is always lower than that of corner-enumeration optimiza-
tion. The actual yield of each design is found using 10,000
points in a Monte Carlo analysis. The design cost versus
actual yield for the two optimization schemes in compared
in Figure 8. It is shown in this example that about 20%
overdesign is observed in the corner-enumeration optimiza-
tion compared with the robust optimization when +3o0 ac-
tual yield is obtained.

6. CONCLUSIONS

In this paper, optimization with ellipsoidal uncertainty is
proposed to treat the design with variability problem. The
statistical variations of the process parameters are captured
by a confidence ellipsoid. The linear growth of the problem
size is obtained using this formulation. We demonstrate this
approach using two examples, in which the robust designs
with guaranteed yield bound can be obtained with much
less design cost compared with the corner-enumeration op-
timization.
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