
          

Theoret. Comput. Fluid Dynamics (1998) 10: 213–237
Theoretical and Computational

© Springer-Verlag 1998

Fluid Dynamics

Optimum Aerodynamic Design Using the
Navier–Stokes Equations1

A. Jameson and L. Martinelli

Department of Mechanical and Aerospace Engineering, Princeton University,
Princeton, NJ 08544, U.S.A.

N.A. Pierce
Oxford University Computing Laboratory, Numerical Analysis Group,

Oxford OX1 3QD England

Communicated by M.Y. Hussaini

Received 5 February 1997 and accepted 30 May 1997

Abstract. This paper describes the formulation of optimization techniques based on control theory for
aerodynamic shape design in viscous compressible flow, modeled by the Navier–Stokes equations. It extends
previous work on optimization for inviscid flow. The theory is applied to a system defined by the partial
differential equations of the flow, with the boundary shape acting as the control. The Fr´echet derivative of the
cost function is determined via the solution of an adjoint partial differential equation, and the boundary shape
is then modified in a direction of descent. This process is repeated until an optimum solution is approached.
Each design cycle requires the numerical solution of both the flow and the adjoint equations, leading to a
computational cost roughly equal to the cost of two flow solutions. The cost is kept low by using multigrid
techniques, in conjunction with preconditioning to accelerate the convergence of the solutions. The power of
the method is illustrated by designs of wings and wing–body combinations for long range transport aircraft.
Satisfactory designs are usually obtained with 20–40 design cycles.

1. Introduction

This paper, which is dedicated to Sir James Lighthill, is focused on the problem of aerodynamic design.
Here, as in so many other branches of fluid mechanics and applied mathematics, Lighthill has made a
seminal contribution through his early demonstration of a solution of the inverse problem for airfoil design
in potential flow [1].

The evolution of computational fluid dynamics during the last three decades has made possible the
rapid evaluation of alternative designs by computational simulation, eliminating the need to build numerous
models for wind tunnel testing, which is used primarily to confirm the performance of the final design, and
to provide a complete database for the full flight envelope. The designer still needs some guiding principle
to distinguish a good design out of an infinite number of possible variations, since it is not at all likely
that a truly optimum design can be found by a trial and error process. This motivates the use of numerical
optimization procedures in conjunction with computational flow simulations.

1 This work has benefited from the generous support of AFOSR under Grant No. AFOSR-91-0391, DOD/URI/ONR/ARPA N00014-
92-J-1796, the NASA–IBM Cooperative Research Agreement, EPSRC and the Rhodes Trust.
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Early investigations into aerodynamic optimization relied on direct evaluation of the influence of each
design variable. This dependence was estimated by separately varying each design parameter and recalcu-
lating the flow. The computational cost of this method is proportional to the number of design variables and
consequently becomes prohibitive as the number of design parameters is increased.

An alternative approach to design relies on the fact that experienced designers generally have an intuitive
feel for the kind of pressure distribution that will provide the desired aerodynamic performance. This
motivates the introduction of inverse problems in which the shape corresponding to a specified pressure
distribution is to be determined. A complete analysis of the inverse problem for airfoils in two dimensional
potential flow was given by Lighthill [1], who obtained a solution by conformally mapping the profile to a
unit circle. The speed over the profile is

q =
1
h
|∇ϕ|,

whereϕ is the potential, which is known for the circle, whileh is the modulus of the mapping function. The
surface value ofh can be obtained by settingq = qd, whereqd is the desired speed, and since the mapping
function is analytic, it is uniquely determined by the value ofhon the boundary. Lighthill’s analysis highlights
the fact that a physically realizable shape may not exist unless the prescribed pressure distribution satisfies
certain constraints. In fact a solution exists for a given speedq∞ at infinity only if

1
2π

∮
qd dθ = q∞,

whereθ is the polar angle around the circle, and there are additional constraints onqd if the profile is to be
closed.

In the more general case of three-dimensional viscous compressible flow, the constraints which must be
satisfied by a realizable target pressure distribution are not known, and attempts to enforce an unrealizable
pressure distribution as a boundary condition can lead to an ill-posed problem. The problems of optimal and
inverse design can both be systematically treated within the mathematical theory for the control of systems
governed by partial differential equations [2] by regarding the design problem as a control problem in which
the control is the shape of the boundary. The inverse problem then becomes a special case of the optimal
design problem in which the shape changes are driven by the discrepancy between the current and target
pressure distributions.

The control theory approach to optimal aerodynamic design, in which shape changes are based on gradient
information obtained by solution of an adjoint problem, was first applied to transonic flow by Jameson [3],
[4]. He formulated the method for inviscid compressible flows with shocks governed by both the potential
equation and the Euler equations [3], [5], [6]. With this approach, the cost of a design cycle is independent
of the number of design variables. When applied to the design of the airfoils in compressible potential
flow using conformal mapping to transform the computational domain to a unit disk, it leads to a natural
generalization of Lighthill’s method. The effects of compressibility are represented by an additional term in
the modification of the mapping function which tends to zero as the Mach number tends to zero [3], [5]. More
recently, the method has been employed for wing design in the context of complex aircraft configurations
[7], [8], using a grid perturbation technique to accommodate the geometry modifications.

Pironneau had earlier initiated studies of the use of control theory for optimum shape design of systems
governed by elliptic equations [9], [10]. Ta’asanet al. have proposed a one shot approach in which the
constraint represented by the flow equations need only be satisfied by the final converged design solution
[11]. Adjoint methods have also been used by Baysal and Eleshaky [12], by Cabuk and Modi [13], [14], and
by Desai and Ito [15].

The objective of the present work is the extension of adjoint methods for optimal aerodynamic design
to flows governed by the compressible Navier–Stokes equations. While inviscid formulations have proven
useful for the design of transonic wings at cruise conditions, the inclusion of boundary layer displacement
effects with viscous design provides increased realism and alleviates shocks that would otherwise form in the
viscous solution over the final inviscid design. Accurate resolution of viscous effects such as separation and
shock/boundary layer interaction is also essential for optimal design encompassing off-design conditions
and high-lift configurations.

The computational costs of viscous design are at least an order of magnitude greater than for design using
the Euler equations for several reasons. First, the number of mesh points must be increased by a factor of
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two or more to resolve the boundary layer. Second, there is the additional cost of computing the viscous
terms and a turbulence model. Finally, Navier–Stokes calculations generally converge much more slowly
than Euler solutions due to discrete stiffness and directional decoupling arising from the highly stretched
boundary layer cells. The computational feasibility of viscous design therefore hinges on the development of
a rapidly convergent Navier–Stokes flow solver. Pierce and Giles have developed a preconditioned multigrid
method that dramatically improves convergence of viscous calculations by ensuring that all error modes
inside the stretched boundary layer cells are damped efficiently [16], [17]. The same acceleration techniques
are applicable to the adjoint calculation, so that the potential payoffs toward reducing the cost of the design
process are substantial.

The ultimate success of an aircraft design depends on the resolution of complex multidisciplinary tradeoffs
between factors such as aerodynamic efficiency, structural weight, stability and control, and the volume
required to contain fuel and payload. A design is finalized only after numerous iterations, cycling between
the disciplines. The development of accurate and efficient methods for aerodynamic shape optimization
represents a worthwhile intermediate step toward the eventual goal of full multidisciplinary optimal design.

2. General Formulation of the Adjoint Approach to Optimal Design

Before embarking on a detailed derivation of the adjoint formulation for optimal design using the Navier–
Stokes equations, it is helpful to summarize the general abstract description of the adjoint approach which
has been thoroughly documented in [3] and [4].

The progress of the design procedure is measured in terms of a cost functionI, which could be, for
example, the drag coefficient or the lift to drag ratio. For flow about an airfoil or wing, the aerodynamic
properties which define the cost function are functions of the flow-field variables (w) and the physical
location of the boundary, which may be represented by the functionF , say. Then

I = I(w,F),

and a change inF results in a change

δI =
[
∂IT

∂w

]
I
δw +

[
∂IT

∂F

]
II
δF , (1)

in the cost function. Here, the subscripts I and II are used to distinguish the contributions due to the variation
δw in the flow solution from the change associated directly with the modificationδF in the shape. This
notation is introduced to assist in grouping the numerous terms that arise during the derivation of the full
Navier–Stokes adjoint operator, so that it remains feasible to recognize the basic structure of the approach
as it is sketched in the present section.

Using control theory, the governing equations of the flow field are introduced as a constraint in such a
way that the final expression for the gradient does not require multiple flow solutions. This corresponds to
eliminatingδw from (1).

Suppose that the governing equationR which expresses the dependence ofw andF within the flow-field
domainD can be written as

R(w,F) = 0. (2)

Thenδw is determined from the equation

δR =
[
∂R

∂w

]
I
δw +

[
∂R

∂F

]
II
δF = 0. (3)

Next, introducing a Lagrange multiplierψ, we have
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δI =
∂IT

∂w
δw +

∂IT

∂F δF − ψT
([

∂R

∂w

]
δw +

[
∂R

∂F

]
δF
)

=
{
∂IT

∂w
− ψT

[
∂R

∂w

]}
I
δw +

{
∂IT

∂F − ψ
T

[
∂R

∂F

]}
II
δF . (4)

Choosingψ to satisfy the adjoint equation

[
∂R

∂w

]T
ψ =

∂I

∂w
(5)

the first term is eliminated, and we find that

δI = GδF , (6)

where

G =
∂IT

∂F − ψ
T

[
∂R

∂F

]
.

The advantage is that (6) is independent ofδw, with the result that the gradient ofI with respect to an arbitrary
number of design variables can be determined without the need for additional flow-field evaluations. In the
case that (2) is a partial differential equation, the adjoint equation (5) is also a partial differential equation
and determination of the appropriate boundary conditions requires careful mathematical treatment.

The computational cost of a single design cycle is roughly equivalent to the cost of two flow solutions
since the the adjoint problem has similar complexity. When the number of design variables becomes large,
the computational efficiency of the control theory approach over the traditional approach, which requires
direct evaluation of the gradients by individually varying each design variable and recomputing the flow
field, becomes compelling.

Once (3) is established, an improvement can be made with a shape change

δF = −λG,

whereλ is positive, and small enough that the first variation is an accurate estimate ofδI. The variation in
the cost function then becomes

δI = −λGTG < 0.

After making such a modification, the gradient can be recalculated and the process repeated to follow a path
of steepest descent until a minimum is reached. In order to avoid violating constraints, such as a minimum
acceptable wing thickness, the gradient may be projected into an allowable subspace within which the
constraints are satisfied. In this way, procedures can be devised which must necessarily converge at least to
a local minimum.

3. The Navier–Stokes Equations

For the derivations that follow, it is convenient to use Cartesian coordinates (x1, x2, x3) and to adopt the
convention of indicial notation where a repeated index “i” implies summation overi = 1 to 3. The three-
dimensional Navier–Stokes equations then take the form

∂w

∂t
+
∂fi
∂xi

=
∂fvi
∂xi

in D, (7)
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where the state vectorw, inviscid flux vectorf and viscous flux vectorfv are described respectively by

w =


ρ
ρu1

ρu2

ρu3

ρE

 , (8)

fi =


ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH

 , (9)

fvi =



0
σijδj1
σijδj2
σijδj3

ujσij + k
∂T

∂xi


. (10)

In these definitions,ρ is the density,u1, u2, u3 are the Cartesian velocity components,E is the total energy,
andδij is the Kronecker delta function. The pressure is determined by the equation of state

p = (γ − 1)ρ{E − 1
2(uiui)},

and the stagnation enthalpy is given by

H = E +
p

ρ
,

whereγ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ
(
∂ui
∂xj

+
∂uj
∂xi

)
+ λδij

∂uk
∂xk

, (11)

whereµ andλ are the first and second coefficients of viscosity. The coefficient of thermal conductivity and
the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (12)

wherePr is the Prandtl number,cp is the specific heat at constant pressure, andR is the gas constant.
For discussion of real applications using a discretization on a body conforming structured mesh, it is also

useful to consider a transformation to the computational coordinates (ξ1, ξ2, ξ3) defined by the metrics

Kij =
[
∂xi
∂ξj

]
, J = det(K), K−1

ij =
[
∂ξi
∂xj

]
.

The Navier–Stokes equations can then be written in computational space as

∂(Jw)
∂t

+
∂(Fi − Fvi)

∂ξi
= 0 inD, (13)

where the inviscid and viscous flux contributions are now defined with respect to the computational cell
faces byFi = Sijfj andFvi = Sijfvj , and the quantitySij = JK−1

ij is used to represent the projection of
theξi cell face along thexj axis. In obtaining (13) we have made use of the property that

∂Sij
∂ξi

= 0 (14)

which represents the fact that the sum of the face areas over a closed volume is zero, as can be readily
verified by a direct examination of the metric terms.
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4. General Formulation of the Optimal Design Problem for the
Navier–Stokes Equations

Aerodynamic optimization is based on the determination of the effect of shape modifications on some
performance measure which depends on the flow. For convenience, the coordinatesξi describing the fixed
computational domain are chosen so that each boundary conforms to a constant value of one of these
coordinates. Variations in the shape then result in corresponding variations in the mapping derivatives
defined byKij .

Suppose that the performance is measured by a cost function

I =
∫
B
M(w, S) dBξ +

∫
D
P(w, S) dDξ,

containing both boundary and field contributions wheredBξ anddDξ are the surface and volume elements
in the computational domain. In general,M andP will depend on both the flow variablesw and the metrics
S defining the computational space.

The design problem is now treated as a control problem where the boundary shape represents the control
function, which is chosen to minimizeI subject to the constraints defined by the flow equations (13). A shape
change produces a variation in the flow solutionδw and the metricsδS which in turn produce a variation in
the cost function

δI =
∫
B
δM(w, S) dBξ +

∫
D
δP(w, S) dDξ, (15)

with

δM = [Mw]Iδw + δMII ,

δP = [Pw]Iδw + δPII , (16)

where we continue to use the subscripts I and II to distinguish between the contributions associated with the
variation of the flow solutionδw and those associated with the metric variationsδS. Thus [Mw]I and [Pw]I

represent∂M/∂w and∂P/∂w with the metrics fixed, whileδMII andδPII represent the contribution of
the metric variationsδS to δM andδP.

In the steady state, the constraint equation (13) specifies the variation of the state vectorδw by

∂

∂ξi
δ(Fi − Fvi) = 0. (17)

HereδFi andδFvi can also be split into contributions associated withδw andδS using the notation

δFi = [Fiw ]Iδw + δFiII
δFvi = [Fviw ]Iδw + δFviII . (18)

The inviscid contributions are easily evaluated as

[Fiw ]I = Sij
∂fj
∂w

, δFiII = δSijfj .

The details of the viscous contributions are complicated by the additional level of derivatives in the stress
and heat flux terms and will be derived in Section 6. Multiplying by a costate vectorψ, which will play an
analogous role to the Lagrange multiplier introduced in (4), and integrating over the domain produces∫

D
ψT

∂

∂ξi
δ(Fi − Fvi) = 0. (19)

If ψ is differentiable this may be integrated by parts to give∫
B
niψ

T δ(Fi − Fvi)dBξ −
∫
D

∂ψT

∂ξi
δ(Fi − Fvi) dDξ = 0. (20)
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Since the left hand expression equals zero, it may be subtracted from the variation in the cost function (15)
to give

δI =
∫
B

[δM− niψT δ(Fi − Fvi)] dBξ +
∫
D

[δP +
∂ψT

∂ξi
δ(Fi − Fvi)]dDξ. (21)

Now, sinceψ is an arbitrary differentiable function, it may be chosen in such a way thatδI no longer
depends explicitly on the variation of the state vectorδw. The gradient of the cost function can then be
evaluated directly from the metric variations without having to recompute the variationδw resulting from
the perturbation of each design variable.

Comparing (16) and (18), the variationδw may be eliminated from (21) by equating all field terms with
subscript I to produce a differential adjoint system governingψ

∂ψT

∂ξi
[Fiw − Fviw ]I +Pw = 0 inD. (22)

The corresponding adjoint boundary condition is produced by equating the subscriptI boundary terms in
(21) to produce

niψ
T [Fiw − Fviw ]I =Mw onB. (23)

The remaining terms from (21) then yield a simplified expression for the variation of the cost function which
defines the gradient

δI =
∫
B
{δMII − niψT [δFi − δFvi]II} dBξ +

∫
D

{
δPII +

∂ψT

∂ξi
[δFi − δFvi]II

}
dDξ. (24)

The details of the formula for the gradient depend on the way in which the boundary shape is parametrized as
a function of the design variables, and the way in which the mesh is deformed as the boundary is modified.
Using the relationship between the mesh deformation and the surface modification, the field integral is
reduced to a surface integral by integrating along the coordinate lines emanating from the surface. Thus the
expression forδI is finally reduced to the form of (6):

δI =
∫
B
GδF dBξ,

whereF represents the design variables, andG is the gradient, which is a function defined over the boundary
surface.

The boundary conditions satisfied by the flow equations restrict the form of the left hand side of the
adjoint boundary condition (23). Consequently, the boundary contribution to the cost functionM cannot be
specified arbitrarily. Instead, it must be chosen from the class of functions which allow cancellation of all
terms containingδw in the boundary integral of (21). On the other hand, there is no such restriction on the
specification of the field contribution to the cost functionP, since these terms may always be absorbed into
the adjoint field equation (22) as source terms.

It is convenient to develop the inviscid and viscous contributions to the adjoint equations separately. Also,
for simplicity, it is assumed that the portion of the boundary that undergoes shape modifications is restricted
to the coordinate surfaceξ2 = 0. Then (21) and (23) may be simplified by incorporating the conditions

n1 = n3 = 0, n2 = 1, dBξ = dξ1 dξ3,

so that only the variationsδF2 andδFv2 need to be considered at the wall boundary.
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5. Derivation of the Inviscid Adjoint Terms

The inviscid contributions have been previously derived in [5] and [18] but are included here for completeness.
Taking the transpose of (22), the inviscid adjoint equation may be written as

CTi
∂ψ

∂ξi
= 0 inD, (25)

where the inviscid Jacobian matrices in the transformed space are given by

Ci = Sij
∂fj
∂w

.

The transformed velocity components have the form

Ui = Sijuj ,

and the condition that there is no flow through the wall boundary atξ2 = 0 is equivalent to

U2 = 0,

so that
δU2 = 0

when the boundary shape is modified. Consequently the variation of the inviscid flux at the boundary
reduces to

δF2 = δp


0
S21

S22

S23

0

 + p


0

δS21

δS22

δS23

0

 . (26)

SinceδF2 depends only on the pressure, it is now clear that the performance measure on the boundary
M(w, S) may only be a function of the pressure and metric terms. Otherwise, complete cancellation of the
terms containingδw in the boundary integral would be impossible. For example, arbitrary measures of the
forces and moments may be included in the cost function, since these are functions of the surface pressure.

In order to design a shape which will lead to a desired pressure distribution, a natural choice is to set

I = 1
2

∫
B

(p− pd)2 dS,

wherepd is the desired surface pressure, and the integral is evaluated over the actual surface area. In the
computational domain this is transformed to

I = 1
2

∫ ∫
Bw

(p− pd)2 |S2| dξ1 dξ3,

where the quantity
|S2| =

√
S2jS2j

denotes the face area corresponding to a unit element of face area in the computational domain. Now, to
cancel the dependence of the boundary integral onδp, the adjoint boundary condition reduces to

ψjnj = p− pd, (27)

wherenj are the components of the surface normal

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition on the costate variables corresponding to the momentum
components. Note that it imposes no restriction on the tangential component ofψ at the boundary.

In the presence of shock waves, neitherp norpd are necessarily continuous at the surface. The boundary
condition is then in conflict with the assumption thatψ is differentiable. This difficulty can be circumvented
by the use of a smoothed boundary condition [18].
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6. Derivation of the Viscous Adjoint Terms

In computational coordinates, the viscous terms in the Navier–Stokes equations have the form

∂Fvi
∂ξi

=
∂

∂ξi
(Sijfvj ).

Computing the variationδw resulting from a shape modification of the boundary, introducing a costate
vectorψ and integrating by parts following the steps outlined by (17)–(20) produces∫

B
ψT (δS2jfvj + S2jδfvj ) dBξ −

∫
D

∂ψT

∂ξi
(δSijfvj + Sijδfvj ) dDξ,

where the shape modification is restricted to the coordinate surfaceξ2 = 0 so thatn1 = n3 = 0, andn2 = 1.
Furthermore, it is assumed that the boundary contributions at the far field may either be neglected or else
eliminated by a proper choice of boundary conditions as previously shown for the inviscid case [5], [18].

The viscous terms will be derived under the assumption that the viscosity and heat conduction coefficients
µ andk are essentially independent of the flow, and that their variations may be neglected. In the case of
turbulent flow, if the flow variations are found to result in significant changes in the turbulent viscosity, it
may eventually be necessary to include its variation in the calculations.

Transformation to Primitive Variables

The derivation of the viscous adjoint terms is simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p)
T ,

because the viscous stresses depend on the velocity derivatives∂ui
∂xj

, while the heat flux can be expressed as

κ
∂

∂xi

(
p

ρ

)
.

whereκ = k/R = γµ/Pr(γ − 1). The relationship between the conservative and primitive variations is
defined by the expressions

δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matricesM = ∂w − /∂w̃ andM−1 = ∂w̃/∂w. These matrices are
provided in transposed form for future convenience:

MT =


1 u1 u2 u3 uiui/2
0 ρ 0 0 ρu1

0 0 ρ 0 ρu2

0 0 0 ρ ρu3

0 0 0 0 1/γ − 1

 ,

M−1T =


1 −u1/ρ −u2/ρ −u3/ρ (γ − 1)uiui/2
0 1/ρ 0 0 −(γ − 1)u1

0 0 1/ρ 0 −(γ − 1)u2

0 0 0 1/ρ −(γ − 1)u3

0 0 0 0 γ − 1

 .
The conservative and primitive adjoint operatorsL andL̃ corresponding to the variationsδw andδw̃ are

then related by ∫
D
δwTLψ dDξ =

∫
D
δw̃T L̃ψ dDξ,

with
L̃ = MTL,
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so that after determining the primitive adjoint operator by direct evaluation of the viscous portion of (22), the
conservative operator may be obtained by the transformationL = M−1T L̃. Since the continuity equation
contains no viscous terms, it makes no contribution to the viscous adjoint system. Therefore, the derivation
proceeds by first examining the adjoint operators arising from the momentum equations.

Contributions from the Momentum Equations

In order to make use of the summation convention, it is convenient to setψj+1 = ϕj for j = 1, 2,3. Then the
contribution from the momentum equations is∫

B
ϕk(δS2jσkj + S2jδσkj) dBξ −

∫
D

∂ϕk
∂ξi

(δSijσkj + Sijδσkj) dDξ. (28)

The velocity derivatives in the viscous stresses can be expressed as

∂ui
∂xj

=
∂ui
∂ξl

∂ξl
∂xj

=
Slj
J

∂ui
∂ξl

with corresponding variations

δ
∂ui
∂xj

=
[
Slj
J

]
I

∂

∂ξl
δui +

[
∂ui
∂ξl

]
II
δ

(
Slj
J

)
.

The variations in the stresses are then

δσkj =
{
µ

[
Slj
J

∂

∂ξl
δuk +

Slk
J

∂

∂ξl
δuj

]
+ λ
[
δjk

Slm
J

∂

∂ξl
δum

]}
I

+
{
µ

[
δ

(
Slj
J

)
∂uk
∂ξl

+ δ
(
Slk
J

)
∂uj
∂ξl

]
+ λ
[
δjkδ

(
Slm
J

)
∂um
∂ξl

]}
II
.

As before, only those terms with subscript I, which contain variations of the flow variables, need be considered
further in deriving the adjoint operator. The field contributions that containδui in equation (28) appear as

−
∫
D

∂ϕk
∂ξi

Sij

{
µ

(
Slj
J

∂

∂ξl
δuk +

Slk
J

∂

∂ξl
δuj

)
+ λδjk

Slm
J

∂

∂ξl
δum

}
dDξ.

This may be integrated by parts to yield∫
D
δuk

∂

∂ξl

(
SljSij

µ

J

∂ϕk
∂ξi

)
dDξ +

∫
D
δuj

∂

∂ξl

(
SlkSij

µ

J

∂ϕk
∂ξi

)
dDξ +

∫
D
δum

∂

∂ξl

(
SlmSij

λδjk
J

∂ϕk
∂ξi

)
dDξ,

where the boundary integral has been eliminated by noting thatδui = 0 on the solid boundary. By exchanging
indices, the field integrals may be combined to produce∫

D
δuk

∂

∂ξl
Slj

{
µ

(
Sij
J

∂ϕk
∂ξi

+
Sik
J

∂ϕj
∂ξi

)
+ λδjk

Sim
J

∂ϕm
∂ξi

}
dDξ,

which is further simplified by transforming the inner derivatives back to Cartesian coordinates∫
D
δuk

∂

∂ξl
Slj

{
µ

(
∂ϕk
∂xj

+
∂ϕj
∂xk

)
+ λδjk

∂ϕm
∂xm

}
dDξ. (29)

The boundary contributions that containδui in (28) may be simplified using the fact that

∂

∂ξl
δui = 0 if l = 1,3

on the boundaryB so that they become∫
B
ϕkS2j

{
µ

(
S2j

J

∂

∂ξ2
δuk +

S2k

J

∂

∂ξ2
δuj

)
+ λδjk

S2m

J

∂

∂ξ2
δum

}
dSx. (30)

Together, (29) and (30) comprise the field and boundary contributions of the momentum equations to the
viscous adjoint operator in primitive variables.
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Contributions from the Energy Equation

In order to derive the contribution of the energy equation to the viscous adjoint terms it is convenient to set

ψ5 = θ, Qj = uiσij + κ
∂

∂xj

(
p

ρ

)
,

where the temperature has been written in terms of pressure and density using (12). The contribution from
the energy equation can then be written as∫

B
θ

(
δS2jQj + S2jδQj

)
dBξ −

∫
D

∂θ

∂ξi

(
δSijQj + SijδQj

)
dDξ. (31)

The field contributions that containδui, δp, andδρ in (31) appear as

−
∫
D

∂θ

∂ξi
SijδQjdDξ = −

∫
D

∂θ

∂ξi
Sij

{
δukσkj + ukδσkj + κ

Slj
J

∂

∂ξl

(
δp

ρ
− p

ρ

δρ

ρ

)}
dDξ. (32)

The term involvingδσkj may be integrated by parts to produce∫
D
δuk

∂

∂ξl
Slj

{
µ

(
uk

∂θ

∂xj
+ uj

∂θ

∂xk

)
+ λδjkum

∂θ

∂xm

}
dDξ, (33)

where the conditionsui = δui = 0 are used to eliminate the boundary integral onB. Notice that the other
term in (32) that involvesδuk need not be integrated by parts and is merely carried on as

−
∫
D
δukσkjSij

∂θ

∂ξi
dDξ. (34)

The terms in expression (32) that involveδp andδρ may also be integrated by parts to produce both a
field and a boundary integral. The field integral becomes∫

D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
SljSij

κ

J

∂θ

∂ξi

)
dDξ,

which may be simplified by transforming the inner derivative to Cartesian coordinates∫
D

(
δp

ρ
− p

ρ

δρ

ρ

)
∂

∂ξl

(
Sljκ

∂θ

∂xj

)
dDξ. (35)

The boundary integral becomes∫
B
κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2jSij
J

∂θ

∂ξi
dBξ. (36)

This can be simplified by transforming the inner derivative to Cartesian coordinates∫
B
κ

(
δp

ρ
− p

ρ

δρ

ρ

)
S2j

J

∂θ

∂xj
dBξ, (37)

and identifying the normal derivative at the wall

∂

∂n
= S2j

∂

∂xj
, (38)

and the variation in temperature

δT =
1
R

(
δp

ρ
− p

ρ

δρ

ρ

)
,

to produce the boundary contribution ∫
B
kδT

∂θ

∂n
dBξ. (39)

This term vanishes ifT is constant on the wall but persists if the wall is adiabatic.
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There is also a boundary contribution left over from the first integration by parts (31) which has the form∫
B
θδ(S2jQj) dBξ, (40)

where

Qj = k
∂T

∂xj
,

sinceui = 0. Notice that for future convenience in discussing the adjoint boundary conditions resulting from
the energy equation, both theδw andδS terms corresponding to subscript classes I and II are considered
simultaneously. If the wall is adiabatic

∂T

∂n
= 0,

so that, using (38),
δ(S2jQj) = 0,

and both theδw andδS boundary contributions vanish.
On the other hand, ifT is constant,∂T/∂ξl = 0 for l = 1,3, so that

Qj = k
∂T

∂xj
= k
(
Slj
J

∂T

∂ξl

)
= k
(
S2j

J

∂T

∂ξ2

)
.

Thus, the boundary integral (40) becomes∫
B
kθ

{
S2

2j

J

∂

∂ξ2
δT + δ

(
S2

2j

J

)
∂T

∂ξ2

}
dBξ . (41)

Therefore, for constantT , the first term corresponding to variations in the flow field contributes to the
adjoint boundary operator and the second set of terms corresponding to metric variations contribute to the
cost function gradient.

Altogether, the contributions from the energy equation to the viscous adjoint operator are the three field
terms (33), (34) and (35), and either of two boundary contributions (39) or (41), depending on whether the
wall is adiabatic or has constant temperature.

7. The Viscous Adjoint Field Operator

Collecting together the contributions from the momentum and energy equations, the viscous adjoint operator
in primitive variables can be expressed as

(L̃ψ)1 = − p

ρ2

∂

∂ξl

(
Sljκ

∂θ

∂xj

)
(L̃ψ)i+1 =

∂

∂ξl

{
Slj

[
µ

(
∂ϕi
∂xj

+
∂ϕj
∂xi

)
+ λδij

∂ϕk
∂xk

]}
i = 1, 2,3

+
∂

∂ξl

{
Slj

[
µ

(
ui
∂θ

∂xj
+ uj

∂θ

∂xi

)
+ λδijuk

∂θ

∂xk

]}
− σijSlj

∂θ

∂ξl
,

(L̃ψ)5 = ρ
∂

∂ξl

(
Sljκ

∂θ

∂xj

)
.

The conservative viscous adjoint operator may now be obtained by the transformation

L = M−1T L̃.
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8. Viscous Adjoint Boundary Conditions

It was recognized in Section 4 that the boundary conditions satisfied by the flow equations restrict the form
of the performance measure that may be chosen for the cost function. There must be a direct correspondence
between the flow variables for which variations appear in the variation of the cost function, and those variables
for which variations appear in the boundary terms arising during the derivation of the adjoint field equations.
Otherwise it would be impossible to eliminate the dependence ofδI on δw through proper specification of
the adjoint boundary condition. As in the derivation of the field equations, it proves convenient to consider
the contributions from the momentum equations and the energy equation separately.

Boundary Conditions Arising from the Momentum Equations

The boundary term that arises from the momentum equations including both theδw andδS components
(28) takes the form ∫

B
ϕkδ(S2jσkj) dBξ.

Replacing the metric term with the corresponding local face areaS2 and unit normalnj defined by

|S2| =
√
S2jS2j , nj =

S2j

|S2|
then leads to ∫

B
ϕkδ(|S2|njσkj) dBξ.

Defining the components of the surface stress as

τk = njσkj

and the physical surface element
dS = |S2| dBξ,

the integral may then be split into two components∫
B
ϕkτk|δS2| dBξ +

∫
B
ϕk|S2|δτk dS, (42)

where only the second term contains variations in the flow variables and must consequently cancel theδw
terms arising in the cost function. The first term will appear in the expression for the gradient.

A general expression for the cost function that allows cancellation with terms containingδτk has the form

I =
∫
B
N (τ ) dS, (43)

corresponding to a variation

δI =
∫
B

∂N
∂τk

δτk dS,

for which cancellation is achieved by the adjoint boundary condition

ϕk =
∂N
∂τk

.

Natural choices forN arise from force optimization and as measures of the deviation of the surface stresses
from desired target values.

For viscous force optimization, the cost function should measure friction drag. The friction force in the
xi direction is

CDfi =
∫
B
σij dSj =

∫
B
S2jσij dBξ
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so that the force in a direction with cosinesni has the form

Cnf =
∫
B
niS2jσij dBξ.

Expressed in terms of the surface stressτi, this corresponds to

Cnf =
∫
B
niτi dS,

so that basing the cost function (43) on this quantity gives

N = niτi.

Cancellation with the flow variation terms in (42) therefore mandates the adjoint boundary condition

ϕk = nk.

Note that this choice of boundary condition also eliminates the first term in (42) so that it need not be
included in the gradient calculation.

In the inverse design case, where the cost function is intended to measure the deviation of the surface
stresses from some desired target values, a suitable definition is

N (τ ) = 1
2alk(τl − τdl)(τk − τdk),

whereτd is the desired surface stress, including the contribution of the pressure, and the coefficientsalk
define a weighting matrix. For cancellation

ϕkδτk = alk(τl − τdl)δτk.

This is satisfied by the boundary condition

ϕk = alk(τl − τdl). (44)

Assuming arbitrary variations inδτk, this condition is also necessary.
In order to control the surface pressure and normal stress one can measure the difference

nj{σkj + δkj(p− pd)},

wherepd is the desired pressure. The normal component is then

τn = nknjσkj + p− pd,

so that the measure becomes

N (τ ) = 1
2τ

2
n

= 1
2nlnmnknj{σlm + δlm(p− pd)}{σkj + δkj(p− pd)}.

This corresponds to setting
alk = nlnk

in (44). Defining the viscous normal stress as

τvn = nknjσkj ,

the measure can be expanded as

N (τ ) = 1
2nlnmnknjσlmσkj + 1

2(nknjσkj + nlnmσlm)(p− pd) + 1
2(p− pd)2

= 1
2τ

2
vn + τvn(p− pd) + 1

2(p− pd)2.



      

Optimum Aerodynamic Design Using the Navier–Stokes Equations 227

For cancellation of the boundary terms

ϕk(njδσkj + nkδp) = {nlnmσlm + n2
l (p− pd)}nk(njδσkj + nkδp)

leading to the boundary condition
ϕk = nk(τvn + p− pd).

In the case of high Reynolds number, this is well approximated by the equations

ϕk = nk(p− pd), (45)

which should be compared with the single scalar equation derived for the inviscid boundary condition (27).
In the case of an inviscid flow, choosing

N (τ ) = 1
2(p− pd)2

requires
ϕknkδp = (p− pd)n2

kδp = (p− pd)δp

which is satisfied by (45), but which represents an overspecification of the boundary condition since only
the single condition (27) need be specified to ensure cancellation.

Boundary Conditions Arising from the Energy Equation

The form of the boundary terms arising from the energy equation depends on the choice of temperature
boundary condition at the wall. For the adiabatic case, the boundary contribution is (39)∫

B
kδT

∂θ

∂n
dBξ,

while for the constant temperature case the boundary term is (41). One possibility is to introduce a contribution
into the cost function which is dependentT or ∂T/∂n so that the appropriate cancellation would occur.
Since there is little physical intuition to guide the choice of such a cost function for aerodynamic design, a
more natural solution is to set

θ = 0

in the constant temperature case or
∂θ

∂n
= 0

in the adiabatic case. Note that in the constant temperature case, this choice ofθ on the boundary would also
eliminate the boundary metric variation terms in (40).

9. Implementation of Navier–Stokes Design

The design procedures can be summarized as follows:

1. Solve the flow equations forρ, u1, u2,u3, p.
2. Smooth the cost function, if necessary.
3. Solve the adjoint equations forψ subject to appropriate boundary conditions.
4. EvaluateG .
5. ProjectG into an allowable subspace that satisfies any geometric constraints.
6. Update the shape based on the direction of steepest descent.
7. Return to 1.

Practical implementation of the viscous design method relies heavily upon fast and accurate solvers
for both the state(w) and costate(ψ) systems. This work employs a well-validated Navier–Stokes solver
developed by two of the authors [19].
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Discretization

Both the flow and the adjoint equations are discretized using a semidiscrete cell-centered finite volume
scheme. The convective fluxes across cell interfaces are represented by simple arithmetic averages of the
fluxes computed using values from the cells on either side of the face, augmented by artificial diffusive
terms to prevent numerical oscillations in the vicinity of shock waves. Continuing to use the summation
convention for repeated indices, the numerical convective flux across the interface between cellsA andB in
a three dimensional mesh has the form

hAB = 1
2SABj (fAj + fBj )− dAB,

whereSABj is the component of the face area in thejth Cartesian coordinate direction, (fAj ) and (fBj )
denote the fluxfj as defined by (12) anddAB is the diffusive term. Variations of the computer program
provide options for alternate constructions of the diffusive flux.

The simplest option implements the Jameson-Schmidt-Turkel scheme [20], [21], using scalar diffusive
terms of the form

dAB = ε(2)∆w − ε(4)(∆w+ − 2∆w + ∆w−),

where
∆w = wB − wA

and∆w+ and∆w− are the same differences across the adjacent cell interfaces behind cellA and beyond
cellB in theAB direction. By making the coefficientε(2) depend on a switch proportional to the undivided
second difference of a flow quantity such as the pressure or entropy, the diffusive flux becomes a third order
quantity, proportional to the cube of the mesh width in regions where the solution is smooth. Oscillations
are suppressed near a shock wave becauseε(2) becomes of order unity, whileε(4) is reduced to zero by the
same switch. For a scalar conservation law, it is shown in [21] thatε(2) andε(4) can be constructed to make
the scheme satisfy the local extremum diminishing (LED) principle that local maxima cannot increase while
local minima cannot decrease.

The second option applies the same construction to local characteristic variables. There are derived from
the eigenvectors of the Jacobian matrixAAB which exactly satisfies the relation

AAB(wB − wA) = SABj (fBj − fAj ).

This corresponds to the definition of Roe [22]. The resulting scheme is LED in the characteristic variables.
The third option implements the H-CUSP scheme proposed by Jameson [23] which combines differences
fB − fA andwB −wA in a manner such that stationary shock waves can be captured with a single interior
point in the discrete solution. This scheme minimizes the numerical diffusion as the velocity approaches
zero in the boundary layer, and has therefore been preferred for viscous calculations in this work.

Similar artificial diffusive terms are introduced in the discretization of the adjoint equation, but with the
opposite sign because the wave directions are reversed in the adjoint equation. Satisfactory results have been
obtained using scalar diffusion in the adjoint equation while characteristic or H-CUSP constructions are
used in the flow solution.

The discretization of the viscous terms of the Navier–Stokes equations requires the evaluation of the
velocity derivatives∂ui/∂xj in order to calculate the viscous stress tensorσij defined in (11). These are most
conveniently evaluated at the cell vertices of the primary mesh by introducing a dual mesh which connects
the cell centers of the primary mesh, as depicted in Figure 1. According to the Gauss formula for a control
volumeV with boundaryS ∫

V

∂vi
∂xj

dv =
∫
S

uinj dS,

wherenj is the outward normal. Applied to the dual cells this yields the estimate

∂vi
∂xj

=
1

vol

∑
faces

ūinjS,

whereS is the area of a face, and ¯ui is an estimate of the average ofui over that face. In order to determine
the viscous flux balance of each primary cell, the viscous flux across each of its faces is then calculated from
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i j
σ

dual cell

Figure 1. Cell-centered scheme.σij evaluated at vertices of the primary mesh.

the average of the viscous stress tensor at the four vertices connected by that face. This leads to a compact
scheme with a stencil connecting each cell to its 26 nearest neighbors.

The semidiscrete schemes for both the flow and the adjoint equations are both advanced to steady state
by a multistage time stepping scheme. This is a generalized Runge–Kutta scheme in which the convective
and diffusive terms are treated differently to enlarge the stability region [21], [24]. Convergence to a steady
state is accelerated by residual averaging and a multigrid procedure [25]. Convergence is further accelerated
by the use of locally varying time steps (which may be regarded as a scalar preconditioner) or the matrix
preconditioner method developed by Pierce and Giles [16], [17].

Optimization

For inverse design the lift is fixed by the target pressure. In drag minimization it is also appropriate to fix
the lift coefficient, because the induced drag is a major fraction of the total drag, and this could be reduced
simply by reducing the lift. Therefore the angle of attack is adjusted during the flow solution to force a
specified lift coefficient to be attained.

The search procedure used in this work is a simple descent method in which small steps are taken in the
negative gradient direction. LetF represent the design variable, andG the gradient. Then the iteration

δF = −λG
can be regarded as simulating the time dependent process

dF
dt

= −G,

whereλ is the time step∆t. LetA be the Hessian matrix with element

Aij =
∂Gi
∂Fj

=
∂2I

∂Fi ∂Fj
.

Suppose that a locally minimum value of the cost functionI∗ = I(F∗) is attained whenF = F∗. Then the
gradientG∗ = G(F∗) must be zero, while the Hessian matrixA∗ = A(F∗) must be positive definite. Since
G∗ is zero, the cost function can be expanded as a Taylor series in the neighborhood ofF∗ with the form

I(F) = I∗ + 1
2(F − F∗)A(F − F∗) + · · · .

Correspondingly,
G(F) = A(F − F∗) + · · · .

AsF approachesF∗, the leading terms become dominant. Then, settingF̂ = (F −F∗), the search process
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approximates
dF̂
dt

= −A∗F̂ .
Also, sinceA∗ is positive definite it can be expanded as

A∗ = RMRT ,

whereM is a diagonal matrix containing the eigenvalues ofA∗, and

RRT = RTR = I.

Setting
v = RT F̂ ,

the search process can be represented as
dv

dt
= −Mv.

The stability region for the simple forward Euler stepping scheme is a unit circle centered at−1 on the
negative real axis. Thus for stability we must choose

µmax∆t = µmaxλ < 2,

while the asymptotic decay rate, given by the smallest eigenvalue, is proportional to

e−µmint.

In order to improve the rate of convergence, one can set

δF = −λPG,
whereP is a preconditioner for the search. An ideal choice isP = A∗−1, so that the corresponding time
dependent process reduces to

dF̂
dt

= −F̂ ,

for which all the eigenvalues are equal to unity, andF̂ is reduced to zero in one time step by the choice
∆t = 1. Quasi-Newton methods estimateA∗ from the change in the gradient during the search process. This
requires accurate estimates of the gradient at each time step. In order to obtain these, both the flow solution
and the adjoint equation must be fully converged. Most quasi-Newton methods also require a line search in
each search direction, for which the flow equations and cost function must be accurately evaluated several
times. They have proven quite robust for aerodynamic optimization [7].

An alternative approach which has also proved successful in our previous work [18], and is used here, is
to smooth the gradient and to replaceG by its smoothed valuēG in the descent process. This acts both as
a preconditioner and ensures that each new shape in the optimization sequence remains smooth. To apply
smoothing in theξ1 direction, for example, the smoothed gradientḠ may be calculated from a discrete
approximation to

Ḡ − ∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G,

whereε is the smoothing parameter. IfδF = −λḠ is set, then, assuming the modification is applied on the
surfaceξ2 = constant, the first order change in the cost function is

δI = −
∫ ∫
GδF dξ1 dξ3

= −λ
∫ ∫ (

Ḡ − ∂

∂ξ1
ε
∂Ḡ
∂ξ1

)
Ḡ dξ1 dξ3

= −λ
∫ ∫ (

Ḡ2 + ε
(
∂Ḡ
∂ξ1

)2)
dξ1 dξ3

< 0,
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assuring an improvement ifλ is sufficiently small and positive, unless the process has already reached a
stationary point at whichG = 0.

It turns out that this approach is tolerant to the use of approximate values of the gradient, so that neither the
flow solution nor the adjoint solution need be fully converged before making a shape change. This results in
very large savings in the computational cost. For inviscid optimization it is necessary to use only 15 multigrid
cycles for the flow solution and the adjoint solution in each design iteration. For viscous optimization, about
100 multigrid cycles are needed. This is partly because convergence of the lift coefficient is much slower,
so about 20 iterations must be made before each adjustment of the angle of attack to force the target lift
coefficient. The new preconditioner for the flow and adjoint calculations allows the number of iterations to
be substantially reduced in both the flow and the adjoint simulation.

The numerical tests so far have focused on the viscous design of wings for optimum cruise, for which
the flow remains attached, and the main viscous effect is due to the displacement thickness of the boundary
layer. While some tests have been made with the viscous adjoint terms included, it has been found that
the optimization process converges when the viscous terms are omitted from the adjoint system. This may
reflect the tolerance of the search process to inexact gradients.

10. Results

Preconditioned Inverse Design

The first demonstration is an application of the preconditioning technique for inverse design with the Euler
equations. The ONERA M6 (Figure 2(b)) wing is recovered for a lifting case starting from a wing with an
NACA0012 section (Figure 2(a)) and using the ONERA M6 pressure distributions computed atα = 3.0 and
M = 0.84 as the target (Figure 3). Thus, a symmetric wing section is to be recovered from an asymmetric
pressure distribution. The calculations were performed on a 192× 32× 48 mesh with 294,912 cells. The

Figure 2. Redesign of the Onera M6 wing. 100 design cycles in inverse mode. (a)M = 0.84,CL = 0.3000,CD = 0.0205,α = 2.935°.
(b)M = 0.84,CL = 0.2967,CD = 0.0141,α = 2.935°.
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Figure 3. Target (◦) and computed (+) pressure distributions of redesigned Onera M6 wing.M = 0.84,CL = 0.2967,CD = 0.0141,
α = 2.935◦.

mesh had a C-H topology with the C-lines wrapping around the wing leading edge. Each design cycle
required 3 multigrid cycles for the flow solver using characteristic-based matrix dissipation with a matrix
preconditioner and 12 multigrid cycles for the adjoint solver using scalar dissipation and a variable local
time step (scalar preconditioner). Compared with a test in which the 3 multigrid cycles using the matrix
preconditioner were replaced by 15 multigrid cycles using a standard scalar preconditioner, and 15 cycles
were used in the adjoint solution, each design cycle required about three-eights as much computer time,
while the number of design cycles required to reach the same level of error also fell from 100 to about 50.
Use of the matrix preconditioner therefore reduced the total CPU time on an IBM 590 workstation from
97,683 s (∼27 hours) to 18,222 s (∼5 hours) for roughly equivalent accuracy.

Viscous Design

Due to the high computational cost of viscous design, a two-stage design strategy is adopted. In the first stage
a design calculation is performed with the Euler equations to minimize the drag at a given lift coefficient
by modifying the wing sections with a fixed planform. In the second stage the pressure distribution of the
Euler solution is used as the target pressure distribution for inverse design with the Navier–Stokes equations.
Comparatively small modifications are required in the second stage, so that it can be accomplished with a
small number of design cycles.

In order to test this strategy it was used for the redesign of a wing representative of wide-body transport
aircraft. The results are shown in Figures 4 and 5. The design point was taken as a lift coefficient of 0.55
at a Mach number of 0.83. Figure 4 illustrates the Euler re-design, which was performed on a mesh with
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Figure 4. Redesign of the wing of a wide transport aircraft. Stage
1: inviscid design. Sixty design cycles in drag reduction mode with
forced lift. (a)M = 0.83,CL = 0.5498,CD = 0.0196,α = 2.410◦.
(b)M = 0.83,CL = 0.5500,Cd = 0.0181,α = 1.959◦.

Figure 5. Redesign of the wing of a wide transport aircraft. Stage
2: viscous redesign. Ten design cycles in inverse mode. (a)M =
0.83,CL = 0.5506,CD = 0.0199,α = 2.317◦. (b) M = 0.83,
CL = 0.5508,CD = 0.0194,α = 2.355◦.

192×32×48 cells, displaying both the geometry and the upper surface pressure distribution, with negative
Cp upwards. The initial wing shows a moderately strong shock wave across most of the top surface, as can
be seen in Figure 4(a). Sixty design cycles were needed to produce the shock free wing shown in Figure 4(b),
with an indicated drag reduction of 15 counts from 0.0196 to 0.0181. Figure 5 shows the viscous redesign at
a Reynolds number of 12 million. This was performed on a mesh with 192×64×48 cells, with 32 intervals
normal to the wing concentrated inside the boundary layer region. In Figure 5(a) it can be seen that the
Euler design produces a weak shock due to the displacement effects of the boundary layer. Ten design cycles
were needed to recover the shock free wing shown in Figure 5(b). It is interesting that the wing section
modifications between the initial wing of Figure 4(a) and the final wing of Figure 5(b) are remarkably small.

These results were sufficiently promising that it was decided by McDonnell Douglas to evaluate the
method for industrial use, and it was used to support design studies for the MDXX project. The results of
this experience are discussed in [26]. It rapidly became apparent that the fuselage effects are too large to be
ignored. In viscous design it was also found that there were discrepancies between the results of the design
calculations, which were initially performed on a relatively coarse grid with 192× 64× 48 cells, and the
results of subsequent analysis calculations performed on finer meshes to verify the design.

In order to allow the use of finer meshes with overnight turnaround, the code was therefore modified for
parallel computation. Using the parallel implementation, viscous design calculations have been performed
on meshes with 1.8 million mesh points. Starting from a preliminary inviscid design, 20 design cycles are
usually sufficient for a viscous redesign in inverse mode, with the smoothed inviscid results providing the
target pressure. Such a calculation can be completed in about 71

2 hours using 48 processors of an IBM SP2.
As an illustration of the results that could be obtained, Figures 6–10 show a wing-body design with sweep

back of about 38 degrees at the 1/4 chord. Starting from the result of an Euler design, the viscous optimization
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Figure 6. Pressure distribution of the MPX5X at its design point.
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Figure 7. Optimization Sequence in the design of the MPX5X.
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Figure 8. Off design performance of the MPX5X below the design point.
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Figure 9. Off design performance of the MPX5X above the design point.
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Figure 10. Comparison of the MPX5X at its design point and at lower and higher lift.

produced an essentially shock-free wing at a cruise design point of Mach 0.86, with a lift coefficient of 0.6
for the wing body combination at a Reynolds number of 101 million based on the root chord. Figure 6 shows
the design point, while the evolution of the design is shown in Figure 7, using Vassberg’s COMPPLOT
software. In this case the pressure contours are for the final design. This wing is quite thick, with a thickness
to chord ratio of more than 14 % at the root and 9 % at the tip. The design offers excellent performance at
the nominal cruise point. Figures 8 and 9 show the results of a Mach number sweep to determine the drag
rise. It can be seen that a double shock pattern forms below the design point, while there is actually a slight
increase in the drag coefficient of about 11

2 counts at Mach 0.85. Finally, Figure 10 shows a comparison of
the pressure distribution at the design point with those at alternate cruise points with lower and higher lift.
The tendency to produce double shocks below the design point is typical of supercritical wings. This wing
has a low drag coefficient, however, over a wide range of conditions.

11. Conclusions

We have developed a three-dimensional control theory based design method for the Navier–Stokes equations
and applied it successfully to the design of wings in transonic flow. The method represents an extension of our
previous work on design with the potential flow and Euler equations. The new method combines the versatility
of numerical optimization methods with the efficiency of inverse design. The geometry is modified by a grid
perturbation technique which is applicable to arbitrary configurations. The combination of computational
efficiency with geometric flexibility provides a powerful tool, with the final goal being to create practical
aerodynamic shape design methods for complete aircraft configurations. Such an accomplishment would
represent the culmination of the line of research initiated by Lighthill with his original work on the inverse
problem [1].
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