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Abstract

We present a rate-independent crystal plasticity theory in the finite deformation range. The formulation revolves
around theory of distribution and strong discontinuity concepts applied to the slip systems. Uniform and conforming
deformation fields are introduced, from which deformation gradients for the crystal lattice and the crystal itself are derived.
For a crystal deforming in single slip, we show that the crystal rotates the active slip system the same way as the lattice
does, leading to an elegant and exact stress-point integration algorithm for the overall crystal stresses. For a crystal
deforming in multiple slips the crystal no longer rotates the slip systems exactly as the lattice does. For this case, we present
a stress-point integration algorithm accounting for the exact push-forward operation induced by the lattice on the active
systems. We also consider a simplified stress-point integration algorithm for multislip systems that remains highly accurate
for a wide range of stress paths considered. The framework for system activation and the selection of linearly independent
slip systems follows a well-established ‘ultimate algorithm’ for rate-independent crystal plasticity developed for infinites-
imal deformation.
� 2014 Elsevier B.V. All rights reserved.

Keywords: Crystal plasticity; Finite deformation; Micromechanics; Stress-point integration; Strong discontinuity
1. Introduction

Quasi-static and isothermal plastic deformations in single crystals arise from slips on specific crystallo-
graphic planes. Certain crystalline solids, such as metals and igneous rocks, have well-defined microstructures
that allow modeling of their mechanical responses based on grain-scale mechanisms. One of the first represen-
tations of metals as a polycrystalline aggregate was proposed by Bishop and Hill [7,8]. They employed the
notion of plastic work to describe yielding of the polycrystal, but neglected the elastic strains and did not
address the sequence of slip system activation. Since then, several other developments have been published
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in the literature, most of which have focused on identifying the set of linearly independent active systems from
a pool of linearly dependent ones [16,17,20,26,30,33,34,37]. Identifying linearly independent systems is a
fundamental problem because redundant systems lead to indeterminate slips.

The most common algorithm for filtering out redundant constraints emulates the return mapping scheme of
multisurface plasticity [20,23,58]. In this algorithm, redundant slips systems are identified from the zero ele-
ments of the factorized coefficient matrix, which are then dropped from the set of potentially active constraints
during the course of the iteration [1,20,54,58]. The return mapping algorithm for multisurface plasticity is
known to work well for problems where the constraints are all linearly independent; however, for problems
involving linearly dependent systems this algorithm could break down even at the stress-point level [16]. Borja
and Wren [16] proposed an ‘ultimate algorithm’ for tracking the sequence of activation of linearly independent
slip systems. Their work is unconditionally convergent and exact for loads varying as a ramp function, and has
recently been implemented into a 3D nonlinear finite element code addressing infinitesimal deformation [9].

Rate-dependent regularization has been employed to avoid dealing with linearly dependent slip systems
[19,31,44,50,59]. In rate-dependent formulation, all systems can be active, and slips are determined according
to the viscosity of the material. A rate-dependent formulation could be justified by the plastic flow due to dis-
location motion being inherently rate-dependent [48,51]. However, when the rate sensitivity becomes small the
resolved shear stress becomes a bounded function, making the set of constitutive equations exceedingly stiff
and very difficult to solve [22,39]. In such cases, it may be more expedient to formulate the problem as a
rate-independent one and develop an algorithm for this specific class of problems. Among the rate-indepen-
dent plasticity formulations reported in the literature, we mention the ultimate algorithm by Borja and Wren
[16], the generalized inverse approaches by Anand and Kothari [1] and Schröder and Miehe [54], the smoothed
yield surfaces of [25], and the diagonal shift method by Miehe and Schröder [45]. For a more in-depth discus-
sion of the issues surrounding this topic, the reader is referred to [18].

Consideration of finite deformation effects is required in the simulation of metal forming and the analysis of
localization of deformation in geologic crystalline materials, among many applications of crystal plasticity
[21,32,46]. Within the framework of nonlinear continuum mechanics, various formulations for crystalline
materials experiencing large elasto-plastic deformation have been proposed [4,5,28,53]. The most commonly
accepted framework revolves around the notion of multiplicative decomposition of deformation gradient
[36]. Under conditions of multiple slips, the plastic component of velocity gradient obeys the flow rule pre-
sented by Rice [53]. Due to redundant slip systems, selection of linearly independent systems from a pool
of linearly dependent ones continues to be a major challenge. Furthermore, the presence of geometric nonlin-
earity requires a more elaborate mathematical description of the nonlinear kinematics of crystalline slips. Fac-
tors entering into the kinematical description include the rotation and stretching of the crystal lattice and the
large magnitude of crystal slips.

Crystals exhibit significantly higher hardening rates when deforming in multiple slips than when deforming
in single slip [6]. This implies a strong propensity of the crystal to deform in single slip and avoid multiple slips.
A strong latent hardening captures this pattern of deformation and is the main feature of a subgrain disloca-
tion model [50]. Because of the dominant role of single slip in crystal deformation, an accurate numerical algo-
rithm that captures the kinematics of deformation in single slip is desirable. On the other hand, single slips at
all material points are known to result in a non-convex incremental problem—unless multiple slips are also
allowed, or unless the crystal is permitted to develop some deformation microstructures such as ‘patchy slips’
[4]. These overarching considerations motivate the development of a finite deformation stress-point integra-
tion algorithm for a crystal that is highly accurate in single slip and is also reasonably accurate in multiple
slips. In this paper, we present a stress-point integration algorithm for crystal plasticity in the finite deforma-
tion range that is exact in single slip and highly accurate in multiple slips.

A first step in the development of an exact stress-point integration algorithm for crystals deforming in single
slip is to reformulate the kinematics of crystalline slips as a strong discontinuity problem. Originally used to
describe the kinematics of a shear band, and whether it is used in the context of the assumed enhanced strain
or the extended finite element method, strong discontinuity is defined as the limit of weak discontinuity as the
thickness of the band approaches zero [3,12,14,15,24,29,38,40–42,47,52,56]. We view the crystallographic
planes in the same way as we view a shear band: it is a strong discontinuity where the strain rate is represented
by a distribution (Dirac delta) function. For the yield stress to remain bounded, the plastic modulus must have
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the form of an inverse of the distribution function so that the product of the strain rate and the plastic mod-
ulus (which describes the rate of change in the yield stress) remains bounded. The similarity of the shear band
and crystal plasticity problems is not restricted to the strain singularity on the slip plane. In the shear band
problem, the material outside the band typically undergoes elastic unloading as the band continues to yield
plastically. In crystal plasticity, the lattice hosting the slip planes typically deforms elastically (unless it devel-
ops its own microstructure) while plastic slips take place on the glide planes.

In the formulation that follows, we use the strong discontinuity framework presented by Borja [13] for a
shear band undergoing finite deformation. In this formulation, which we apply to the crystal plasticity prob-
lem, a strong discontinuity is embedded in an elastic deformable solid, which we now take to be the crystal
lattice. An essential ingredient of the formulation is the multiscale framework that permits the decomposition
of crystal deformation into a fine-scale field and a coarse-scale field. We introduce so-called continuous and
conforming deformation fields that represent, respectively, the deformation of the crystal lattice and the over-
all macroscopic deformation of the crystal. From this formulation, we develop a stress-point integration algo-
rithm that is exact for a crystal deforming in single slip, and is demonstrably accurate for a crystal deforming
in multiple slips.

2. The fine-scale field

Consider a crystal lattice with one active slip system. Let N denote the unit normal to the glide plane in the
reference configuration. We view this glide plane as a thin interface D0 with thickness h0 in the reference con-
figuration, and thickness h in the current configuration. By letting h0 and h approach zero, we recover the
strong discontinuity limit. The schematic of the problem is shown in Fig. 1.

2.1. Kinematics for single-slip

The kinematics for single slip in the finite deformation range follows the strong discontinuity framework
presented in [13]. The intent of this section is not to be repetitive, but rather, to highlight the change in scale
at which the strong discontinuity concept is used for the crystal problem. In particular, we distinguish between
slip in the macro-mechanical framework of the previous paper and slip in the grain-scale framework proposed
in the present paper. Keeping in mind that the kinematical descriptions are now local to the crystal, and thus,
all spatial variations pertain to the crystal grain scale and not to the macroscopic scale, we write the local
deformation in the crystal in the form
Fig. 1.
Strong
/ ¼
/; if j 6 0;

/þ js/t=h0; if 0 6 j 6 h0;

/þ s/t; if j P h0:

8><>: ð1Þ
Crystal lattice with one active slip system: the glide plane is assumed to be an interface with thickness h in the current configuration.
discontinuity is defined by the limit h! 0.
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We identify / as the deformation of the lattice in the neighborhood of D0, and s/t as the deformation of “face
2” relative to “face 1” of D0 (the choice of either face is arbitrary). The variable j is a normal parameter given
by the expression
j ¼ ðX � YÞ �N ; ð2Þ
where Y is any point on face 1, whose unit normal is N and pointing in the direction of face 2. The corre-
sponding deformation gradient is
F ¼ @/
@X
¼

Fe outside D0;

Fe þ ðs/t�NÞ=h0 inside D0;

�
ð3Þ
where Fe ¼ @/=@X . The superscript “e” in Fe stands for ‘elastic’ and implies that the host lattice is deforming
elastically whereas the interface volume D0 is deforming plastically. At this point we shall not rule out the pos-
sibility that the slip in D0 may also contain some elastic parts, although later we shall show that this is not true
and that the slip in D0 is in fact completely inelastic. In the expressions above, we assume that s/t is locally
constant within the lattice. The macroscopic counterpart of the above kinematical description is a tabular
deformation band [10,11].

The velocity field in the crystal takes similar forms,
V ¼
V ; if j 6 0;

V þ jsVt=h0; if 0 6 j 6 h0;

V þ sVt; if j P h0;

8><>: ð4Þ
where V ¼ _/ and sVt ¼ s _/t. We recall that the velocity VðXÞ of material point X initially at position X is the
same as the velocity vðxÞ of the same material point that is now at x. The time derivative of F also takes similar
forms
_F ¼
_Fe outside D0;
_Fe þ ðsVt�NÞ=h0 inside D0;

(
ð5Þ
where _F ¼ @V=@X and _Fe ¼ @V=@X . The Sherman–Morrison formula provides the inverse of F,
F�1 ¼ Fe�1 outside D0;

Fe�1 � ðU�N � Fe�1Þ=ðh0 þN �UÞ inside D0;

(
ð6Þ
where U ¼ Fe�1 � s/t is the elastic pull-back of s/t. Now, consider an infinitesimal volume dV ¼ h0dA in the
reference configuration, where dA is an infinitesimal area on the plane of the interface D0. Upon deformation,
dV becomes dv ¼ hda, where h is the thickness of the interface in the current configuration and da is the de-
formed area. Nanson’s formula states that nda ¼ JN � F�1dA [43], where J ¼ dv=dV and n is a unit vector nor-
mal to the deformed area. This gives
n

h
¼ N � F�1

h0

¼ N � Fe�1

h0 þN �U : ð7Þ
From the above equation, we obtain the evolution of the interface thickness of the form
h ¼ h0n � Fe �N þ n � s/t: ð8Þ
The first term on the right-hand side is the elastic stretch in the direction of the thickness, while the second
term is the stretch arising from the relative movement of the opposite faces of the interface. In the strong dis-
continuity limit, both h0 and h must approach zero, which means that n must be perpendicular to s/t. Using
the identity l ¼ _F � F�1 for the velocity gradient, we obtain
l ¼
le outside D0;

le þ ðs/
r
t� nÞ=h inside D0;

8<: ð9Þ



238 R.I. Borja, H. Rahmani / Comput. Methods Appl. Mech. Engrg. 275 (2014) 234–263
where
le ¼ _Fe � Fe�1; s /
r

t ¼ s _/t� le � s/t: ð10Þ

Note that s/

r
t contains a convected part, which makes it an objective rate co-rotational with s/t.

Theory of distribution may be used as a passage to the strong discontinuity limit. We recall that n ? s/t in
the limit, where n is an Fe-covariant transformation of N . Therefore, s/t must be an Fe-contravariant trans-
formation of some unit tangent vector M ? N in the reference configuration. The two unit vectors M and N
define the primary slip system in the reference configuration. Therefore, the displacement jump in the current
configuration can be written as
s/t :¼ cFe �M ; ð11Þ

where c is the cumulative slip in the reference configuration. After noting that M is fixed and _Fe ¼ le � Fe, we
obtain the rate form
s _/t ¼ _cFe �M þ c _Fe �M ¼ _gmþ le � s/t; ð12Þ

where
m ¼ Fe �M=kFe �Mk ð13Þ

is the unit vector in the direction of slip, and _g ¼ _ckFe �Mk is the slip rate in the current configuration. This
simplifies the co-rotational jump rate to the form
s /
r

t ¼ _gm: ð14Þ

Denoting the distribution function by the symbol dD (the Dirac delta function), we write the rate of defor-

mation gradient ‘inside’ D0 as the sum of a regular part and a singular part,
_F ¼ _Fe þ dDðs _/t�NÞ: ð15Þ

The regular part is the elastic rate of deformation gradient in the neighborhood of the slip plane, whereas the
singular part is the slip on this plane. Similarly, the velocity gradient ‘inside’ the glide plane can be decom-
posed additively into regular and singular parts,
l ¼ le þ dDð _gm� nÞ: ð16Þ

The above equations are useful mathematical representations for the constitutive formulation described in the
next section.

2.2. Constitutive formulation

The underlying constitutive framework for the proposed crystal plasticity theory relies on the notion of
multiplicative decomposition of deformation gradient into elastic and plastic parts, i.e., F ¼ Fe � Fp. Crystal
elasticity can be very complex, see [2,27,35,61,62], for example. Less symmetric crystals require more elastic
constants and far more elaborate stored energy functions in the finite deformation range. Recognizing that
the deformations considered in the present paper are dominated by inelastic slips, and that elastic deforma-
tions are small in comparison to these slips, we consider isotropic elasticity for simplicity in the formulation
and write the stored energy function as W ¼ WðbeÞ, where be is the elastic left Cauchy–Green deformation
tensor defined as
be ¼ Fe � FeT ¼ F � Cp�1 � FT ð17Þ

and Cp ¼ FpT � Fp is the plastic right Cauchy–Green deformation tensor. The assumption of elastic isotropy
also permits the symmetric Kirchhoff stress tensor to be written in the form
s ¼ 2
@W
@be � be ¼ 2be � @W

@be ; ð18Þ
i.e., @W=@be and be commute.
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Taking the time derivative of the Kirchhoff stress gives the elastic rate constitutive equation
_s ¼ 1

2
ue : _be ¼ 1

2
ue : ðle � be þ be � leTÞ ¼ ae : le; ð19Þ
where ue ¼ 2@s=@be and ae ¼ ue � be. We recall the spectral representation of the spatial elasticity tensor ae

developed in [12,13,49],
ae ¼
X3

A¼1

X3

B¼1

ae
ABmðAÞ �mðBÞ þ

X3

A¼1

X
B–A

sB � sA

ke
B � ke

A

 !
ðke

BmðABÞ �mðABÞ þ ke
AmðABÞ �mðBAÞÞ; ð20Þ
where sA and ke
A are principal values of s and be, respectively, mðABÞ ¼ nðAÞ � nðBÞ are spectral directions con-

structed from the principal directions nðAÞ of s (or from the principal directions of be by coaxiality), and ae
AB

is the matrix of elastic moduli in principal axes, given in terms of the elastic bulk modulus K and elastic shear
modulus l by [55,57]
½ae
AB� ¼

a b b

b a b

b b a

264
375; a ¼ K þ 4

3
l; b ¼ K � 2

3
l: ð21Þ
If P denotes the first Piola–Kirchhoff stress tensor and Ae ¼ @P=@Fe denotes the two-point elasticity tensor
with components Ae

iAjB ¼ @P iA=@F e
jB, then the spatial elasticity tensor is
ae ¼ ae þ s� 1; ð22Þ
where the components are ae
ikjl ¼ F kAF lBA

e
iAjB and ðs� 1Þijkl ¼ sildjk.

The additive decomposition of the spatial velocity gradient shown in (16) identifies the plastic component of
the velocity gradient as
lp ¼ dDð _gm� nÞ: ð23Þ
Note that this plastic component is singular as a result of the strong discontinuity assumption. In addition,
from the relation le ¼ _Fe � Fe�1, and from the expansion
l ¼ _Fe � Fe�1 þ Fe � ð _Fp � Fp�1Þ � Fe�1; ð24Þ
we find that
_Fp � Fp�1 ¼ dDðFe�1 � _gmÞ � ðn � FeÞ; ð25Þ
which has a form similar to the one proposed by Rice [53]. We readily see from the above development that the
slip rate is fully plastic, i.e., it has no elastic part.

Eq. (23) suggests that the plastic flow direction is m� n (i.e., the Schmid tensor) and that the consistency
parameter is the delta function dD with a regular multiplier _g. If one derives the plastic flow direction from a
plastic potential function, then an associated plastic flow implies that this plastic potential function must be
the same as the yield function
F ¼ jðm� nÞ : sj � sY � wðm� nÞ : s� sY 6 0; ð26Þ
where
w :¼ signððm� nÞ : sÞ ð27Þ
is the sign function and sY is the yield stress on the slip system. Furthermore, the plastic component of velocity
gradient has singular symmetric and skew-symmetric parts,
dp ¼ dDwsymð _gm� nÞ; xp ¼ dDwskwð _gm� nÞ: ð28Þ
Note that the presence of the sign function ensures that only forward slips are considered. Since m; n, and s all
depend on the elastic deformation gradient Fe, the consistency condition on the yield function writes
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_F ¼ @F
@Fe : _Fe � dD _gH ¼ 0; ð29Þ
where H is the generalized plastic modulus. The first term on the right is a regular function, whereas the second
term is singular – unless H is of the form
H ¼ HD=dD; ð30Þ
where HD is a regular function. If this is the case, then the consistency condition becomes
_F ¼ @F
@Fe : _Fe � _gHD ¼ 0: ð31Þ
Note that all terms in the above equation are now regular functions.
The strong discontinuity theory can be fully appreciated from the regularized formulation. Take h > 0, for

example. The regularized form of the plastic component of velocity gradient is then given by lp ¼ ð _gm� nÞ=h.
As h tends to zero, _g=h becomes very large (i.e., unbounded) due to plastic strain localization on the glide
plane. However, the consistency condition cannot contain unbounded terms, so the plastic modulus must nec-
essarily be of the form H ¼ HDh, i.e., it must be OðhÞ. This means that as h approaches zero the plastic mod-
ulus must approach zero in order for the yield stress to remain bounded. This corresponds to perfect plasticity
in the continuum sense. However, it can be seen from the above formulation that the singular terms cancel out,
leaving only the regular terms, thus allowing the yield stress sY to increase or decrease with plastic deformation
in a regular fashion (depending on the sign of HD) even in the limit when the continuum plastic modulus is
zero.

3. The coarse-scale field

So far, the kinematical descriptions discussed have focused on the fine-scale deformation field in the neigh-
borhood of the slip systems. Of interest, however, is the overall response of a crystal represented by the com-
bined elastic lattice deformation and inelastic slips on the glide planes. This corresponds to the coarse-scale
field; the associated coarse-scale deformation is then a smoothed version of the fine-scale deformations.

3.1. Multiscale kinematics

As an illustration of the interplay between the coarse- and fine-scale fields, consider the following fine-scale
displacement field in the neighborhood of a primary slip system (see Figs. 2 and 3):
uðXÞ ¼ uðXÞ þ suðXÞtHDðXÞ; HDðXÞ ¼
1 if X 2 Dþ
0 if X 2 D�

�
; ð32Þ
where D� represents regions in the crystal lattice on the opposite sides of the glide plane (the choice of + and �
sides is arbitrary). Note that we have used the Heaviside function in lieu of the ramp function to define the
limiting condition of strong discontinuity. The displacement field u is the continuous part of u and delineates
the elastic deformation of the crystal lattice, whereas sut is the slip on the primary system given more
specifically by
conforming

continuous

slip

REV range

. One-dimensional representation of continuous and conforming displacement fields: the conforming displacement field is a
hed overall displacement of the crystal taken over the representative elementary volume (REV) range; the continuous field defines
stic deformation of the crystal lattice.
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Fig. 3. Two-dimensional representation of continuous and conforming deformation fields: shaded region is crystal lattice in the reference
(bottom) and current (top) configurations. For single-slip systems, Fe tr induces the same rotation on the crystal lattice as Fe.
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suðXÞt ¼ fðXÞmðXÞ ¼ fFe �M=kFe �Mk; ð33Þ
where
f ¼ ckFe �Mk ð34Þ
is the cumulative slip measured with respect to the reference configuration, cf. Eq. (11). Note that sut is always
co-rotational with the glide plane.

The coarse-scale displacement is a conforming field that is macroscopically smooth. In finite element anal-
ysis, for example, the conforming field is the continuous spatial displacement field provided by the standard
finite element interpolation. We can re-parameterize the same ‘true’ displacement field u in the form
uðXÞ ¼ euðXÞ þ suðXÞtMDðXÞ; ð35Þ
where eu is the coarse-scale displacement field, and
MD ¼ HDðXÞ � GðXÞ; ð36Þ
delineates the variation of the fine-scale field. In the above equation, GðXÞ is an arbitrary smooth ramp func-
tion that varies from zero to one over a unit thickness in the direction of N . We remark that GðXÞ does not
serve as an approximation to the Heaviside function, but rather, it merely defines the range over which the
displacement jump is being smoothed over by the conforming displacement field. As shown subsequently, this
range is immaterial to the formulation since we will only be dealing with the deformation gradients in subse-
quent discussions. We thus view the displacement field u as being the sum of the coarse-scale field eu and the
fine-scale field sutMD, where the latter function is represented by the shaded region in Fig. 2.

Since the displacement jump sut is assumed to be spatially constant within the domain on the Dþ side of the
crystal, we can define the continuous deformation in the crystal lattice as the total deformation minus the
deformation jump, i.e.,
x ¼ X þ u: ð37Þ
The continuous deformation field delineates the elastic deformation of the lattice. On the other hand, the con-
forming deformation field delineates the overall (smoothed) deformation of the crystal,
ex ¼ X þ eu: ð38Þ
The continuous and conforming deformations are related by the equation
x ¼ ex � sutGðXÞ: ð39Þ
Letting Fe ¼ @x=@X and Fe tr ¼ @ex=@X , we have
Fe ¼ Fe tr � fm� @G
@X
¼ Fe tr � fm�N : ð40Þ
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Note that the same symbol f is used to denote a measure of slip per unit distance over which the slip is being
smoothed over (a slight abuse in notation). This makes f a dimensionless quantity, and its numerical value
expressible in percent (as in strain). Imposing the above equation at time tn readily gives
Fe
n ¼ Fe tr

n � fnmn �
@G
@X
¼ Fe tr

n � fnmn �N ; ð41Þ
where Fe
n ¼ @xn=@X and Fe tr

n ¼ @exn=@X . The superscript “e” suggests an elastic deformation field in the lattice
defined by the continuous deformation field, whereas the superscript “e tr” suggests a trial elastic predictor
that would be the true deformation field if we did not allow any plastic slip to occur in the crystal. We shall
refer to the latter as the coarse-scale deformation gradient, i.e., the deformation gradient for the crystal as a
whole.

The discrete formulation aims to time-integrate the stress and deformation variables over discrete time
intervals. Taking the configuration at tn as the reference configuration, the relative deformation gradients
at any time t > tn can be written as
f e ¼ @x

@xn
¼ Fe � Fe�1

n ; f e tr ¼ @ex
@exn
¼ Fe tr � Fe tr�1

n : ð42Þ
The term f e tr in the above expression is the coarse-scale relative deformation gradient. We can use the Sher-
man-Morrison formula to find the inverses
Fe�1 ¼ Fe tr�1 þ f
1� fb

Fe tr�1 �m�N � Fe tr�1 ð43Þ
and
Fe�1
n ¼ Fe tr�1

n þ fn

1� fnbn
Fe tr�1

n �mn �N � Fe tr�1
n ; ð44Þ
where b ¼ N � Fe tr�1 �m and bn ¼ N � Fe tr�1
n �mn. From Eq. (42), we find
f e ¼ f e tr �m
r �N � Fe tr�1

n ; ð45Þ
where
m
r ¼ f

1� fnbn
m� fn

1� fnbn
f e tr �mn ð46Þ
is the incremental slip over the relevant time interval. For future use, we also present the inverse of f e as
f e�1 ¼ f e tr�1 þm
r

n �N � Fe tr�1; ð47Þ
where
m
r

n ¼
f

1� fb
f e tr�1 �m� fn

1� fb
mn: ð48Þ
The above formulation shows that the elastic deformation gradients Fe and f e are functions of the current
slip direction m, which in turn is a function of the elastic deformation gradient Fe. This elliptic relation would
be difficult to solve analytically for f e, unless we recognize the strain-driven format of the algorithm and the
role played by the coarse-scale displacement field in the algorithmic formulation. In a strain-driven format, we
are given the elastic left Cauchy-Green deformation tensor be

n at time tn, as well as the coarse-scale displace-
ment increment Deu ¼ eu � eun; we then want to find the elastic left Cauchy-Green deformation tensor be at any
time t > tn. The elastic predictors are defined by the coarse-scale deformation gradients themselves,
Fe tr ¼ Fe tr
n þ

@Deu
@X

; f e tr ¼ 1þ @Deu
@exn

: ð49Þ
Now, the transformation for the slip direction m is given by Eq. (13), or, equivalently, by the relation
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m ¼ f e �mn=kf e �mnk: ð50Þ
Therefore, we obtain
f e �mn ¼ kf e �mnkm ¼
1

1� fnbn
f e tr �mn �

fbn

1� fnbn
m: ð51Þ
We see from the above relation that the vector formed by f e tr �mn is parallel to the vector m, and so we can use
the alternative expression
m ¼ f e tr �mn=kf e tr �mnk ¼ Fe tr �M=kFe tr �Mk: ð52Þ
Similarly, we have
mn ¼ Fe tr
n �M=kFe tr

n �Mk: ð53Þ
Because the coarse-scale deformation gradient Fe tr determines the new orientation of M , it follows that
b; bn /M �N � 0, and so the update equation for f e simplifies to the form
f e ¼ f e tr � Dfm�N � Fe tr�1
n ; ð54Þ
where
Df ¼ f� fnkf e tr �mnk: ð55Þ
The above developments suggest that for single-slip systems the rotation induced by the crystal lattice on the
slip system is the same as the rotation induced by the crystal itself.

To elaborate the last sentence of the preceding paragraph, consider a rigid and non-rotating lattice for
which the rotations of M and N are zero. Assuming a horizontal slip plane XY with slip occurring in the
X-direction, then simple shearing on the scale of the crystal would produce grain-scale displacement fields
uX ¼ cZ and uY ¼ uZ ¼ 0 on the representative elementary volume, where c is determined by slip in the X-
direction. The continuum deformation gradient F then operates on M ¼ f1; 0; 0g and N ¼ f0; 0; 1g according
to the relations F �M �M and F�T �N � N . This means that the rotation of the slip tensor is zero even if the
rotation of the crystal itself is not zero.
3.2. Stress-point integration

Direct time integration of the elastic left Cauchy–Green deformation tensor gives the update equation
beðt > tnÞ ¼ f e � be
n � f eT: ð56Þ
The above expression is exact since time differentiation reverts back to the original rate equation
_be ¼ le � be þ be � leT; le ¼ _f e � f e�1: ð57Þ
This expression for be is driven by the coarse-scale incremental displacement field Deu alone, and so we can
readily perform a spectral decomposition of be as
be ¼
X3

A¼1

k2
AnðAÞ � nðAÞ; ð58Þ
where the k2
A’s are the principal values of be and the nðAÞ’s are the corresponding principal directions (not to be

confused with the glide plane normal vector n). The square roots of k2
A are the elastic principal stretches, and

eA ¼ lnðkAÞ are the elastic logarithmic principal stretches. From the assumed isotropy in the elastic response,
we can also decompose the symmetric Kirchhoff stress tensor spectrally as
s ¼
X3

A¼1

sAnðAÞ � nðAÞ; sA ¼
@ bW
@�A

; ð59Þ
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where bW ¼ bWðe1; e2; e3Þ is the same stored energy function introduced in Section 2.2 but is now expressed as a
function of the elastic logarithmic principal stretches. A constraint on the Kirchhoff stress s is that it must
satisfy the yield condition (26).

To summarize the stress-point integration algorithm for single-slip system, we rewrite the update equation
for f e in a more general form as (cf. (54))
f e ¼ f e tr � Dfwm�N � Fe tr�1
n ; ð60Þ
where the sign function has been introduced to ensure that wm always defines the direction of a forward slip.
For a given Df the right-hand side of the above equation is fully explicit, facilitating the sequence of calcula-
tions f e ! be ! s. In reality, Df is unknown and must be iterated so as to satisfy the following discrete con-
sistency condition
rðDfÞ ¼ wðm� nÞ : s� ðsYn þ DfHDÞ ! 0; ð61Þ
where HD is the (constant) plastic modulus, and sYn is the resolved shear stress at the beginning of the load
increment. In the above equation, we assume that the primary slip system is active at the beginning of the load
increment, so that
wnðmn � nnÞ : sn � sYn ¼ 0; ð62Þ
where wn is the sign function evaluated at the beginning of the load increment, sYn ¼ sY 0 þ fnHD, and sY 0 is the
initial yield stress.

Eq. (61) is a nonlinear equation in the slip increment Df (see Eq. (55) for the explicit definition of this slip
increment) that can be solved by a local Newton iteration. Note that mn; nn, and sn are obtained from the
previous load step, so they are fixed during the local iteration. Furthermore, the algorithm is driven by the
coarse-scale displacement increment Deu, which is also fixed during the iteration. The local tangent operator
then simplifies to the form
r0ðDfÞ ¼ w½ðm� nÞ : s0ðDfÞ� � HD: ð63Þ
The derivative of s can be obtained from Eq. (19) as
s0ðDfÞ ¼ 1

2
ue :

@be

@Df
¼ ae :

@f e

@Df
� f e�1

� �
: ð64Þ
We note that
@f e

@Df
¼ �wm�N � Fe tr�1

n ð65Þ
and
@f e

@Df
� f e�1 ¼ �wm�N � Fe tr�1: ð66Þ
So, the derivative of the Kirchhoff stress simplifies to
s0ðDfÞ ¼ �ae : wm�N � Fe tr�1
� �

: ð67Þ
To this point, no approximation has been introduced in the above stress-point integration algorithm whatso-
ever, so all the calculated slips and rotations are exact.

4. Multislip system

In a more general case the coarse-scale displacement increment Deu may be large enough to trigger two or
more slip systems. Some of these systems may be linearly dependent requiring the use of a more specialized
filtering algorithm. We set aside the issue of redundant systems and assume for now that all active slip systems
are linearly independent (we will address the issue of redundant systems later). If Deu is large enough to trigger
a secondary slip, then we need to: (a) identify the secondary slip system, and (b) accommodate a two-slip
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(duplex) system. To simplify the equations, we shall assume for now that all slip directions define a forward
motion. Later, we shall generalize the algorithm and accommodate backward slip by re-introducing the sign
function, like we did in the previous section.

4.1. Identifying a secondary slip system

Assume that the coarse-scale displacement increment is applied as a ramp function according to tDeu, where
t is a pseudo-time variable that varies from ½0; 1�. The coarse-scale deformation gradients then vary according
to the equations
Fe tr
t ¼ Fe tr

n þ t
@Deu
@X

; f e tr
t ¼ 1þ t

@Deu
@exn

: ð68Þ
This means that the primary slip direction mð1Þ varies according to the relation
mð1Þt ¼ f e tr
t �mð1Þn =kf e tr

t �mð1Þn k; ð69Þ

whereas the unit normal nð1Þ varies according to the equation
nð1Þt ¼ nð1Þn � f e tr-1
t =knð1Þn � f e tr-1

t k; ð70Þ

where superscript ‘(1)’ pertains to the primary slip system, assumed herein to be active right at the beginning of
the load increment. From the previous section, the elastic component of relative deformation gradient in the
presence of single slip varies according to
f e
t ¼ f e tr

t � Dfð1Þt mð1Þ �N ð1Þ � Fe tr�1
n ; ð71Þ
where
Dfð1Þt ¼ fð1Þt � fð1Þn kf e tr
t �mð1Þn k ð72Þ
is the slip increment, which is seen to depend on the pseudo-time variable t as well. We can thus calculate the
elastic left Cauchy-Green deformation tensor as
be
t ¼ f e

t � b
e
n � f eT

t ; ð73Þ

from which the Kirchhoff stress tensor st can be determined from the hyperelastic constitutive equation. The
incremental slip Dfð1Þt is obtained from the discrete consistency condition
wð1Þt mð1Þt � nð1Þt : st � ðsYn þ Dfð1Þt HDÞ ¼ 0: ð74Þ

The above stress-integration algorithm is exact provided that t does not trigger a secondary slip.

Now, suppose we want to determine the value of t that is large enough to trigger a secondary slip system b.
The search for the critical slip system entails testing all inactive systems for yielding and identifying the specific
system that gives the minimum triggering value of t. For any potential secondary slip system b the slip direc-
tion varies according to the equation
mðbÞt ¼ f e tr
t �mðbÞn =kf e tr

t �mðbÞn k; ð75Þ

whereas the unit normal varies according to the relation
nðbÞt ¼ nðbÞn � f e tr�1
t =knðbÞn � f e tr�1

t k: ð76Þ

We recall that the coarse-scale relative deformation gradient f e tr rotates all slip systems in the crystal lattice
exactly as f e provided that yielding in the crystal is restricted to that of single slip. The critical t required for
yielding of any system b then satisfies the yield condition
wðbÞt mðbÞt � nðbÞt : st � ðsYn þ Dfð1Þt HDÞ ¼ 0: ð77Þ

Eqs. (74) and (77) must be solved simultaneously to determine the value of t that produces initial yielding on
any potential secondary slip system. The true secondary slip system is one for which the triggering value of t is
minimum.
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We summarize the required iterative solution for determining the secondary slip system. Dropping
subscript t for brevity and re-introducing the sign function, we calculate the elastic relative deformation
gradient as (cf. (71))
f e ¼ f e tr � Dfð1Þwð1Þmð1Þ �N ð1Þ � Fe tr�1
n : ð78Þ
Let
rð�Þ ¼ symðmð�Þ � nð�ÞÞ: ð79Þ
Then solve Rðx	Þ ¼ 0 for the unknown x	, where
R ¼ RðxÞ ¼
R1

R2

� �
¼ wð1Þrð1Þ : s� sYn � x1HD

wðbÞrðbÞ : s� sYn � x1HD

( )
ð80Þ
is the local residual vector, and
x ¼
x1

x2

� �
¼ Dfð1Þ

t

( )
ð81Þ
is the local vector of unknowns. The local tangent operator for Newton iteration is
R0ðxÞ ¼
R1;1 R1;2

R2;1 R2;2

� 	
: ð82Þ
The tensor r depends on x2 ¼ t alone, and not on x1 ¼ Dfð1Þ, so we evaluate
R1;1 ¼
1

2
wð1Þrð1Þ : ue : be

;1 �HD ð83Þ

R2;1 ¼
1

2
wðbÞrðbÞ : ue : be

;1 �HD: ð84Þ
On the other hand, the hardening law depends on x1 ¼ Dfð1Þ alone, and not on x2 ¼ t, so we determine
R1;2 ¼ wð1Þrð1Þ;2 : sþ 1

2
wð1Þrð1Þ : ue : be

;2 ð85Þ

R2;2 ¼ wðbÞrðbÞ;2 : sþ 1

2
wðbÞrðbÞ : /e : be

;2: ð86Þ
To find the derivatives of r, we note that
r;2 ¼ r;t ¼ sym m� n;t þm;t � nð Þ; ð87Þ
where
m;t ¼
f e tr
;t �mn

kf e tr �mnk
� ð1�m�mÞ ð88Þ
and
n;t ¼
nn � f e tr�1

;t

knn � f e tr�1k � ð1� n� nÞ: ð89Þ
So, the derivatives of the relative deformation gradients are
f e tr
;t ¼

@Deu
@exn

; f e tr�1
;t ¼ �f e tr�1 � @Deu

@exn
� f e tr�1: ð90Þ
The derivatives of be follow from the chain rule
be
;i ¼ f e

;i � b
e
n � f eT þ f e � be

n � f eT
;i ; i ¼ 1; 2: ð91Þ
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We note that
f e ¼ 1þ x2
@Deu
@exn
� x1w

ð1Þmð1Þ �N ð1Þ � Fe tr�1
n : ð92Þ
So,
f e
;1 ¼ f e

;Dfð1Þ
¼ �wð1Þmð1Þ �N ð1Þ � Fe tr�1

n ð93Þ
and
f e
;2 ¼ f e

;t ¼
@Deu
@exn
� Dfð1Þwð1Þmð1Þ;t �N ð1Þ � Fe tr�1

n : ð94Þ
4.2. Duplex system

Consider a duplex (two-slip) system subjected to a conforming displacement field eu. We define the slip sys-
tems by superscripts a and b. The kinematics of deformation is given by
u ¼ uþ suatH a
D þ subtHb

D; H 
DðXÞ ¼
1 if X 2 D
þ
0 if X 2 D
�

�
; ð95Þ
where 
 denotes either slip system a or b, and D
� represents regions in the crystal lattice on the opposite sides
of the glide planes. The Heaviside functions represent the two discontinuities.

In terms of the continuous and conforming displacement fields, u and eu, respectively, we find the following
expressions for the elastic component of deformation gradients,
Fe ¼ Fe tr � fawama �Na � fbwbmb �Nb ð96Þ

at any time t > tn, and
Fe
n ¼ Fe tr

n � fa
nw

a
nma

n �Na � fb
nw

b
nmb

n �Nb ð97Þ

at time tn. The sign functions are defined in the obvious way,
wa ¼ signððma � naÞ : sÞ; wb ¼ signððmb � nbÞ : sÞ ð98Þ

and so on. Note that Fe

n is known and can be readily inverted to give
f e ¼ Fe tr � Fe�1
n � fawama �Na � Fe�1

n � fbwbmb �Nb � Fe�1
n : ð99Þ
Due to the presence of the secondary slip, the rotation induced by f e tr is no longer the same as the rotation
induced by f e.

Noting that
ma ¼ f e �ma
n=kf e �ma

nk; mb ¼ f e �mb
n=kf e �mb

nk; ð100Þ

we view Eq. (99) as a system of nine scalar equations in eleven scalar unknowns, namely, the nine elements of
f e and the two slips fa and fb. The consistency conditions provide the two remaining equations, which we write
in residual form, using Taylor hardening [60], as
R
 ¼ ðw
m
 � n
Þ : s� sYn þ
X

¼a;b

Df
H
 !

! 0; 
 ¼ a; b; ð101Þ
where
Df
 ¼ f
 � f
nkf e �m
nk; 
 ¼ a; b ð102Þ

and H is the plastic modulus. As before, the Kirchhoff stress tensor s can be obtained from the sequence of
calculations f e ! be ! s. Since no approximation has been introduced in the above derivations, we expect the
calculated slips and crystal rotations to be exact.
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A straightforward solution would be to consider a system of eleven nonlinear equations in eleven
unknowns. However, the expected computational effort would be significant, and so in what follows we pro-
pose an alternative iterative solution strategy. The proposed technique consists of two levels of iteration: an
outer loop that updates the estimate of f e, and an inner loop that solves the two slips by Newton iteration.
Box 1 shows a flow chart of the proposed iterative algorithm. The algorithm is driven by Fe tr, and final con-
vergence of the iteration is checked in Step 6. The residuals calculated in Step 6 pertain to the convergence
properties of the outer loop, which employs the method of successive substitution for updating the value of
f e. The inner loop would have its own convergence profile in Step 7 reflecting the properties of Newton’s
method. From the known properties of the two iterative algorithms, we expect the rate of convergence of
the inner loop to be faster than that of the outer loop.
Box 1. Exact Algorithm: nested iterations employing the method of successive substitution for f e

(outer loop) combined with Newton iteration for fa and fb (inner loop), with slip vectors m
 calculated
from the rotation of the crystal lattice.
Step 1. Initialize Fe tr ¼ Fe tr
n þ @Deu=@X ; f e ¼ 1; fa ¼ fa

n; fb ¼ fb
n.

Step 2. Rotate m
 ¼ f e �m
n=kf e �m
nk for 
 ¼ a; b.

Step 3. Solve Fe ¼ Fe tr �
P

¼a;bf


w
m
 �N

f e ¼ Fe � Fe�1
n .
Step 4. Compute f e ! be ! s.
Step 5. Compute residuals Ra and Rb.

Step 6. Check for convergence: if R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

a þ R2
b

q
< TOL, exit.

Step 7. Else, iterate Ra ! 0 and Rb ! 0 for fa and fb.
Step 8. Go to Step 2.
The co-rotational slips fa and fb can be solved by imposing the consistency conditions on the two slip sys-
tems. Assuming a Taylor hardening law [60], we obtain the pair of equations
R
 ¼ w
½ðm
 � n
Þ : s� � sYn þ
X

¼a;b

Df
H
 !

! 0; 
 ¼ a; b; ð103Þ
where Df
 are the incremental slips given in (101) andH is the plastic modulus. Note that the Newton iteration
takes place for a fixed f e, which means the resulting 2� 2 tangent operator is fairly straightforward to solve.
In abbreviated form, we have
R
;� ¼ w
 ðm
 � n
Þ :
@s

@f�

� 	
�H; 
; � ¼ a; b: ð104Þ
The derivative of s is
@s

@f�
¼ ae :

@f e

@f�
� f e�1

� �
; � ¼ a; b; ð105Þ
where
@f e

@f�
¼ �w�m� �N� � Fe�1

n ; � ¼ a; b ð106Þ
and f e can be inverted directly. As shown in the numerical examples presented later in this paper, the structure
of the composite techniques produces a stable iterative solution.
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4.2.1. Alternative Algorithm #1

Although an exact solution can be obtained for the problem at hand, it comes with a price in the form of
increased computational cost. In what follows, we explore a simpler alternative algorithm consisting of one
Newton iteration loop for the slips, and no outer iteration loop. The idea is illustrated in Box 2 and can be
summarized succinctly as follows: the slip vectors are determined from the overall rotation of the crystal rather
than from the rotation of the crystal lattice. Therefore, there is no need to iterate for the rotation of the slip
vectors. In a way, this idea is similar to that employed in classical return mapping algorithm of computational
plasticity, where the direction of the final stress tensor is determined from the direction of the elastic stress
predictor.

4.2.2. Alternative Algorithm #2

As an additional alternative algorithm, we construct an even simpler iterative scheme that has the form of that
developed for single-slip systems, i.e., the linearized version (78). We note that for single-slip systems, this line-
arized form is exact; however, for multislip systems it is no longer exact as illustrated in the developments below.
Box 2. Alternative Algorithm #1: one-level Newton iteration for slips fa and fb with slip vectors m


calculated from the overall rotation of the crystal.
Step 1. Initialize Fe tr ¼ Fe tr
n þ @Deu=@X ; fa ¼ fa

n; fb ¼ fb
n.

Step 2. Rotate m
 ¼ Fe tr �M
=kFe tr �M
k for 
 ¼ a; b.
Step 3. Solve Fe ¼ Fe tr �

P

¼a;bf


w
m
 �N

f e ¼ Fe � Fe�1
n .
Step 4. Compute f e ! be ! s.
Step 5. Iterate Ra ! 0 and Rb ! 0 for fa and fb, and exit.
We assume that f e tr is an acceptable surrogate for f e in rotating the slip vectors. Hence, given the slips fa

and fb; f e can be calculated explicitly from (99). We can determine the inverse of Fe
n analytically, or, alterna-

tively, by a recursive use of the Sherman–Morrison formula. Let
Fe
na ¼ Fe tr

n � fa
nw

a
nma

n �Na; ð107Þ

then
Fe
n ¼ Fe tr

na � fb
nw

b
nmb

n �Nb: ð108Þ

The respective inverses are
Fe�1
na ¼ Fe tr�1

n þ fa
nFe tr�1

n � wa
nma

n �Na � Fe tr�1
n ð109Þ
and
Fe�1
n ¼ Fe tr�1

na þ fb
nFe tr�1

na � wb
nmb

n �Nb � Fe tr�1
na : ð110Þ
Expanding the expressions above gives a polynomial expression for f e in fa; fb, fa
n, and fb

n. Now, if we ignore
the higher-order terms of the polynomial and take only the linear terms, we get
f e ¼ f e tr � Dfawama �Na � Fe tr�1
n � Dfbwbmb �Nb � Fe tr�1

n ; ð111Þ

where
Dfa ¼ fa � fa
nkf e tr �ma

nk; Dfb ¼ fb � fb
nkf e tr �mb

nk ð112Þ

and f e tr ¼ Fe tr � Fe tr�1

n . Eq. (111) shows the classical predictor–corrector algorithm for f e with a form that is
very much similar to that used for single-slip systems, namely, Eq. (78). This facilitates a convenient
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implementation of the algorithm. As shown in Box 3, this linearized version of the algorithm can be used for
single-slip and multislip systems simply by changing the index of summation.
Box 3. Alternative Algorithm #2: the linearized version. One-level Newton iteration for incremental
slips Dfa and Dfb with slip vectors m
 calculated from the overall rotation of the crystal.
Step 1. Initialize f e tr ¼ 1þ @Deu=@exn; f
a ¼ fa

n; f
b ¼ fb

n.

Step 2. Rotate m
 ¼ f e tr �m
n=kf e tr �m
nk for 
 ¼ a; b.

Step 3. Solve f e¼ f e tr�
P

¼a;bDf
w
m
 �N
 �Fe tr�1

n .

Step 4. Compute f e ! be ! s.
Step 5. Iterate Ra! 0 and Rb! 0 for Dfa and Dfb, and exit.
4.3. General framework for multislip systems

Extending the two-slip framework to multislip systems is fairly straightforward. Let N = number of linearly
independent active slip systems. The elastic component of deformation gradient is
Fe ¼ Fe tr �
XN

a¼1

fawama �Na ð113Þ
at any time t > tn, and
Fe
n ¼ Fe tr

n �
XN

a¼1

fa
nw

a
nma

n �Na ð114Þ
at time tn. Inverting Fe
n gives
f e ¼ Fe � Fe�1
n ¼ Fe tr � Fe�1

n �
XN

a¼1

fawama �Na � Fe�1
n : ð115Þ
The co-rotational slips can be solved by imposing the consistency conditions on all the linearly independent
active slip systems,
Ra ¼ wa½ðma � naÞ : s� � sYn þ
XN

g¼1

DfgH
 !

! 0 ð116Þ
for a ¼ 1; . . . ;N , where Dfg ¼ fg � fg
nkf e tr �mg

nk as before.
To select the next linearly independent active system from a set of N active ones, we introduce once again

the pseudo time variable t. The consistency conditions for all the active systems are
wa
t ma

t � na
t : st � sYn þ

XN

g¼1

Dfg
tH

 !
¼ 0: ð117Þ
Combining these with the consistency condition for the next potentially active slip system b,
wb
t mb

t � nb
t : st � sYn þ

XN

g¼1

Dfg
tH

 !
¼ 0; ð118Þ
we obtain a system of ðN þ 1Þ simultaneous nonlinear equations in N slip increments and the pseudo time var-
iable t that can be solved iteratively by Newton iteration. For the exact solution, this Newton iteration forms
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an inner loop, with the method of successive substitution loop nesting over it. For the two approximate solu-
tions presented above, this Newton iteration is the only local loop in the stress-point integration algorithm.
The outcome of the solution is the next slip system for which the triggering value of t is minimum.

The above developments fit nicely within the framework of the ‘ultimate algorithm’ developed previously
for crystal plasticity in the infinitesimal deformation range [16]. This algorithm tracks the sequence of slip sys-
tem activation, and is unconditionally convergent. For the infinitesimal formulation, the main format of the
algorithm is as follows: the overall crystal stresses and plastic variables at time tn are given, along with the
overall incremental strain; the algorithm then returns the overall crystal stresses and plastic variables at time
tnþ1. If the overall incremental strain is imposed as a ramp function, then the algorithm gives exact overall
crystal stresses and plastic variables at tnþ1. All of the above features of the algorithm carry over to the finite
deformation range. A summary of the algorithm is shown in Box 4. For reference, the reader may want to
compare this box to Table 1 of Ref. [16].

Steps 1 and 2 of Box 1 are simple checks for plastic yielding or elastic unloading. Step 3 identifies the poten-
tially active systems either at time tn or at some other time t 2 ðtn; tnþ1Þ after contact with the last yield surface
has been detected. The calculations in Step 4 aim to identify the next active yield surface within the current
time increment. There is no guarantee that the active constraints will remain active within a given load step,
so Step 5 filters out the previously active systems that de-activate during the present load step. In Step 6, the
condition tðaÞmin > 1 for all a implies that the present deformation increment is too small to activate new slip
systems. Compared to the ultimate algorithm in the infinitesimal deformation range [16], we remark that
the present algorithm does not employ the overall crystal elasto-plastic moduli tensor in the calculations.
We also note that the plastic slips and tðaÞ are always determined simultaneously in the finite deformation case
(whereas they were determined sequentially in the infinitesimal deformation case).
Box 4. Ultimate algorithm for crystal plasticity in the finite deformation range.
Step 1. Compute be tr ¼ f e tr � be
n � f e tr and str ¼ sðbe trÞ, and assemble

J tr ¼ fb j wðbÞðmðbÞ � nðbÞÞ : str � sYn > 0g.
Step 2. Check: J tr ¼£? Yes, elastic response: set be ¼ be tr, sY ¼ sYn, and exit.

Step 3. Set J act ¼ fb j wðbÞðmðbÞn � nðbÞn Þ : sn � sYn ¼ 0g and select J act 
 J act.

Step 4. Solve iteratively for DfðbÞ and tðaÞ for all b 2 J act and for all a 2 J n J act.

Step 5. If DfðbÞ < 0, drop DfðbÞmin from J act and go to Step 4.

Step 6. Check: is tðaÞmin > 1? Yes, set t ¼ 1, solve for DfðbÞ; be, and sY , and exit.

Step 7. No, set t ¼ tðbÞmin;DfðbÞn  DfðbÞ; be
n  be, and sYn  sY .

Step 8. Set Deu  ð1� tÞDeu and go to Step 3.
5. Numerical examples

For purposes of analysis, we consider the general form of an f.c.c. crystal rotated by Euler angles to create
three different crystal orientations. Euler angles are shown in Fig. 4 and consist of a rotation of h about the
Y-axis followed by a rotation of / about the Zc axis. The slip systems considered are summarized in Table 1,
and the crystal orientations are shown in Table 2. As an illustration, slip system #1 has the general form of an
f.c.c. slip direction f110g and slip normal f111g. To understand the crystal responses and assess the perfor-
mance of the algorithms in single and double slips, some slip systems in the crystal have been suppressed.
However, a numerical example is also included in which all available slip systems of an f.c.c. crystal are
allowed to activate.



Table 1
Vectors M and N , where a ¼ 1=

ffiffiffi
2
p

; b ¼ 1=
ffiffiffi
3
p

.

System M N

1 fa;�a; 0g fb; b; bg
2 fa; 0;�ag fb;�b; bg
3 f0; a; ag f�b; b;�bg
4 f0; a;�ag fb; b; bg

Fig. 4. Euler angles defining crystal axes ðX c; Y c;Z ;cÞ relative to the fixed system ðX ; Y ; ZÞ in the reference configuration.

Table 2
Euler angles in degrees for three different crystal orientations.

Orientation h /

1 15 0
2 30 15
3 30 30
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5.1. Single-slip deformation

As a first example, we consider the following conforming displacement field applied to a crystal
eu1 ¼ kX 1; eu2 ¼ �0:5kX 2; eu3 ¼ �0:5kX 3;
where k is a pseudo-time variable that increases with deformation. The above displacement field subjects the
crystal to uniaxial tension. We consider deformation in single slip by suppressing all slip systems except for slip
system #1. For the crystal lattice, we assume Young’s modulus E ¼ 1500 MPa and Poisson’s ratio m ¼ 1=3
(typical of shale, a sedimentary rock with significant crystalline inclusions). For plastic slip, we take a yield
strength sY ¼ 10 MPa and no hardening (i.e., perfect plasticity).

Fig. 5 shows the variation of the second Piola–Kirchhoff stress component 11 versus the Green–Lagrange
strain component 11 for the three different crystal orientations, with only slip system #1 allowed to activate. It
is evident that the orientation of a slip system does exert a strong influence on the resistance of the crystal to
deformation. Crystal orientations #1 and #2 show pronounced geometric softening. We note that this type of
softening is unique to the finite deformation solution and is not observed in infinitesimal solutions. Identical
stress–strain curves were obtained irrespective of the loading step size, affirming the fact that the numerical
algorithm for single-slip crystal plasticity is exact.

Fig. 6 shows the variation of slip with imposed strain for different crystal orientations. The more favorable
the crystal orientation to imposed deformation, the greater is the magnitude of slip. For the record, the slip
presented in the figure is the co-rotational slip f, which is measured in the current configuration, whereas the
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horizontal axis is the Almansi strain. The Lagrangian slip c in the reference configuration can be obtained
from the slip f by applying a pull-back of the stretching of the crystal lattice.

Table 3 shows the convergence profiles of the local Newton iteration used to determine the plastic slips.
These profiles are typical and do not change with the load size. The algorithm required a maximum of three
iterations even for larger step sizes, indicating an efficient iterative solution.

5.2. Duplex system

This problem is the same as in the previous example except that we now release slip system #2 along with
slip system #1. For all three crystal orientations, the sequence of slip activation is system #1 triggered first,
followed by system #2. The imposed deformation and crystal properties are the same as in the previous
example.

Fig. 7 shows the variation of the second Piola–Kirchhoff stress component 11 with Green–Lagrange strain
component 11 derived from the exact solution. The figure indicates that geometric softening is more
pronounced in a duplex system compared to the corresponding single-slip system. In fact, crystal Orientation
#1 has experienced complete geometric softening at a strain value of approximately 15%. In addition, the
orientation of the crystal generally impacts the timing of yielding of both the primary and secondary slip
systems. On the other hand, Fig. 12 shows that the primary co-rotational slips are reduced by the development
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Fig. 6. Exact variation of plastic slip f versus Eulerian Almansi strain for single-slip crystals under uniaxial tension.



Table 3
Convergence profile of Newton iteration for single-slip crystal plasticity in uniaxial tension. Displayed errors are relative norms of residual
vector normalized with respect to initial values.

Vertical strain (%) Iteration Orientation 1 Orientation 2 Orientation 3

5 1 1.00e+00 1.00e+00 1.00e+00
2 1.33e�05 1.27e�05 8.98e�06
3 1.47e�13 1.77e�13 6.79e�15

10 1 1.00e+00 1.00e+00 1.00e+00
2 1.29e�05 1.22e�05 8.37e�06
3 8.27e�14 1.96e�13 2.25e�13

15 1 1.00e+00 1.00e+00 1.00e+00
2 1.26e�05 1.17e�05 7.84e�06
3 3.75e�13 1.18e�13 1.11e�13

20 1 1.00e+00 1.00e+00 1.00e+00
2 1.23e�05 1.12e�05 7.37e�06
3 5.43e�14 4.01e�14 7.09e�14

25 1 1.00e+00 1.00e+00 1.00e+00
2 1.20e�05 1.08e�05 6.96e�06
3 2.98e�13 1.65e�13 1.57e�14

30 1 1.00e+00 1.00e+00 1.00e+00
2 1.17e�05 1.03e�05 6.59e�06
3 2.41e�14 8.20e�14 2.78e�13

40 1 1.00e+00 1.00e+00 1.00e+00
2 1.11e�05 9.59e�06 5.95e�06
3 3.12e�13 1.62e�13 3.17e�13
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of secondary slips. In this case, plastic deformations are shared by the primary and secondary slips, resulting in
softer stress–strain responses even though the developed primary co-rotational slips are smaller.

We note that to obtain the exact solution, the algorithm must first determine the contact yield point leading
to the duplex system, and then the slip directions must be rotated by the elastic component of deformation
gradient iteratively using the nested iteration loops shown in Box 1. Therefore, compared to the two alterna-
tive algorithms presented in the previous section, the exact solution requires greater computational effort. To
get a feel for the convergence rate of the method of successive substitution, which is used to iterate for f e, we
summarize in Table 4 the dissipation of the scalar residual function R in Step 6 of Box 1. Convergence is still
fast, but not quadratic. In general, the iterations are stable and convergent in all cases, indicating that the non-
linear relation between the slip vector m and the elastic relative deformation gradient f e is not too strong. The
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convergence of Newton iteration in Step 7 of Box 1 remains rapid and is similar to the profile shown Table 3,
i.e., the solutions converged to machine precision in 3 iterations. No sensitivity to load steps has been observed
in all cases, a hallmark of an exact solution.

We now demonstrate the accuracy of the two alternative algorithms presented in the previous section. We
recall that: (a) Algorithm #1 simply substitutes the rotation of the crystal in lieu of the rotation of the crystal
lattice for purposes of updating the orientation of the plastic slip vector m; and (b) Algorithm #2 is the lin-
earized version of Algorithm #1 in which the higher-order terms of the polynomial expression for the co-rota-
tional plastic slips are ignored. In single slips, the two algorithms coincide and lead to the same exact solution;
in multiple slips, they are not the same and only represent approximate solutions. However, in the examples
below we show that the two approximate solutions are indeed highly accurate. (See Fig. 8).

Fig. 9 compares the exact solutions with the approximate solutions calculated with Algorithm #1 for three
different crystal orientations in double-slip yield mode. For purposes of plotting this figure, the incremental
Green–Lagrange strain component 11 was set equal to 0.1%. However, it must be noted that the stress–strain
responses do not depend on the load increment since the contact yield stresses are calculated exactly, and since
the analytical expressions for the exact and approximate algorithms are integrated also exactly. In other
words, even if we refined or coarsened the load increment we would obtain the same stress–strain response.
We see from the figure that the difference between the exact and approximate solutions are very small even
for large values of strain.
Table 4
Convergence profile of the method of successive substitution for double-slip crystal plasticity in uniaxial tension. Note that Orientation #1
experienced complete geometric softening beyond a vertical strain of 15%. Displayed errors are relative norms of residual vector, R,
normalized with respect to initial values, R0.

Vertical strain (%) Iteration Orientation 1 Orientation 2 Orientation 3

5 1 1.00e+00 1.00e+00 1.00e+00
2 1.52e�02 3.73e�02 4.82e�02
3 3.22e�04 3.57e�04 6.01e�04
4 1.88e�06 6.84e�06 7.40e�06
5 3.99e�08 1.29e�07 1.19e�07
6 4.61e�10 9.24e�10 1.10e�09
7 – – 2.36e�11

10 1 1.00e+00 1.00e+00 1.00e+00
2 2.19e�02 6.10e�02 8.96e�02
3 1.16e�03 1.36e�03 2.62e�03
4 1.40e�05 6.77e�05 7.63e�05
5 3.71e�07 2.60e�06 2.88e�06
6 5.59e�09 4.12e�09 6.05e�08
7 2.71e�10 5.83e�11 3.25e�09
8 – – 5.32e�11

15 1 1.00e+00 1.00e+00 1.00e+00
2 2.86e�02 8.83e�02 1.30e�01
3 2.31e�03 3.15e�03 5.89e�03
4 5.27e�05 2.02e�04 2.39e�04
5 1.09e�06 1.24e�05 1.40e�05
6 2.46e�08 3.05e�07 4.16e�07
7 4.57e�10 4.08e�08 3.43e�08
8 – 1.04e�09 8.76e�10
9 – 9.68e�11 –

20 1 – 1.00e+00 1.00e+00
2 – 1.15e�01 1.68e�01
..
. ..

. ..
. ..

.

9 – 5.54e�10 5.09e�10
25 1 – 1.00e+00 1.00e+00

2 – 1.15e�01 1.68e�01
..
. ..

. ..
. ..

.

10 – 2.22e�10 1.28e�10
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A more striking result is depicted in Fig. 10, where the solutions obtained from the two alternative algo-
rithms are compared. Apart from the fact that the difference between the two approximate solutions is also
very small, we see that Algorithm #2 appears to ‘correct’ the error produced by Algorithm #1, leading to a
more accurate stress–strain response. In fact, the stress–strain curve generated with Algorithm #2 falls almost
right on top of the curve generated with the exact solution, and if the two curves were plotted on the same
figure, they would be indistinguishable. This tells us that the error produced by substituting the crystal rota-
tion in lieu of the crystal lattice rotation is compensated by the error produced by ignoring the higher-order
terms of the polynomial expression for the total plastic slips (at least, for this example). This is an interesting
finding since Algorithm #2 contains more assumptions that Algorithm #1, and yet it exhibits higher accuracy.

The difference between the exact and approximate solutions is a little bit more apparent in the calculated
primary and secondary co-rotational slips, even though the numerical errors remain small. Figs. 11 and 12
show comparisons of the primary and secondary slips, respectively, calculated by the exact and the two
approximate solutions. For clarity in presentation, we have omitted the results for Crystal Orientation #2,
which are very similar to those obtained for the other two orientations. There is no clear pattern as to which
of the two algorithms is more accurate, but the calculated slips are very close to the exact solution. Consid-
ering that Algorithm #2 is easier to implement and has a similar form to the incremental version used for
single-slip systems, we advocate this algorithm for general-purpose large-scale calculations.
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5.3. Hardening and multiple slips

Continuing with the same problem as in the previous example, we consider the effect of Taylor hardening
on the duplex system response. To this end, we specify plastic modulus values of H ¼ 200, 500, and 1000, and
compare the calculated overall stress–strain responses with the perfectly plastic response in Fig. 13 for Crystal
Orientation #1. As the plastic modulus increases, we see that the duplex system response approaches the sin-
gle-slip response. In fact, the two responses are nearly one on top of the other for the case H ¼ 1000. This is
because, as noted in the Introduction, crystals do exhibit significantly higher hardening rates when deforming
in multiple slips than when deforming in single slip, and thus, they have a propensity to deform in single slip
and avoid multiple slips when the plastic modulus is high. Stated in another way, when the plastic hardening
response is strong the sharing of plastic deformation between the primary and secondary slip systems becomes
biased toward one of the two slip systems. In this particular example, the primary slip system becomes the
dominant mechanism (although the next example reveals that this is not always the case). Fig. 14 portrays
the primary co-rotational slips developed in single-slip and duplex systems plotted as functions of the Eulerian
Almansi strain. As the plastic modulus increases, we see that the cumulative primary slip in a duplex system
approaches the primary slip in a single-slip system, suggesting that the secondary slip approaches zero.
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Next, we remove the constraints on all slip systems of an f.c.c. crystal and allow them to activate freely
under the same imposed deformation field. Fig. 15 portrays the resulting stress–strain response of Crystal Ori-
entation #3 for the case H ¼ 0 (perfect plasticity). When subjected to uniaxial tension, a duplex system forms
right at the onset of plasticity, in which slip systems #1 and #3 activate simultaneously. This is followed by the
activation of another pair of slip systems, #2 and #4. Under the assumption of small strain, the stress–strain
curve would exhibit a horizontal slope; however, in the finite deformation case, we see geometric softening
occurring once again, where the overall stress–strain curve exhibits a negative slope. However, the softening
is not as strong as the one exhibited by Crystal Orientation #1 in spite of the fact that there are now four active
slip systems.

Fig. 16 shows the influence of plastic hardening modulus H on the stress–strain response of Crystal Orien-
tation #3 in single slip and four slips. As H increases, slip system #4 becomes more and more dominant for
this crystal orientation. Thus, at H ¼ 1000, the stress–strain curve does not converge to the single-slip curve
generated by slip system #1, even though they are still fairly close to each other. This example well demon-
strates that the primary slip system does not always persist as the dominant mechanism particularly in the
presence of finite deformation effects.
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5.4. Simple shear

As a final example, we consider the following conforming displacement field applied to a crystal
eu1 ¼ kX 2; eu2 ¼ 0; eu3 ¼ 0;
where k is a pseudo-time variable that increases with deformation. The mode of deformation is that of simple
shear. In the simulations described below, we assume that the properties of the crystal are the same as in the
previous examples.

Fig. 17 portrays the resulting stress–strain responses at three different crystal orientations. We remark that
in these simulations, all slip systems of an f.c.c. crystal were allowed to activate. However, the figure shows
that the imposed deformation could only trigger one slip system for each crystal orientation irrespective of
the magnitude of deformation. Geometric hardening is noted in the early part of the simulations, particularly
with Crystal Orientation #1. This suggests that the finite rotation of the crystal (and the crystal lattice) makes
it more difficult for the active system to continue slipping. We recall that Crystal Orientation #1 showed the
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Table 5
Convergence profile of Newton iteration for the simple shear simulation. Displayed errors are relative norms of residual vector,
normalized with respect to initial values.

Shear strain (%) Iteration Orientation 1 Orientation 2 Orientation 3

5 1 1.00e+00 1.00e+00 1.00e+00
2 2.16e�06 3.44e�06 7.02e�06
3 1.25e�12 2.36e�13 1.13e�13

10 1 1.00e+00 1.00e+00 1.00e+00
2 1.72e�06 4.50e�06 7.76e�06
3 1.80e�12 2.06e�13 4.42e�14

15 1 1.00e+00 1.00e+00 1.00e+00
2 1.30e�06 6.51e�06 9.65e�04
3 2.52e�12 1.98e�13 4.18e�12
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greatest tendency to undergo geometric softening under uniaxial tension, but in the present example the oppo-
site tendency is true. Furthermore, Crystal Orientation #3 showed the stiffest response under uniaxial tension,
but under simple shear it exhibits the softest response and is the first one to yield. Since the simulations trig-
gered only one slip system, the results reported in Fig. 17 are all exact.

Table 5 summarizes the convergence profiles of Newton iteration for the simple shear simulations. The rate
of convergence is similar to that observed from the single-slip uniaxial tension example, where each load step
required three iterations to fully dissipate the residual. The uniaxial tension and simple shear deformation
modes can be combined to produce many different patterns of deformation, so it is reasonable to expect that
the proposed algorithms will perform just as well under more complex deformation scenarios.

6. Closure

We have presented a rate-independent crystal plasticity theory in the finite deformation range using theory
of distribution and strong discontinuity concepts applied to the slip systems. An important contribution of this
work is the introduction of the notions of uniform and conforming deformation fields, representing the defor-
mations of the crystal lattice and the whole crystal, respectively. An exact solution integrating the governing
constitutive laws has been presented and encapsulated within the framework of the ultimate algorithm previ-
ously developed for rate-independent crystal plasticity in the infinitesimal deformation range. Alternative
stress-point integration algorithms that are not exact but are much easier to implement are also presented.
We advocate the linearized version of the algorithm, so-called Algorithm #2, for implementation into multi-
purpose finite element codes. This algorithm is simple and exhibits remarkable accuracy. In addition, it is exact
in single slip, and when combined with the ultimate algorithm, it is unconditionally convergent. Implementa-
tion of Algorithm #2 in a multipurpose finite element code is currently in progress, and results will be reported
upon in a future publication.
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