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SUMMARY

We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk
plasticity near the fault. The technique is more robust than the standard split-node method because it can
accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit
algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic
energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution
reproduces the standard split-node solution, but with the added advantage that it can also accommodate ran-
domly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials,
including the Mohr–Coulomb, Drucker–Prager, modified Cam-Clay, and a conical plasticity model with a
compression cap, to capture off-fault bulk plasticity. More specifically, the cap model adds robustness to the
framework because it can accommodate various modes of deformation, including compaction, dilatation,
and shearing. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tectonic earthquakes result from spontaneous dynamic rupture and propagation of geologic faults.
The energy release from a fault rupture emanates from a combination of frictional heating of the fault
surface, bulk plasticity and cracking of the rock near the fault surface, and radiated elastic seismic
waves. Closed form solutions for fault rupture dynamics are very difficult if not impossible to obtain,
particularly in the presence of bulk plasticity and slip weakening in the host rock. Several numerical
methods exist for modeling fault rupture and propagation. The boundary element method (BEM)
is a popular choice [1–6], particularly in elastic media. The finite difference method also has been
employed [7–11], although it is tricky to use for domains with a complex geometry. Standard explicit
finite element (FE) methods have been proposed, along with a so-called ‘split-node’ formulation com-
bined with a linear slip-weakening law [12–17]. However, they require a priori knowledge of the fault
geometry so that the element sides may be aligned to the discontinuity. If the direction of the fault
propagation is not known, remeshing will be required by these standard methods, which is undesirable
particularly in the presence of bulk plasticity near the fault.

An alternative approach for accommodating a randomly propagating fault is to allow the discontinu-
ity to pass through the interior of the finite elements. To make this feasible, the standard (conforming)
FE interpolation must be enriched with a Heaviside function to resolve the propagating discontin-
uous displacement field. Following this line, formulations based on the assumed enhanced strain
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(AES) [18–29] and extended FE methods [30–38] have been employed. In the AES approach, the
enhancements are local to the elements containing the fault, and their contributions are statically con-
densed on the element level prior to global assembly. The formulation does not engender additional
global DOFs, but it results in a discontinuous interpolation of slip across element boundaries. On the
other hand, in the extended FE approach, global DOFs are added to the system. This results in a larger
system of equations to solve, but the slip is now interpolated continuously across element boundaries.
Relevant fault mechanisms including slip weakening and velocity/state-dependent friction have been
incorporated successfully into the framework of the AES and extended FE methods [39–43] but only
for quasi-static loading. To date, very limited progress has been made to apply either technique to
structural dynamics problems.

Liu and Borja [44] and Coon et al. [45] were first to use the extended FE approach for simulating
fault rupture dynamics. Coon et al. proposed a semi-implicit Nitsche’s method for updating the trac-
tions on the fault faces. Their method was motivated in large part by numerical stabilization related to
the displacement and contact pressure interpolations. However, it is difficult to apply their technique to
problems involving bulk plasticity in the neighborhood of the fault. On the other hand, Liu and Borja
simulated the fault rupture dynamics with Mohr–Coulomb plasticity and an explicit mass-lumping
technique that enhances computational efficiency. They updated the tractions on the fault faces by
the penalty method and introduced numerical stabilization through viscous damping. The numerical
examples presented by Liu and Borja demonstrate that in the dynamic regime, the traction field on the
fault faces does not exhibit spurious oscillation, unlike in the quasi-static case [33]. This is a promising
development because it shows the potential of their approach for problems of rupture dynamics and
random propagation of geologic faults, as well as for other inherently dynamic problems such as the
hydraulic fracturing of rocks [46–49].

This paper builds upon the previous work by Liu and Borja [44] and presents more detailed
mathematical formulations and benchmark numerical examples related to the explicit extended FE
technique for fault rupture dynamics. The present work compares the performance of different
plasticity models for a rock medium hosting a randomly propagating fault, that is, a fault
propagating freely through the interior of finite elements. The plasticity models considered in the
present work include the Mohr–Coulomb, standard Drucker–Prager, modified Cam-Clay, and capped
Drucker–Prager plasticity models, all implemented within the extended FE framework. From the per-
formance of the four aforementioned constitutive models, we find the capped Drucker–Prager model
to be most robust inasmuch as it can accommodate inelastic compaction, dilatation, and shearing of
rock masses containing a rupturing fault. A final example concerns a spontaneously propagating fault
in an elastic medium, in which the propagation direction is calculated as part of the solution. This last
example highlights the advantages of the present framework over the split-node technique in that it can
accommodate randomly propagating faults.

2. GOVERNING EQUATIONS

Assuming infinitesimal deformation, the balance of linear momentum with inertia load in domain ˝
takes the form

r � � C bD � Ru , (1)

where � is the Cauchy stress tensor, b is the body force vector, Ru is the acceleration vector, � is the
mass density of the body, and r is the gradient operator. The boundary of ˝ is denoted by � , which
is partitioned into Dirichlet and Neumann boundaries �u and �t , where the displacement and traction
are prescribed, respectively. The boundary conditions are as follows:

uDbu on �u , (2)

� � � Dbt on �t , (3)
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where � is the unit normal vector to �t , and bu and bt are the specified displacement and traction
boundary conditions, respectively. We also assume that the initial displacement and velocity of any
point x 2˝ are given as

u.x, 0/D u0.x/ , (4)

Pu.x, 0/D Pu0.x/ . (5)

Let S denote a fault contained in ˝, with faces S� and SC. Following the formulation presented in
[35], the natural boundary conditions on these faces are

� � nD tS� on S� , (6)

� � .�n/D tSC on SC , (7)

where n is the unit normal vector to S�, which is assumed to be in direct contact with SC. The varia-
tional form of dynamic equilibrium may be written as follows. Given b W ˝ ! Rndim ,bt W �t ! Rndim ,
andbu W �u!Rndim , find u 2 U such that for all � 2 V ,Z

˝

r s� W � d˝ D
Z
˝

� � .b� � Ru/ d˝ C
Z
�t

� �bt d� , (8)

where � is the first variation of u, and r s denotes the symmetric component of the gradient operator.
The space of trial functions is defined as

U WD
®
u W˝!Rndim

ˇ̌
ui 2H

1,ui Dbui on �ui
¯

, (9)

whereas the space of variations is defined as

V WD
®
� W˝!Rndim j�i 2H

1, �i D 0 on �ui
¯

, (10)

where H 1 is the first Sobolev space and ndim is the number of spatial dimensions.
To allow a discontinuous displacement field on the fault, we enrich the displacement field with the

Heaviside function HS.x/ and write

uD uCHS.x/eu , (11)

where u is the continuous part of displacement and eu is the jump in the displacement field. The
weighting function is written in a similar form as

�D �CHS.x/e� . (12)

We require that u, eu, �, and e� be regular functions (i.e., single valued and analytic). Although these
functions are not required to satisfy any specific boundary condition on their own, they must combine
so that u 2 U and � 2 V .

Substituting (11) and (12) into (8) results in two independent variational equations,Z
˝

r s� W � d˝ D
Z
˝

� � .b� � Ru/ d˝ C
Z
�t

� �bt d� (13)

for the continuous part, andZ
˝

ŒHS.x/r
se� � W � d˝ C Gc .e� , tS�/D

Z
˝

HS.x/e� � .b� � Ru/ d˝

C

Z
�t

HS.x/e� �bt d� (14)
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for the discontinuous part, where Gc .e�, tS�/ is the so-called contact integral representing the
contribution from the tractions acting on the fault face S�. We refer the readers to Liu and Borja
[35] for further details relevant to the aforementioned formulations.

3. THE EXTENDED FINITE ELEMENT METHOD

In the extended FE approach, the elements intersected by a discontinuity are enhanced with additional
displacement DOFs at the nodes to interpolate the discontinuous displacement field, which is then
superimposed to the conforming displacement field. The standard FE approximation for the continuous
displacement field u.x/ is given by

uh.x/DN .x/d , 8x 2˝h , (15)

whereas the FE approximation for the discontinuous displacement fieldeu.x/ is given by

euh.x/DN .x/HS.x/e D eN .x/e , 8x 2˝h
S , (16)

where ˝h
S is the local support of the surface of discontinuity S , whereas d and e are the nodal dis-

placement vectors interpolating u and eu, respectively. The matrix form consistent with variational
equation (13) is given by

M
�
Rd , Re

�
CF INT.d , e/D F EXT , (17)

where

M
�
Rd , Re

�
D

�Z
˝h
�N TN d˝

�
Rd C

�Z
˝h
�N TeN d˝

�
Re , (18)

F INT .d , e/D
Z
˝h
BT� .d , e/ d˝ , (19)

and

F EXT D

Z
˝h
N Tb d˝ C

Z
� ht

N Tt d� . (20)

We note a slight abuse in the aforementioned notations in that the same symbol � is used for the Cauchy
stresses in tensor and vectorized forms. The matrix equation consistent with variational equation (14)
is given by

fM �
Rd , Re

�
C eF INT.d , e/CGc.e/D eF EXT , (21)

where

fM �
Rd , Re

�
D

 Z
˝hS

�eN TN d˝

!
Rd C

 Z
˝hS

�eN TeN d˝

!
Re , (22)

eF INT.d , e/D
Z
˝hS

eBT� .d , e/ d˝ , (23)

Gc.e/D

Z
S
N TtS� dS , (24)
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and

eF EXT D

Z
˝hS

eN Tb d˝ C
Z
� ht

eN Tbt d� . (25)

3.1. Explicit time integration

We construct augmented nodal acceleration, velocity, and displacement vectors as

A D

²
Rd

Re

³
, V D

²
Pd

Pe

³
, D D

²
d

e

³
. (26)

The aforementioned vectors contain the standard nodal DOFs d , Pd , and Rd , plus additional global DOFs
e, Pe, and Re at the enriched nodes. We remark that these vectors will normally have variable dimensions
as the discontinuity continues to propagate and intersect more finite elements. Next, we combine the
FE equations (17) and (21) as follows:

MAC

´
F INTeF INTCGc

μ
D

´
F EXTeF EXT

μ
, (27)

whereM is the consistent mass matrix given by

M D

�
M11 M12

M21 M22

�
, (28)

in which

M11 D

Z
˝h
�N TN d˝ , M12 D

Z
˝hS

�N TeN d˝ , (29)

M21 DM
T
12 , M22 D

Z
˝hS

�eN TeN d˝ . (30)

Given the displacement vector Dn at time tn, the acceleration vector An at the same time instant
can be calculated as

An DM
�1

´
F EXTeF EXT

μ
n

�M�1

´
F INTeF INTCGc

μ
n

. (31)

In an explicit time marching scheme, the augmented velocity and displacement nodal vectors at time
tnC1 are updated from the formulas

V nC1=2 D V n�1=2C�tAn , (32)

DnC1 DDnC�tV nC1=2 , (33)

where �t D tnC1 � tn is the time increment. Clearly, the only computational burden in the afore-
mentioned algorithm is the inversion of the consistent mass matrix M . Mass lumping procedures
are typically employed to form a diagonal mass matrix and thus render the simultaneous equation
solving trivial.

3.2. Mass lumping technique

Mass lumping is a standard procedure used in structural dynamics along with an explicit time
integration scheme [50]. Some computational issues remain unresolved when mass lumping is applied
to an element enriched with additional DOFs arising from the extended FE formulation. Specifically,
an issue concerns how the total mass of an enriched finite element may be distributed to the nodes to
form a diagonal mass matrix. In this paper, we follow the procedure suggested in [51–53] and assume

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:3087–3111
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that the diagonal terms of the enriched mass matrix have the same value, which is calculated on the
basis of the requirement that the kinetic energy of the rigid body and enrichment modes is preserved.
The diagonal enriched mass mL for an arbitrary enrichment function  can be written as

mL D
1PNEN

iD1  
2.xi /

Z
˝e

� 2 d˝e , (34)

where ˝e is the domain of the enriched element. The Heaviside enrichment function has the property
H 2

S.x/D 1, 8x 2˝e, so the enriched lumped mass is simply the total mass divided by the number of
element nodes,

mL D
1

NEN

Z
˝e

� d˝e . (35)

With the aforementioned mass lumping scheme, we can simply omit the coupled terms in the consis-
tent mass matrix in equation (28), so that both the regular and enriched DOFs can be lumped by the
classical row-sum technique.

3.3. Perfectly matched layers

Absorbing boundaries, such as those enriched with dashpots [16], are needed to avoid spurious reflec-
tions of waves on the boundaries of an FE mesh. In this paper, we use an explicit perfectly matched
layer (PML) on the boundaries to absorb outgoing waves. With the field split method [14, 54] inside
the PML region, the equilibrium equation in two dimensions may be written as

�
�
Pvx1 C dxv

x
1

�
D �11,1 ,

�
�
Pvx2 C dxv

x
2

�
D �21,1 ,

(36)

and

�
�
Pv
y
1 C dyv

y
1

�
D �12,2 ,

�
�
Pv
y
2 C dyv

y
2

�
D �22,2 ,

(37)

where v denotes a velocity field. The constitutive equation for linear elasticity with damping in the x
and y directions may be written as

P�x11C dx�
x
11 D .�C 2	/v1,1 ,

P�x22C dx�
x
22 D �v1,1 ,

P�x12C dx�
x
12 D 	v2,1 ,

(38)

and

P�
y
11C dy�

y
11 D �v2,2 ,

P�
y
22C dy�

y
22 D .�C 2	/v2,2 ,

P�
y
12C dy�

y
12 D 	v1,2 ,

(39)

where �ij D �xij C �
y
ij , vi D vxi C v

y
i , i , j D 1, 2; dx and dy are damping profiles in the x and y

directions, respectively; and � and 	 are the Lamé constants. At time tn�1, we are given the values
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vx
.n�1=2/

, vy
.n�1=2/

, � x
.n�1/

, and � y
.n�1/

. Thus, from Equations (38) and (39), the stress components at

time tn may be updated as

�x11.n/ D
h
�t.�C 2	/v1,1.n�1=2/C .1��tdx=2/�

x
11.n�1/

i
=.1C�tdx=2/ ,

�x22.n/ D
h
�t�v1,1.n�1=2/C .1��tdx=2/�

x
22.n�1/

i
=.1C�tdx=2/ ,

�x12.n/ D
h
�t	v2,1.n�1=2/C .1��tdx=2/�

x
12.n�1/

i
=.1C�tdx=2/ ,

(40)

and

�
y

11.n/
D
h
�t�v2,2.n�1=2/C .1��tdy=2/�

y

11.n�1/

i
=.1C�tdy=2/ ,

�
y

22.n/
D
h
�t.�C 2	/v2,2.n�1=2/C .1��tdy=2/�

y

22.n�1/

i
=.1C�tdy=2/ ,

�
y

12.n/
D
h
�t	v1,2.n�1=2/C .1��tdy=2/�

y

12.n�1/

i
=.1C�tdy=2/ .

(41)

The velocities at time tnC1=2 can be updated from the equations

V x.nC1=2/ D
h
��tM�1L F xINTC .1��tdx=2/V

x
.n�1=2/

i
=.1C�tdx=2/ ,

V
y

.nC1=2/
D
h
��tM�1L F

y
INTC .1��tdy=2/V

y

.n�1=2/

i
=.1C�tdy=2/ ,

(42)

whereML denotes the lumped (diagonal) mass matrix, and

F xINT D

Z
˝

BT� x.n/ d˝ , F
y
INT D

Z
˝

BT�
y

.n/
d˝ . (43)

The damping profile is defined in [14, 54] as

d.x/D
3Vp

2ı
log

�
1

R

��x
ı

	2
, (44)

where Vp is the velocity of the compressive wave, ı is the width of the PML, and R is the theoretical
reflection coefficient. In the numerical examples, we use R D 0.00001, ı D 6h, and h is the element
size. Note that the PML formulation described in this section is valid only for linear elasticity prob-
lems. To be able to use the PML boundary conditions for elastoplastic problems, we need to ensure that
the predicted plastic zones do not reach the PML region. This requires that we have an estimate of the
extent of the yield zone so that we can prescribe the PML boundaries to lie outside of that yield zone.
The PML idea is similar to the substructure method of Bielak and Christiano [55] for prescribing an
effective seismic input for soil–structure interaction analysis: An estimate of the extent of the inelastic
region must be made so that it can be contained completely within the substructure.

4. CONSTITUTIVE LAWS

This section describes the relevant constitutive laws governing the elastoplastic response of the host
rock inside and outside the fault. Inside the fault, the constitutive response is governed by slip-
weakening and friction laws, whereas outside the fault, the response is governed by elasticity and
bulk plasticity.

4.1. Slip-weakening friction law

The split-node approach is widely used to model the friction laws on the interface using both the
finite difference method [7–9] and the finite element method [12, 15, 16]. The split-node method is
also called explicit Lagrange multipliers method (see [56]). We refer the readers to Andrews [8] for
the implementation of the split-node approach. This approach does not require additional algorithmic
parameters such as a penalty parameter and is suitable for explicit computation with a lumped (diago-
nal) mass matrix. Unfortunately, applying the approach to the explicit extended FE framework is not

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:3087–3111
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straightforward because the tractions (i.e., Lagrange multipliers) are typically defined on the integra-
tion points along the fault face, but the lumped masses are defined at the nodes. It is not possible to
explicitly update the velocity of the nodes directly from the tractions on the fault face, so in this work,
we use the penalty method to explicitly update the tractions on the fault face.

We recall that the augmented nodal displacement vector DnC1 is determined from equation (33).
Assuming no initial penetration between the faces of a fault, the incremental normal gap function is
defined as

�gN,nC1 D
�
�uCnC1 ��u

�
nC1

�
� n , (45)

where�uCnC1 and�u�nC1 are the incremental displacements on each side of the fault, and n is the unit
normal vector to the fault. The incremental tangential gap function may be calculated as

�gT,nC1 D
�
�uCnC1 ��u

�
nC1

�
�m , (46)

where m is the unit tangential vector in the direction of slip. The normal component of the traction
vector at time tnC1 is updated as

tN,nC1 D tN,n � 
N�gN,nC1 , (47)

where 
N is a normal penalty parameter that enforces the no-interpenetration requirement
approximately. The tangential trial frictional traction at time tnC1 is updated as

t trT,nC1 D tT,n � 
T�gT,nC1 , (48)

where 
T is a tangential penalty parameter that forces the tangential slip to approach zero.
The coefficient of friction at time tnC1 may be updated from a so-called ‘slip-weakening’ law. Slip

weakening is the process whereby the strength within the fault zone degrades during the initial stage of
slip instability. The concept was motivated by the cohesive zone models for tensile fracture developed
by Barenblatt [57], Dugdale [58], and Bilby et al. [59], and extended to the shear fracture problem by
Ida [60] and Palmer and Rice [61]. As the Earth’s crust is deformed, the stress increases until it reaches
a peak resistance. For intact or relatively undamaged rocks, this peak resistance may consist of fric-
tional and cohesive components along potential faults, whereas for previously faulted rocks, the peak
resistance may be predominantly frictional in nature. Once the peak resistance is reached, rocks may
fail either by developing a new fault zone or reactivating an old one. The shear strength then decays
to a lower level on those segments of the fault that slipped. Various slip-weakening laws have been
proposed in the literature; some of which have been calibrated in the laboratory by testing specimens
of rocks and inferring the shear fracture energy from these experiments [62–64].

For the present problem, we consider the following slip-weakening law. Let

	nC1 D 	d if gT,nC1 >Dc ,

	nC1 D 	s �
.	s �	d /gT,nC1

Dc
if gT,nC1 6Dc ,

(49)

whereDc is a characteristic slip over which the coefficient of friction decays from its static to dynamic
values. In a way, this parameter is similar to the characteristic slip in the empirical Dieterich–Ruina
[65, 66] law for state-dependent and velocity-dependent friction, which has the physical significance
of being the slip required to replace a contact population representative of a previous sliding condition
with a contact population created under a new sliding condition. Ifˇ̌

t trT,nC1

ˇ̌
C	nC1tN,nC1 6 0 , (50)

then a stick condition holds, and the tangential traction is updated as

tT,nC1 D t
tr
T,nC1 . (51)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:3087–3111
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Otherwise, we impose the standard friction law

tT,nC1 D 	nC1tN,nC1
�
t trT,nC1

ıˇ̌
t trT,nC1

ˇ̌ �
. (52)

The terms in the parentheses simply determine the sign of the tangential traction vector from the sign
of the predictor value.

4.2. Bulk plasticity

Bulk plasticity pertains to the continuum inelastic deformation of the medium hosting a discontinuity.
For rocks, yield criteria must be specified to delimit the extent of the elastic response. In what follows,
we present a number of yield criteria along with the corresponding plastic flow rules. We refer the
readers to Borja et al. [67] for some details pertaining to the plasticity models described in this section.

4.2.1. Mohr–Coulomb criterion. The yield function is given by

F D
j�1 � �3j

2
� c cos� C

.�1C �3/

2
sin� 6 0 . (53)

The plastic potential function takes a similar form,

G D
j�1 � �3j

2
C
.�1C �3/

2
sin . (54)

The yield surface for the Mohr–Coulomb model is not smooth but has corners, but for two-dimensional
applications, the corners do not activate. The yield surface also has an apex on the tension side of the
hydrostatic axis, which does not activate either as long as the mean normal stress remains compressive.
The parameters of the model are as follows: � is the friction angle,  is the dilation angle, and c is
the cohesion; the stress variables are �1 and �3, the maximum and minimum compressive principal
stresses, respectively. We assume perfect plasticity for this yield criterion.

The plastic flow directions are determined by the spectral directions of the elastic stress predictor
and the plastic flows in principal axes. The spectral form of the elastic stress predictor is given by

� tr D

3X
AD1

� tr
An

.A/˝ n.A/ , (55)

where � tr
A’s are the principal values, and n.A/s are the principal directions of � tr (superscript ‘tr’ stands

for ‘trial’ or ‘predictor’). The incremental plastic strain is then obtained from the flow rule as

��p D��

3X
AD1

@G

@�A
n.A/˝ n.A/ , (56)

where G is the plastic potential function;

@G

@�1
D .
13C sin /=2 ,

@G

@�2
D 0 ,

@G

@�3
D .�
13C sin /=2 (57)

are the plastic flows in principal axes; and 
13 D sign
�
� tr
1 � �

tr
3

�
. Note from isotropy that the spectral

directions of � tr and ��p coincide.
By using the classical return mapping algorithm, the principal stresses are updated as follows

�1 D �
tr
1 ���G1 ,

�2 D �
tr
2 ���G2 ,

�3 D �
tr
3 ���G3 ,

(58)

where

G1 D � sin C	.
13C sin / ,

G2 D � sin , (59)

G3 D � sin C	.�
13C sin / ,
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and

�� D
2F tr

.G1CG3/ sin� C .G1 �G3/
13
,

D
F tr

.�C	/ sin sin� C	
. (60)

In the aforementioned equations, � and 	 are the Lamé constants, and F tr > 0 is a measure of how
much the yield criterion is violated by the predictor stresses.

4.2.2. Drucker–Prager criterion. This is a smooth version of the Mohr–Coulomb plasticity model.
The yield function for the Drucker–Prager model is given by

F D
p
J2C �p � �c 6 0 , (61)

where

J2 D
1

2
s W s, sD � � p1, p D

1

3
tr.� / . (62)

When the yield surface passes through the outer corners of the Mohr–Coulomb yield surface, we have

�D
6 sin�

p
3.3� sin�/

, � D
6 cos�

p
3.3� sin�/

. (63)

The plastic potential function has a similar form, given by

G D
p
J2C �p , (64)

where

�D
6 sin 

p
3.3� sin /

. (65)

The incremental plastic strain is obtained from the flow rule,

��p D��
@G

@�
D��

�
s

2
p
J2
C
�

3
1
�

, (66)

where 1 is the second-order identity tensor. The deviatoric and volumetric stresses are updated from
classical return mapping through the equations

sD

 
1�

	��p
J tr
2

!
str , (67)

and

p D ptr ���K� , (68)

where K and 	 are the elastic bulk and shear moduli, respectively. The incremental plastic strain is
obtained from the consistency condition

�� D F tr= .	CK��/ . (69)

We also assume perfect plasticity for this model.
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4.2.3. Modified Cam-Clay model. The yield function has the shape of an ellipse on the p-q plane,

F D
1

b2
.p � pt C a/

2C
1

M 2
q2 � a2 6 0 , (70)

where the parameter b is defined by

b D

´
1 if p > pt � a
ˇ if p < pt � a

. (71)

The parameter a defines the radius of the right half of an ellipse, ˇ is a material constant, and ˇa
defines the modified radius of the left half of the ellipse on the compressive side of the hydrostatic
axis. We also have

pt D c�=� (72)

and

M D
p
3=2� , q D

p
3J2=2 . (73)

The hardening variable is defined in terms of the absolute value of the cumulative volumetric
plastic strain,

˛ D�

Z t

0

P
p
v dt . (74)

The radius a of the ellipse varies according to a linear hardening law

aD a0CH˛ , (75)

where a0 is the initial radius of the ellipse andH is the plastic modulus. To calculate the plastic strains,
we assume an associative flow rule and evaluate the incremental plastic strains from

��p D��
@F

@�
D��

�
3

M 2
sC

2

b2
.p � pt C a/1

�
. (76)

The stress variables p and q are updated from classical return mapping,

p D ptrCK.˛ � ˛n/ (77)

and

q D
M 2

M 2C 6	��
qtr . (78)

We use Newton’s method to solve for ˛ and �� simultaneously from the hardening law

˛ � ˛nC��
2

b2
Œp.˛/� pt C a.˛/�D 0 , (79)

and the consistency condition

1

b2
Œp.˛/� pt C a.˛/�

2C
1

M 2
q.��/2 � a.˛/2 D 0 . (80)
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4.2.4. Capped Drucker–Prager model. The yield function is a combination of the standard Drucker–
Prager model and modified Cam-Clay model representing the dilation and compression sides,
respectively, that is,

F1 D
p
J2C �p � �c 6 0 (81)

for the dilation side, and

F2 D
1

b2
Œp � pt C a�

2C
1

M 2
q2 � a2 6 0 (82)

for the compression side. Once again, we use a nonassociative Drucker–Prager formulation for the
dilatant response,

G1 D
p
J2C �p , (83)

and an associative flow rule for the compressive response. The return mapping algorithm is similar to
the previous subsections, with the exception that a special treatment is employed on the corner where
the two yield functions meet in a nonsmooth fashion. We use Koiter’s rule and write the incremental
plastic strain as

��p D��1

�
s

2
p
J2
C
�

3
1
�
C��2

3

M 2
s , (84)

where ��1 and ��2 are two consistency conditions satisfying both yield criteria on the corner. In
general, they may be solved iteratively using Newton’s method.

4.3. Viscous damping

It is necessary to introduce viscous damping to stabilize the traction field on the fault. With the
stiffness damping approach, we use the effective stresse� (similar to a Kelvin–Voigt model) to calculate
the internal nodal force vector F INT,

e� D � C �C e W P� , (85)

where � is a damping coefficient, C e is the elasticity tensor, and P� is the strain rate. The Cauchy stress
tensor � is calculated from the elastoplastic constitutive laws.

A detailed motivation for the stiffness damping parameter � is suggested in [12]: � D ˇ˛h=Vp,
where h is the mesh size, Vp is the velocity of the compressive wave, ˛ is the CFL number, with typical
values 0.0 < ˛ < 1.0, and ˇ is a nondimensional parameter used to adjust the damping parameter, with
typical values 0.0 < ˇ < 1.0. On the basis of these numbers, we select a stiffness damping parameter
� D 0.001 for the elastic problems described in the next section. Viscous damping is not as critical for
elastoplastic problems, because another type of damping, hysteretic damping due to inelastic deforma-
tion, may also be present [68, 69]. Nevertheless, we still use a much smaller damping, � D 0.000014,
to suppress high-frequency noise.

5. NUMERICAL EXAMPLES

We consider four examples in this section in which the fault geometry is fully specified. A fifth exam-
ple deals with the creation of a new fault whose geometry evolves with the solution and cannot be
specified a priori. This last example highlights the advantage of the proposed formulation in that it can
deal with problems where the fault geometry is not initially specified.

5.1. Lamb’s problem

We use Lamb’s problem [70] as our first numerical example to test the penalty method for the case
of a ‘glued’ interface. This example also serves to test the PML implementation for the absorbing
boundary within the context of the proposed explicit extended FE framework for spontaneous dynamic
rupture. The same problem was also solved in [15]. The problem involves a Gaussian-type point force
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f .t/ D exp Œ�1000.t � t0/2� applied to the surface of a half space, herein modeled with a mesh of
constant strain triangular (CST) elements, where the delay time t0 D 0.25 s, density � D 2700 kg/m3,
compressive wave velocity Vp D 6000 m/s, and shear wave velocity Vs D 3464 m/s are assumed.
The computational domain has dimensions of 2 � 20 km. The half-space is discretized into uniform
right-angle CST elements with a side length of h D 10 m, resulting in the creation of 40,2201 nodes
and 800,000 CST elements. We use the PML for all the boundaries except at the top free surface,
and the width of the PML is taken as ı D 6h. An analytical solution is available for this problem
based on the Cagniard–de Hoop technique [71]. The time step for the regular CST elements is taken
as �t D 0.0005 s. No viscous damping is used in the interior domain.

For the extended FE method with a horizontal glued fault inside, we prescribe penalty parameter
values of 
N D 
T D 109 MN/m and a time step of �t D 0.0001 s. We set the cohesion of the fault
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Figure 1. Comparison of the finite element and analytical solutions for Lamb’s problem: The observa-
tion point on the surface is at 5 km from the source. No filtering is used in plotting the aforementioned
figures. Note that the plots are approximately one on top of the other. CST, constant strain triangular; XFEM,

extended finite element method.
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Figure 2. Contours of particle horizontal accelerations (ACCX) at time t D 1.0 (top), 2.0 (middle), and 3.0 s
(bottom). Color bar in mm/s2.
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surface to a very large number to prevent the surface from slipping. The numerical and analytical dis-
placement time histories at the receiver point, located on the free surface 5 km from the source point,
are shown in Figure 1. Unlike the simulations reported in [15], no viscous damping was used in the
present computation, and no low-pass filtering technique for postprocessing was used for plotting
Figure 1. The contours of horizontal and vertical accelerations at different time instants (1.0, 2.0,
and 3.0 s) are shown in Figures 2 and 3. We see that the extended FE formulation reproduces the
results of the standard split-node solution utilizing regular CST elements. Figures 2 and 3 also show
no significant wave reflections generated by the PML.

5.2. Elastic dynamic rupture problem

To test the performance of the proposed framework for dynamic rupture simulations, we consider
the dynamic rupture problem TPV205-2D from the Southern California Earthquake Center/United
States Geological Survey (SCEC/USGS) Earthquake Code Verification Exercise. The dimensions of
the computational domain are 60 � 40 km2. The center of a horizontal fault is located at the cen-
ter of the mesh, that is, at coordinates .30 km, 20 km/, and the length of the fault is L D 50 km,
with end points at x D 5 km and x D 55 km. The domain is assumed to be homogeneous and lin-
early elastic, with compressive wave velocity Vp D 6.0 km/s, shear wave velocity Vs D 3.464 km/s,
and density � D 2670 kg/m3. The fault can only rupture in the region Lr , defined by the range
15.0 km 6 x 6 45.0 km; outside this region, the fault is forced to remain in stick mode by assigning a
very high static coefficient of friction on the appropriate fault segments to prevent them from slipping.

ACCY 
10 30 50 70 90-10-30-50-70-90

Figure 3. Contours of particle vertical accelerations (ACCY) at time t D 1.0 (top), 2.0 (middle), and 3.0 s
(bottom). Color bar in mm/s2.
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Inside the region Lr , the static coefficient of friction is assumed to have a value 	s D 0.677, whereas
the dynamic coefficient of friction is assumed to have a value 	d D 0.525. The slip-weakening critical
distance is taken as Dc D 0.4 m.

We subject the fault to initial normal stress of tN D 120MPa and initial shear stress of tT D 70MPa;
however, we also introduce several initial shear stress states into the fault surface to generate unsym-
metric and inhomogeneous conditions. This is realized by defining three-fault regions, L0 W ¹28.5 6
x 6 31.5º, L1 W ¹21.06 x 6 24.0º, and L2 W ¹36.06 x 6 39º (all in km). In region L1, the initial shear
stress is assumed to be t1T D 78 MPa, and in region L2, the initial shear stress is set to t2T D 62 MPa.
In the region L0, the initial shear stress is set to t0T D 81.6 MPa, which is greater than the static shear
strength of the fault, tcT D 81.24 MPa. Consequently, L0 defines the fault segment that would be first
to rupture. Figure 4 summarizes the initial shear stresses.

For the simulation, we consider element sizes h D 100 m and h D 50 m, penalty parameters

N D 
T D 1.0 � 107, time step �t D 0.001 s, and simulation duration t D 12 s. To stabilize the
problem, we introduce a slight viscous damping into the system, � D 0.001 (see Section 4.3). Figure 5
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Figure 5. Comparison of slip rate versus time histories at x D 25.5 km (top), x D 30 km (middle),
and x D 34.5 km (bottom). Note that the plots are approximately one on top of the other. XFEM,

extended finite element method.
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shows the fault slip rate time histories at x D 25.5 km, x D 30 km, and x D 34.5 km. For verifi-
cation purposes, the figure compares our results with those obtained by Brad Aagaard [72] from the
SCEC/USGS Earthquake Code Verification Exercise. Aagaard used the split-node approach with an
element dimension of 100 m in his numerical simulations. In general, our calculated slip rates match
Aagaard’s results very well. Figure 6 shows the on-fault shear stress time history, at x D 25.5 km,
x D 30 km, and x D 34.5 km. We observe a noticeable error for the 100-m shear stress compared with
Aagaard’s results because we used the penalty methods to update the shear stress. However, the error
goes away when we refined the mesh to hD 50m. To test the influence of the penalty parameter on the
calculated results, we changed the penalty parameters to 
N D 
T D 5.0�107 and 
N D 
T D 5.0�106

for the 50-m discretization. Compared with the corresponding results with 
N D 
T D 1.0 � 107,
Figure 7 shows that the penalty parameters do not significantly influence the calculated slip rate/time
histories.
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Figure 6. Comparisons of shear stress versus time histories at x D 25.5 km (top), x D 30 km (middle), and
x D 34.5 km (bottom). XFEM, extended finite element method.
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5.3. Elastoplastic dynamic rupture problem

We revisit Andrews’ model [9] describing dynamic rupture with bulk (off-fault) plasticity, along with
the Mohr–Coulomb yield criterion. The bulk material is assumed to be uniform and isotropic, with
density � D 2700 kg/m3, compressive wave velocity Vp D 5.196 km/s, and shear wave velocity
Vs D 3.0 km/s. The initial stress state is assumed to be uniform with �11 D �22 D �50 MPa
and �12 D 10 MPa. The coefficient of static friction is set to 0.5, whereas the coefficient of kinetic
friction is assumed to be zero. We also assume the following parameters for the Mohr–Coulomb
model: cohesion c D 0, friction angle � D 37°, and dilation angle  D 0 (isochoric plastic flow).
Andrews used a time-weakening law where the coefficient of friction decreases to the kinetic value
over a characteristic time interval Tc D 0.0035 s after the shear traction on the fault reaches the static
frictional strength. With the aforementioned time-dependent relaxation law, the adjusted plastic flow
parameter becomes

��i  ��i .1� exp.��t=Tv// , (86)

where Tv D 0.00067 s is the critical relaxation time. The aforementioned equation simply implies that
plastic strains at each time step are scaled by the time relaxation to enable us to compare our results
with [9] and thus verify our implementation. A small stiffness damping coefficient � D 0.000014 is
used in the simulations (see Section 4.3), and the penalty parameters are set to 
N D 
T D 5.0 � 107.
The contours of plastic strain at time t D 0.785 s are shown in Figure 8 for a computational domain of
0.5�8.0 km, assuming the fault nucleated at point (4.0,0.25) km over a nucleation length ofLc D 60m,
with an element size h D 0.002 km. In general, the off-fault plastic strains are very close to the
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Figure 7. Variation of slip rate with time at x D 30 km showing lack of sensitivity of the slip rate to values
of the penalty parameters (PEN). Note that the plots are approximately one on top of the other.

Figure 8. Off-fault plastic strains (PSTRN) at time t D 0.785 s: The maximum value of plastic strain is
0.0016 along the fault, which agrees with the calculated value obtained by Andrews [9].
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Figure 9. On-fault slip rate and stress components time history at x D 5.0 km (top) and x D 6.0 km
(bottom).
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Figure 10. Off-fault plastic strains at time t D 0.6 s calculated with the Mohr–Coulomb and Drucker–Prager
plasticity models. CPS, cumulative plastic strain.

ones obtained by Andrews. The time histories of slip rate and stress component at x D 5.0 km and
x D 6.0 km are shown in Figure 9.
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Figure 11. Off-fault plastic strains at time t D 0.6 s calculated with the modified Cam-Clay model. CPS,
cumulative plastic strain; VPS, volumetric plastic strain.
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Figure 12. Off-fault plastic strains at time t D 0.6 s calculated with the capped Drucker-Prager plasticity
model. CPSD cumulative plastic strain; VPS D volumetric plastic strain; CAP, compression cap.
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5.4. Comparison of different plasticity models

In this example, we compare the fault rupture dynamics calculated by the extended FE code
using four classical plasticity models for geomaterials: Mohr–Coulomb, Drucker–Prager, modified
Cam-Clay, and Drucker–Prager with a compression cap. For the bulk material, we assume frictional
angle � D 36.87°, dilatancy angle  D 15°, cohesion c D 5.0 MPa, initial radius of the ellipse
a D 40 MPa, radius ratio ˇ D 0.5, and hardening parameter for the ellipse H D 0.1. The computa-
tional domain is 1.0�4.0 km. All other parameters are the same as in the previous example except that
no time relaxation was used for the plastic strains. Figure 10 shows the plastic zones predicted by the
Mohr–Coulomb and Drucker–Prager models, and Figures 11 and 12 the plastic zones predicted by the
modified Cam-Clay and compression cap models, respectively. Note that the modified Cam-Clay and
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Figure 13. Comparison of slip velocities, slips, and shear tractions at time t D 0.6 s computed with
the four plasticity models. DP, Drucker–Prager; MC, Mohr–Coulomb; CC, modified Cam-Clay; CAP,

compression cap.
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compression cap models predict larger plastic zones in the compression region. Figure 13 compares
the slip velocity, slip, and shear traction distributions predicted by the four different bulk constitutive
models. As expected, the Mohr–Coulomb and Drucker–Prager models predict similar plastic zones,
as well as similar slip and shear traction distributions. The modified Cam-Clay and compression cap
models predict smaller rupture velocities, narrower slip regions, and smaller magnitudes of slip on
the fault. This is because a portion of the energy released during rupture is dissipated into volumetric
plastic compaction, and so, the fault tips did not propagate as far as they would advance if the yield
surfaces did not have a compression cap.

5.5. Dynamic fault propagation

In this example, we explore the capability of the extended FE framework to study fault growth in an
elastic medium where the direction of fault propagation is not a priori known. The material parameters
are the same as in Section 5.2. The dimensions of the computational domain are 60� 20 km, with the
lower left-hand corner of the domain located at the origin of a Cartesian reference frame. An initial
horizontal fault 8 km long was centered in the domain at coordinates .30 km, 10 km/. Fault rupture
was triggered by reducing the frictional coefficient to a dynamic value over a nucleation length defined
by the range Ln WD ¹xj28.5 km 6 x 6 31.5 kmº. The initial stresses inside the computational domain
are set to �11 D �22 D�120 MPa and �12 D 70 MPa.

To predict the growth path of a newly generated fault, certain fracture and propagation criteria must
be prescribed. In this example, we used the Coulomb criterion for failure in shear (see the textbook by
Pollard and Fletcher [73], pp. 357–364). The angle �c between the critical slip plane and the direction
of the maximum compressive stress is given as

�c D
1

2
arctan

�
1

	s

�
, (87)

where 	s is the static frictional coefficient of the fault surface. The Coulomb stress is defined as

�CC D
1

2
.�1 � �3/

�
1C	2s

�1=2
C
1

2
.�1C �3/	s , (88)
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Figure 14. Fault rupture dynamics and random propagation of new fault faces. CSTR, Coulomb stress
in MPa.
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where �1 and �3 are the maximum and minimum principal stresses, respectively (i.e., minimum and
maximum compressive stresses, respectively). If the Coulomb stress �CC is greater than an inherent
shear cohesion c0, new slip planes are generated. In general, the Coulomb criterion predicts two sets
of slip planes with an equal likelihood of mobilization. For purposes of analysis, we selected the slip
plane that is closer to the horizontal plane, because the initial fault is defined by a horizontal plane.
The shear cohesion is assumed to be c0 D 3.5 MPa. Every 0.5 s, we evaluate the Coulomb stresses for
each fault tip and propagate the fault once the Coulomb fracture criterion is reached. We prescribe a
propagation length of �LD 0.30 km for newly generated fault segments and set the initial traction on
newly generated fault faces to be equal to the bulk stress projected on the fault face.

Figures 14 and 15 show the predicted fault nucleation and random propagation processes consider-
ing both the shear rupture propagation along the given initial fault and the random generation of new
fault faces. The calculated Coulomb stresses are also shown as they radiate away from the nucleating
fault segments. Because of the uniform initial stress distribution assumed in the simulation, the stress

Figure 15. Zoom on fault rupture dynamics and random propagation of new fault faces. Color bar is
Coulomb stress (CSTR) in MPa.
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waves show an antisymmetric pattern where depth effects are not present. More realistic simulations
may involve the effect of nonuniform stress distribution accounting for depth effects, which would
make the stress wave pattern less antisymmetric. We remark that it would be difficult to use the clas-
sical split-node technique for this problem because it cannot readily accommodate the creation of new
fault faces and the random advance of fault tips.

6. SUMMARY AND CONCLUSIONS

We have presented a fully explicit extended FE framework for simulating fault rupture dynamics in
elastoplastic media. The method is more robust than the traditional split-node technique in that it can
accommodate randomly propagating faults whose geometry may not be known a priori but instead
may have to be calculated as part of the solution. We verified the numerical framework by comparing
the dynamic responses with analytical and numerical solutions for some complex BVPs reported in
the literature. More specifically, the extended FE framework reproduces the split-node solutions for
some of these complex BVPs. An advantage of the proposed solution is that it can accommodate the
creation of new fault faces whose inclinations may depend on the evolving stress configuration. We
also have demonstrated the capability of the framework to accommodate bulk plasticity in the vicinity
of the fault. From among the four elastoplastic constitutive models presented in this paper, we find the
Drucker–Prager plasticity model with a compression cap to be most versatile in that it encapsulates
different modes of inelastic deformation relevant to fault rupture processes, including compaction,
dilatation, and shearing.
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