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ABSTRACT

This paper describes the formulation of optimiza-
tion techniques based on control theory for aerody-
namic shape design in viscous compressible flow,
modelled by the Navier-Stokes equations. It ex-
tends previous work on optimization for inviscid
flow. The theory is applied to a system defined by
the partial differential equations of the flow, with the
boundary shape acting as the control. The Frechet
derivative of the cost function is determined via the
solution of an adjoint partial differential equation,
and the boundary shape is then modified in a di-
rection of descent. This process is repeated until an
optimum solution is approached. Each design cycle
requires the numerical solution of both the flow and
the adjoint equations, leading to a computational
cost roughly equal to the cost of two flow solutions.
The cost is kept low by using multigrid techniques,
in conjunction with preconditioning to accelerate
the convergence of the solutions. The power of the
method is illustrated by designs of wings and wing-
body combinations for long range tranport aircraft.
Satisfactory designs are usually obtained with 20-40
design cycles.
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1 INTRODUCTION

The ultimate success of an aircraft design depends
on the resolution of complex multi-disciplinary
trade-offs between factors such as aerodynamic effi-
ciency, structural weight, stability and control, and
the volume required to contain fuel and payload. A
design is finalized only after numerous iterations,
cycling between the disciplines. The development
of accurate and efficient methods for aerodynamic
shape optimization represents a worthwhile inter-
mediate step towards the eventual goal of full multi-
disciplinary optimal design.

Early investigations into aerodynamic optimization
relied on direct evaluation of the influence of each
design variable. This dependence was estimated
by separately varying each design parameter and
recalculating the flow. The computational cost of
this method is proportional to the number of design
variables and consequently becomes prohibitive as
the number of design parameters is increased.

An alternative approach to design relies on the fact
that experienced designers generally have an intu-
itive feel for the type of pressure distribution that
will provide the desired aerodynamic performance.
The resulting inverse problem amounts to deter-
mination of the shape corresponding to a specified
pressure distribution. This approach has the advan-
tage that only one flow solution is required to obtain
the desired design. However, the problem must be
formulated carefully to ensure that the target pres-



sure distribution corresponds to a physically realiz-
able shape.

The problems of optimal and inverse design can
both be systematically treated within the mathemat-
ical theory for the control of systems governed by
partial differential equations [I] by regarding the
design problem as a control problem in which the
control is the shape of the boundary. The inverse
problem then becomes a special case of the opti-
mal design problem in which the shape changes are
driven by the discrepancy between the current and
target pressure distributions.

The control theory approach to optimal aerody-
namic design, in which shape changes are based
on gradient information obtained by solution of an
adjoint problem, was first applied to transonic flow
byjameson [2,3]. He formulated the method for in-
viscid compressible flows with shocks governed by
both the potential equation and the Euler equations
[2, 4, 5]. With this approach, the cost of a design
cycle is independent of the number of design vari-
ables and the method has been employed for wing
design in the context of complex aircraft configura-
tions [6, 7], using a grid perturbation technique to
accommodate the geometry modifications.

Pironneau had earlier studied the use of control the-
ory for optimum shape design of systems governed
by elliptic equations [8]. Ta'asan, Kuruvila and Salas
have proposed a one shot approach in which the
constraint represented by the flow equations need
only be satisfied by the final converged design so-
lution [9]. Adjoint methods have also been used by
Baysal and Eleshaky [10], and by Cabuk and Modi
[11,12].

The objective of the present work is the extension
of adjoint methods for optimal aerodynamic de-
sign to flows governed by the compressible Navier-
Stokes equations. While inviscid formulations have
proven useful for the design of transonic wings at
cruise conditions, the inclusion of boundary layer
displacement effects with viscous design provides
increased realism and alleviates shocks that would
otherwise form in the viscous solution over the final
inviscid design. Accurate resolution of viscous ef-
fects such as separation and shock/boundary layer
interaction is also essential for optimal design en-
compassing off-design conditions and high-lift con-
figurations.

The computational costs of viscous design are at
least an order of magnitude greater than for design
using the Euler equations because a) the number of

mesh points must be increased by a factor of two or
more to resolve the boundary layer, b) there is the
additional cost of computing the viscous terms and
a turbulence model, and c) Navier-Stokes calcula-
tions generally converge much more slowly than
Euler solutions due to discrete stiffness and direc-
tional decoupling arising from the highly stretched
boundary layer cells. The computational feasibil-
ity of viscous design therefore hinges on the de-
velopment of a rapidly convergent Navier-Stokes
flow solver. Pierce and Giles have developed a
preconditioned multigrid method that dramatically
improves convergence of viscous calculations by
ensuring that all error modes inside the stretched
boundary layer cells are either damped or expelled
[13,14]. The same acceleration techniques are appli-
cable to the adjoint calculation, so that a substantial
reduction in the cost of each design cycle is achiev-
able.

2 GENERAL FORMULATION OF THE AD-
JOINT APPROACH TO OPTIMAL DESIGN

Before embarking on a detailed derivation of the
adjoint formulation for optimal design using the
Navier-Stokes equations, it is helpful to summa-
rize the general abstract description of the adjoint
approach which has been thoroughly documented
in references [2, 3].

The progress of the design procedure is measured
in terms of a cost function /, which could be, for
example the drag coefficient or the lift to drag ratio.
For flow about an airfoil or wing, the aerodynamic
properties which define the cost function are func-
tions of the flow-field variables (w) and the physical
location of the boundary, which may be represented
by the function T', say. Then

and a change in T results in a change

61 = dw 6w + —— ' (1)

in the cost function. Here, the subscripts I and // are
used to distinguish the contributions due to the vari-
ation 5w in the flow solution from the change associ-
ated directly with the modification 67 in the shape.
This notation is introduced to assist in grouping the
numerous terms that arise during the derivation of
the full Navier-Stokes adjoint operator, so that it re-
mains feasible to recognize the basic structure of the
approach as it is sketched in the present section.



Using control theory, the governing equations of the
flow field are introduced as a constraint in such a
way that the final expression for the gradient does
not require multiple flow solutions. This corre-
sponds to eliminating 6w from (1).

Suppose that the governing equation R which ex-
presses the dependence of w and T within the flow-
field domain D can be written as

(2)

Then 6w is determined from the equation

..57 = -^— 6waw

T \9R]\
- ^ \^-\([aw] J /

(3)

Next, introducing a Lagrange Multiplier if>, we have

(4)

(5)

(6)

(7)

(8)

(9)

Choosing i[> to satisfy the adjoint equation

dR
dw

dl

the first term is eliminated, and we find that

SI =

where

aiT
 T dR
-

The advantage is that (9) is independent of 5w, with
the result that the gradient of / with respect to an
arbitrary number of design variables can be deter-
mined without the need for additional flow-field
evaluations. In the case that (2) is a partial differ-
ential equation, the adjoint equation (8) is also a
partial differential equation and determination of
the appropriate boundary conditions requires care-
ful mathematical treatment.

The computational cost of a single design cycle is
roughly equivalent to the cost of two flow solutions
since the the adjoint problem has similar complex-
ity. When the number of design variables becomes
large, the computational efficiency of the control

theory approach over traditional approach, which
requires direct evaluation of the gradients by indi-
vidually varying each design variable and recom-
puting the flow field, becomes compelling.

Once equation (3) is established, an improvement
can be made with a shape change

<5Jf = -XQ

where A is positive, and small enough that the first
variation is an accurate estimate of 51. Then

57 = -XQTg < 0

After making such a modification, the gradient can
be recalculated and the process repeated to follow a
path of steepest descent until a minimum is reached.
In order to avoid violating constraints, such as a
minimum acceptable wing thickness, the gradient
may be projected into an allowable subspace within
which the constraints are satisfied. In this way, pro-
cedures can be devised which must necessarily con-
verge at least to a local minimum.

3 THE NAVIER-STOKES EQUATIONS

For the derivations that follow, it is convenient to
use Cartesian coordinates (x\,X2,X3) and to adopt
the convention of indicial notation where a re-
peated index "i" implies summation over i = 1 to
3. The three-dimensional Navier-Stokes equations
then take the form

dw | a/i = dfyj
dt dxi dxi (10)

where the state vector w, inviscid flux vector / and
viscous flux vector /„ are described respectively by

P
pui
pU2
PU3

PE

(11)

(12)

/„< = (13)



In these definitions, p is the density, 111,112,113 are
the Cartesian velocity components, E is the total
energy and <5y is the Kronecker delta function. The
pressure is determined by the equation of state

P= (7~ \E-\ (u'1

and the stagnation enthalpy is given by

where 7 is the ratio of the specific heats. The viscous
stresses may be written as

duk
i "n——>dxk

where /j and A are the first and second coefficients
of viscosity. The coefficient of thermal conductivity
and the temperature are defined by

__ If" rp __ P (14)

For discussion of real applications using a dis-
cretization on a body conforming structured mesh,
it is also useful to consider a transformation to the
computational coordinates (ft/fti/^s) defined by the
metrics

The Navier-Stokes equations can then be written in
computational space as

dt

where the inviscid and viscous flux contributions
are now defined with respect to the compuational
cell faces by F; — Sijfj and Ftti — Sijfvj, and the
quantity Sij = JK~^ is used to represent the projec-
tion of the ft cell face along the Xj axis. In obtaining
equation (15) we have made use of the property that

= 0 (16)

which represents the fact that the sum of the face
areas over a closed volume is zero, as can be readily
verified by a direct examination of the metric terms.

4 GENERAL FORMULATION OF THE OPTI-
MAL DESIGN PROBLEM FOR THE NAVIER-
STOKES EQUATIONS

Aerodynamic optimization is based on the deter-
mination of the effect of shape modifications on
some performance measure which depends on the
flow. For convenience, the coordinates ft describing
the fixed computational domain are chosen so that
each boundary conforms to a constant value of one
of these coordinates. Variations in the shape then
result in corresponding variations in the mapping
derivatives defined by Kij.

Suppose that the performance is measured by a cost
function

/ = I M(w,S)dBs + I P(w,S)dDt,
JB JT>

containing both boundary and field contributions
where dB^ and dD^ are the surface and volume ele-
ments in the computational domain. In general, M
and P will depend on both the flow variables w and
the metrics S defining the computational space.

The design problem is now treated as a control prob-
lem where the boundary shape represents the con-
trol function, which is chosen to minimize / subject
to the constraints defined by the flow equations (15).
A shape change produces a variation in the flow so-
lution <5«; and the metrics SS which in turn produce
a variation in the cost function

61= f SM(w,S)dB^ + f SP(w,S)dD^, (17)
JB Jv

with

8M =
Sp = [Pw},8w (18)

where we continue to use the subscripts / and //
to distinguish between the contributions associated
with the variation of the flow solution Sw and those
associated with the metric variations 6S. Thus
[Mu,]/ and [Pw]f represent ̂  and f£ with the
metrics fixed, while SMu and SPji represent the
contribution of the metric variations SS to 8M and
SP.
In the steady state, the constraint equation (15) spec-
ifies the variation of the state vector 5w by

3ft (19)

Here 5Fi and 6Fvi can also be split into contributions
associated with Sw and SS using the notation



SFvl = (20)

The inviscid contributions arc easily evaluated as

[Fiw]r - dfi.
*dw'

&Fvin =

The details of the viscous contributions are compli-
cated by the additional level of derivatives in the
stress and heat flux terms and will be derived in
Section 6. Multiplying by a co-state vector ?/>, which
will play an analogous role to the Lagrange mul-
tiplier introduced in equation (7), and integrating
over the domain produces

(21)

If tj) is differentiable this may be integrated by parts
to give

(22)

(23)

Since the left hand expression equals zero, it may
be subtracted from the variation in the cost function
(17) to give

61 =

+

f [6M
JB

S (Ft - Fvi)}

. (24)

Now, since t/J is an arbitrary differentiable function,
it may be chosen in such a way that 51 no longer de-
pends explicitly on the variation of the state vector
Sw. The gradient of the cost function can then be
evaluated directly from the metric variations with-
out having to recompute the variation 6w resulting
from the perturbation of each design variable.

Comparing equations (18) and (20), the variation 6w
may be eliminated from (24) by equating all field
terms with subscript "/" to produce a differential
adjoint system governing ifj

- Fvjw] r + Pw = 0 in V. (25)

The corresponding adjoint boundary condition is
produced by equating the subscript "/" boundary
terms in equation (24) to produce

(26)

The remaining terms from equation (24) then yield
a simplified expression for the variation of the cost
function which defines the gradient

SI = I {6Mn - n.^r (F, - Fvi}} <LB^
JB

+ I [SPn + [SFt - 6Fvi] „} dDt, (27)
Jv

The details of the formula for the gradient depend
on the way in which the boundary shape is parame-
terized as a function of the design variables, and the
way in which the mesh is deformed as the bound-
ary is modified. Using the relationship between the
mesh deformation and the surface modification, the
field integral is reduced to a surface integral by inte-
grating along the coordinate lines emanating from
the surface. Thus the expression for 51 is finally
reduced to the form of equation (9)

'-/.QSTi

where T represents the design variables, and Q is
the gradient, which is a function defined over the
boundary surface.

The boundary conditions satisfied by the flow equa-
tions restrict the form of the left hand side of the
adjoint boundary condition (26). Consequently, the
boundary contribution to the cost function M. can-
not be specified arbitrarily. Instead, it must be cho-
sen from the class of functions which allow cancel-
lation of all terms containing 6w in the boundary
integral of equation (24). On the other hand, there
is no such restriction on the specification of the field
contribution to the cost function P, since these terms
may always be absorbed into the adjoint field equa-
tion (25) as source terms.

It is convenient to develop the inviscid and vis-
cous contributions to the adjoint equation sepa-
rately. Also, for simplicity, it will be assumed that
the portion of the boundary that undergoes shape
modifications is restricted to the coordinate surface
£2 = 0- Then equations (24) and (26) may be simpli-
fied by incorporating the conditions

so that only the variations 6F2 and 8FV2 need to be
considered at the wall boundary.

5 DERIVATION OF THE INVISCID ADJOINT
TERMS

The inviscid contributions have been previously de-
rived in [4,15] but are included here for complete-



ness. Taking the transpose of equation (25), the
inviscid adjoint equation may be written as

C'f— = 0 in£>, (28)
' d&

where the inviscid Jacobian matrices in the trans-
formed space are given by

The transformed velocity components have the
form

where the quantity

denotes the face area corresponding to a unit el-
ement of face area in the computational domain.
Now, to cancel the dependence of the boundary in-
tegral on Sp, the adjoint boundary condition reduces
to

1/j.jrij =p-pd (30)
where rij are the components of the surface normal

and the condition that there is no flow through the
wall boundary at £2 = 0 is equivalent to

so that

when the boundary shape is modified. Conse-
quently the variation of the inviscid flux at the
boundary reduces to

5F2 = Sp <

0

S2j

522

523

0

5522

5523

0

(29)

Since 6F2 depends only on the pressure, it is now
clear that the performance measure on the bound-
ary M (w, S) may only be a function of the pressure
and metric terms. Otherwise, complete cancellation
of the terms containing 5w in the boundary inte-
gral would be impossible. One may, for example,
include arbitrary measures of the forces amd mo-
ments in the cost function, since these are functions
of the surface pressure.

In order to design a shape which will lead to a de-
sired pressure distribution, a natural choice is to set

= 5/0-z JB
PdfdS

where p,i is the desired surface pressure, and the
integral is evaluated over the actual surface area. In
the computational domain this is transformed to

I=\JI (P-P

This amounts to a transpiration boundary condi-
tion on the co-state variables corresponding to the
momentum components. Note that it imposes no
restriction on the tangential component of if} at the
boundary.

In the presence of shock waves, neither p nor pj. are
necessarily continuous at the surface. The bound-
ary condition is then in conflict with the assump-
tion that i/i is differentiable. This difficulty can be
circumvented by the use of a smoothed boundary
condition [15].

6 DERIVATION OF THE VISCOUS ADJOINT
TERMS

In computational coordinates, the viscous terms in
the Navier-Stokes equations have the form

Computing the variation 5w resulting from a shape
modification of the boundary, introducing a co-state
vector t/} and integrating by parts following the steps
outlined by equations (19) to (23) produces

- I ̂
JT> "w

where the shape modification is restricted to the
coordinate surface £2 — 0 so that n\ — ris = 0,
and ri2 = 1. Furthermore, it is assumed that the
boundary contributions at the far field may either
be neglected or else eliminated by a proper choice
of boundary conditions as previously shown for the
inviscid case [4, 15].

The viscous terms will be derived under the as-
sumption that the viscosity and heat conduction



coefficients \i and k are essentially independent of
the flow, and that their variations may be neglected.
In the case of turbulent flow, if the flow variations
are found to result in significant changes in the tur-
bulent viscosity, it may eventually be necessary to
include its variation in the calculations.

Transformation to Primitive Variables

The derivation of the viscous adjoint terms is sim-
plified by transforming to the primitive variables

wr = (p,u,v,w,p)T,

because the viscous stresses depend on the velocity
derivatives ̂ , while the heat fluxes can be ex-
pressed as

"''n —
OXi /9,

The relationship between the conservative and
primitive variations are defined by the expressions

Sw = M5w, 6w = M~l6w

which make use of the transformation matrices
M ~ if and M~l = if- Th686 matrices are pro-
vided in transposed form for future convenience

MT =

" 1
0
0
0
0

' 1 iap
0 1p
0 0
0 0
0 0

Ml
p
0
0
0

Hi
p

0
1
p
0
0

'2
0
p
0
0

U3
0
0
p
0

U3
p

0
0
1
p
0

2 '
pUl

pU2

PU31
-y-1 -

(l-l)uiUi -\
2

— (7 — !)MI\ / I

— ("y — 1)«2

-(7 - 1)U3

7-1 .
The conservative and primitive adjoint operators L
and L corresponding to the variations 6w and 6w
are then related by

T> T>
with

L = MTL,
so that after determining the primitive adjoint op-
erator by direct evaluation of the viscous portion of
(25), the conservative operator may be obtained by
the transformation L — M~l L. There is no contri-
bution from the continuity equation so the deriva-
tion proceeds by first examining the adjoint opera-
tors arising from the momentum equations.

Contributions from the Momentum Equations

In order to make use of the summation convention,
it is convenient to set i/Jj+i — <t>j f°r J = 1)2,3. Then
the contribution from the momentum equations is

/ <t>k ('
Jo

_[dfr
Jv dti

+ (31)

The velocity derivatives in the viscous stresses can
be expressed as

J
with corresponding variations

The variation in the stresses are then

As before, only those terms with subscript 7, which
contain variations of the flow variables, need be con-
sidered further in deriving the adjoint operator. The
field contributions that contain 6m in equation (31)
appear as

, d „ Sik d „

S'"> d x i ,m-^-dum 1-d^.

This may be integrated by parts to yield

d

f a d
/ <5um^-
JV ut^l

where the boundary integral has been eliminated
by noting that 5ut - 0. By exchanging indices, the
field integrals may be combined to produce



which is further simplified by transforming the in-
ner derivatives back to Cartesian coordinates

af
/Jv T —dxm

(32)

The boundary contributions that contain 6ui in
equation (31) maybe simplified using the fact that

5 « i = 0 if 1 = 1,3
oti

on the boundary B so that they become

f2j < /
IB

(33)

Together, (32) and (33) comprise the field and
boundary contributions of the momentum equa-
tions to the viscous adjoint operator in primitive
variables.

Contributions from the Energy Equation

In order to derive the contribution of the energy
equation to the viscous adjoint terms it is convenient
to set

A; <9 /P\
•-\dxj Vp/ '

where the temperature has been written in terms of
pressure and density using (14). The contribution
from the energy equation can then be written as

/ * (&SyQj
V/3

/" 5^ (34)

The field contributions that contain 6iii,6p, and 5p
in equation (34) appear as

.
oukffkj +

r de „ (
- I -^rSij <JT> Oi^i i_

1-1 J d£,\p p p
The term involving Sakj may be integrated by parts
to produce

[ . d ( ( 39 80\
I "UkJ^-Zlj < /i Uk J. —— + Uj - ——Jv % t V dxj Jdxk)

90 (36)

where the conditions MJ = Sui = 0 are used to elim-
inate the boundary integral on B. Notice that the
other term in (35) that involves Sn^ need not be in-
tegrated by parts and is merely carried on as

/JT>
(37)

The terms in expression (35) that involve dp and dp
may also be integrated by parts to produce both a
field and a boundary integral. The field integral
becomes

F fip PSp\ 9 ( k 09\(7~~P 7) % r Aj (7 - iy se, ; dv^
which may be simplified by transforming the inner
derivative to Cartesian coordinates

/
I

JT
(6p P6p\
I — - - —

T> \ P P P )
k 9B

The boundary integral becomes

k
I ——7 ( — - - — ) 2\ '3 -7^-dB^.

JB 7 - 1 V P P P / J a&

(38)

This can be simplified by transforming the inner
derivative to Cartesian coordinates

;
T >"» "-**_'t JJ dxj

and identifying the normal derivative at the wall

d ^s o
dn 3dxj'

and the variation in temperature

6T= k (— -5^"\
7-1 V P P P / '

(40)

(41)

to produce the boundary contribution

L ~dn
(42)

This term vanishes if T is constant on the wall but
persists if the wall is adiabatic.

There is also a boundary contribution left over from
the first integration by parts (34) which has the form

/ 95 (SyQj) dBs, (43)
JB

where



since w; = 0. Notice that for future convenience in
discussing the adjoint boundary conditions result-
ing from the energy equation, both the 5w and SS
terms corresponding to subscript classes / and // are
considered simultaneously. If the wall is adiabatic

so that using (41),

= 0

and both the Sw and SS boundary contributions
vanish.

On the other hand, if T is constant then it is more
convenient to expand (43) into

(SS2jQj + Sy

where, since 1̂  = 0 for / - 1,3,

j dbj v J
Thus, the boundary integral (43) becomes

(44)

Therefore, for constant T, the first term correspond-
ing to variations in the flow field contributes to the
adjoint boundary operator and the second set of
terms corresponding to metric variations contribute
to the cost function gradient.

All together, the contributions from the energy
equation to the viscous adjoint operator are the three
field terms (36), (37) and (38), and either of two
boundary contributions ( 42) or (44), depending on
whether the wall is adiabatic or has constant tem-
perature.

7 THE VISCOUS ADJOINT FIELD OPERATOR

Collecting together the contributions from the mo-
mentum and energy equations, the viscous adjoint
operator in primitive variables can be expressed as

'

r (oe 09 \ ., de ] \•j k br~ + TT- + xs» ir~ f[ \dXj dxij dxk\\

(LB) =
(7 - 1)

The conservative viscous adjoint operator may now
be obtained by the transformation

L = M~lTL.

8 VISCOUS ADJOINT BOUNDARY CONDI-
TIONS

It was recognized in Section 4 that the boundary
conditions satisfied by the flow equations restrict
the form of the performance measure that may be
chosen for the cost function. There must be a di-
rect correspondence between the flow variables for
which variations appear in the variation of the cost
function, and those variables for which variations
appear in the boundary terms arising during the
derivation of the adjoint field equations. Otherwise
it would be impossible to eliminate the dependence
of 51 on Sw through proper specification of the ad-
joint boundary condition. As in the derivation of the
field equations, it proves convenient to consider the
contributions from the momentum equations and
the energy equation separately.

Boundary Conditions Arising from the Momen-
tum Equations

The boundary term that arises from the momentum
equations including both the Sw and 55 components
(31) takes the form

/ faS
JB

dBe.

Replacing the metric term with the corresponding
local face area £2 and unit normal rij defined by

then leads to

S (\S2\njakj)

Defining the components of the surface stress as



and the physical surface element

dS= \S2\dBf,

the integral may then be split into two components

/ 04 T* \SS2\ dB,. + I <j>k \S2 5rkdS, (45)
JB JB

where only the second term contains variations in
the flow variables and must consequently cancel the
6w terms arising in the cost function. The first term
will appear in the expression for the gradient.

A general expression for the cost function that al-
lows cancellation with terms containing STk has the
form

/= I M(T}dS, (46)
JB

corresponding to a variation

f 9AT
/ "5—QTkdo,JB ork

for which cancellation is achieved by the adjoint
boundary condition

dtf
*rk = ——— •

Natural choices for A/" arise from force optimiza-
tion and as measures of the deviation of the surface
stresses from desired target values.

For viscous force optimization, the cost function
should measure friction drag. The friction force in
the Xi direction is

CDfi = I ffijdSj = I S2jffij•IB JBB
so that the force in a direction with cosines n-L has
the form

= I
JB

Expressed in terms of the surface stress T;, this cor-
responds to

C,nf ~ I niTidS,
JB

so that basing the cost function (46) on this quantity
gives

-A/" = HiTi.

Cancellation with the flow variation terms in equa-
tion (45) therefore mandates the adjoint boundary
condition

4>k = nk.

Note that this choice of boundary condition also
eliminates the first term in equation (45) so that it
need not be included in the gradient calculation.

In the inverse design case, where the cost function
is intended to measure the deviation of the surface
stresses from some desired target values, a suitable
definition is

- rdk) ,

where Td is the desired surface stress, including the
contribution of the pressure, and the coefficients a//t
define a weighting matrix. For cancellation

t<5Tfc = aik (TI -

(47)

This is satisfied by the boundary condition

<t>k = aLk (TI -Tdt).

Assuming arbitrary variations in 5rk, this condition
is also necessary.

In order to control the surface pressure and normal
stress one can measure the difference

ni [<*kj + $kj (P - Pd)} ,

where p^ is the desired pressure. The normal com-
ponent is then

so that the measure becomes

8kj (P ~ Pd)} •

This corresponds to setting

in equation (47). Defining the viscous normal stress
as

the measure can be expanded as

jV(r) = -nin

r™ + Tvn (P~P<t)+

For cancellation of the boundary terms

(j>k (nj5ffkj + nkSp)
nk
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leading to the boundary condition

<t>k = nk (rvn +p~ p,i).

In the case of high Reynolds number, this is well
approximated by the equations

<Pk — nk (P ~ Pd) ! (48)

which should be compared with the single scalar
equation derived for the inviscid boundary condi-
tion (30). In the case of an inviscid flow, choosing

requires

= (p-Pd)nl5p=(p- pd) &p

which is satisfied by equation (48), but which repre-
sents an overspecification of the boundary condition
since only the single condition (30) need be specified
to ensure cancellation.

Boundary Conditions Arising from the Energy
Equation

The form of the boundary terms arising from the en-
ergy equation depends on the choice of temperature
boundary condition at the wall. For the adiabatic
case, the boundary contribution is (42)

while for the constant temperature case the bound-
ary term is (44). One possibility is to introduce a
contribution into the cost function which is depen-
dent T or |̂  so that the appropriate cancellation
would occur. Since there is little physical intuition
to guide the choice of such a cost function for aero-
dynamic design, a more natural solution is to set

in the constant temperature case or

80
On = 0

in the adiabatic case. Note that in the constant
temperature case, this choice of 0 on the boundary
would also eliminate the boundary metric variation
terms in (43).

9 IMPLEMENTATION OF NAVIER-STOKES
DESIGN

The design procedures can be summarized as fol-
lows:

1. Solve the flow equations for p, u\, U2/U3, p.

2. Smooth the cost function, if necessary.

3. Solve the adjoint equations for ip subject to ap-
propriate boundary conditions.

4. Evaluate Q.
5. Project Q into an allowable subspace that satis-

fies any geometric constraints.

6. Update the shape based on the direction of
steepest descent.

7. Return to 1.

Practical implementation of the viscous design
method relies heavily upon fast and accurate solvers
for both the state (w) and co-state (ip) systems.
This work employs a well-validated Navier-Stokes
solver developed by two of the authors [16]. The
flow and adjoint equations are discretized using a
semi-discrete finite volume scheme based on Jame-
son's high resolution SLIP construction [17,18,19]
and multi-stage Runge-Kutta time-stepping [20].
The preconditioned multigrid method developed
by Pierce and Giles is used to accelerate the con-
vergence of both flow and adjoint solvers [13,14].

For inverse design the lift is fixed by the target pres-
sure. In drag minimization it is also appropriate to
fix the lift coefficient, because the induced drag is
a major fraction of the total drag, and this could be
reduced simply by reducing the lift. Therefore the
angle of attack is adjusted during the flow solution
to force a specified lift coefficient to be attained.

The search procedure used in this work is a simple
descent method in which small steps are taken in
the negative gradient direction. Let T represent
the design variable, and Q the gradient. Then the
iteration

8? = -\Q
can be regarded as simulating the time dependent
process

dt ~~
where A is the time step At. Let A be the Hessian
matrix with element

dQ, d2!^.. — -" _ ______
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Suppose that a locally minimum value of the cost
function/* - I(F*) is attained when T = f . Then
the gradient Q* = G(F*) must be zero, while the
Hessian matrix A* — A(F*) must be positive defi-
nite. Since Q* is zero, the cost function can be ex-
panded as a Taylor series in the neighborhood of T*
with the form

= r + (.F - F*) A (F - F*)

Correspondingly,

As T approaches T" ', the leading terms become
dominant. Then, setting T = (F — F*), the search
process approximates

dt -
Also, since A" is positive definite it can be expanded
as

A* = RMRT,
where M is a diagonal matrix containing the eigen-
values of A", and

RRT = RTR = /.

Setting
v = RTF,

the search process can be represented as

— = —Mv.dt
The stability region for the simple forward Euler
stepping scheme is a unit circle centered at -1 on
the negative real axis. Thus for stability we must
choose

while the asymptotic decay rate, given by the small-
est eigenvalue, is proportional to

In order to improve the rate of convergence, one can
set

6F = -XPG,
where P is a preconditioner for the search. An ideal
choice is P = A"~l, so that the corresponding time
dependent process reduces to

for which all the eigenvalues are equal to unity, and
T is reduced to zero in one time step by the choice
AZ = 1. Quasi-Newton methods estimate ^4* from
the change in the gradient during the search pro-
cess. This requires accurate estimates of the gradi-
ent at each time step. In order to obtain these, both
the flow solution and the adjoint equation must be
fully converged. Most quasi-Newton methods also
require a line search in each search direction, for
which the flow equations and cost function must
be accurately evaluated several times. They have
proven quite robust for aerodynamic optimization
[6].
An alternative approach which has also proved suc-
cessful in our previous work [15], is to smooth the
gradient and to replace Q by its smoothed value Q
in the descent process. This both acts as a precondi-
tioner, and ensures that each new shape in the opti-
mization sequence remains smooth. It turns out that
this approach is tolerant to the use of approximate
values of the gradient, so that neither the flow solu-
tion nor the adjoint solution need be fully converged
before making a shape change. This results in very
large savings in the computational cost. For inviscid
optimization it is necessary to use only 15 multigrid
cycles for the flow solution and the adjoint solution
in each design iteration. For viscous optimization,
about 100 multigrid cycles are needed. This is partly
because convergence of the lift coefficient is much
slower, so about 20 iterations must be made before
each adjustment of the angle of attack to force the
target lift coefficient. The new preconditioner for
the flow and adjoint calculations allows the number
of iterations to be substantially reduced in both the
flow and the adjoint simulation.

The numerical tests so far have focused on the
viscous design of wings for optimum cruise, for
which the flow remains attatched, and the main vis-
cous effect is due to the displacement thickness of
the boundary layer. While some tests have been
made with the viscous adjoint terms included, it
has been found that the optimization process con-
verges when the viscous terms are omitted from the
adjoint system. This may reflect the tolerance of the
search process to inexact gradients.

10 RESULTS

Preconditioned Inverse Design

The first demonstration is an application of the pre-
conditioning technique for inverse design with the
Euler equations. The ONERA M6 (Figure Ib) wing
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is recovered for a lifting case starting from a wing
with a NACA0012 section (Figure la) and using
the ONERA M6 pressure distributions computed at
a = 3.0 and M = 0.84 as the target (Fig. 2). Thus, a
symmetric wing section is to be recovered from an
asymmetric pressure distribution. The calculations
were performed on a 192x32x48 C-H mesh with
294,912 cells. Each design cycle required 3 multi-
grid cycles for the flow solver using characteristic-
based matrix dissipation with a matrix precondi-
tioner and 12 multigrid cycles for the adjoint solver
using scalar dissipation and a variable local time
step (scalar preconditioner). Compared to a test in
which the 3 multigrid cycles using the matrix pre-
conditioner were replaced by 15 multigrid cycles
using a standard scalar preconditioner, and 15 cy-
cles were used in adjoint solver, each design cycle
required about 3/8 as much computer time, while
the number of design cycles required to reach the
same level of error also fell from 100 to about 50.
Use of the matrix preconditioner therefore reduced
the total CPU time on an IBM 590 workstation from
97,683 sec (-27 hours) to 18,222 sec (-5 hours) for
roughly equivalent accuracy.

Viscous Design

Due to the high computational cost of viscous de-
sign, a two-stage design strategy is adopted. In the
first stage, a design calculation is performed with
the Euler equations to minimize the drag at a given
lift coefficient by modifying the wing sections with
a fixed planform. In the second stage, the pres-
sure distribution of the Euler solution is used as the
target pressure distribution for inverse design with
the Navier-Stokes equations. Comparatively small
modifications are required in the second stage, so
that it can be accomplished with a small number of
design cycles.

In order to test this strategy it was used for the re-
design of a wing representative of wide body trans-
port aircraft. The results are shown in Figures 3
and 4. The design point was taken as a lift coeffi-
cient of .55 at a Mach number of .83. Figure 3 illus-
trates the Euler redesign, which was performed on
a mesh with 192x32x48 cells, displaying both the
geometry and the upper surface pressure distribu-
tion, with negative Cp upwards. The initial wing
shows a moderately strong shock wave across most
of the top surface, as can be seen in Figure 3a. Sixty
design cycles were needed to produce the shock free
wing shown in Figure 3b, with an indicated drag
reduction of 15 counts from .0196 to .0181. Figure

4 shows the viscous redesign at a Reynolds num-
ber of 12 million. This was performed on a mesh
with 192x64x48 cells, with 32 intervals normal to
the wing concentrated inside the boundary layer re-
gion. In Figure 4a it can be seen that the Euler design
produces a weak shock due to the displacement ef-
fects of the boundary layer. Ten design cycles were
needed to recover the shock free wing shown in Fig-
ure 4b. It is interesting that the wing section modi-
fications between the initial wing of Figure 3a and
the final wing of Figure 4b are remarkably small.

These results were sufficiently promising that it
was decided by McDonnell Douglas to evaluate the
method for industrial use, and it was used to sup-
port design studies for the MDXX project. The re-
sults of this experience are discussed in an accompa-
nying paper [21]. It rapidly became apparent that
the fuselage effects are too large to be ignored. In
viscous design it was also found that there were dis-
crepancies between the results of the design calcula-
tions, which were initially performed on a relatively
coarse grid with 192x64x48 cells, and the results of
subsequent analysis calculations performed on finer
meshes to verify the design.

In order to allow the use of finer meshes with
overnight turnaround, the code was therefore mod-
ified for parallel computation. Using the parallel
implementation, viscous design calculations have
been performed on meshes with 1.8 million mesh
points. Starting from a preliminary inviscid design,
20 design cycles are usually sufficient for a viscous
re-design in inverse mode, with the smoothed in-
viscid results providing the target pressure. Such
a calculation can be completed in about 7| hours
using 48 processors of an IBM SP2.

As an illustration of the results that could be ob-
tained, Figures 5 - 9 show a wing-body design
with sweep back of about 38 degrees at the 1/4
chord. Starting from the result of an Euler design,
the viscous optimization produced an essentially
shock free wing at a cruise design point of Mach
.86, with a lift coefficient of .6 for the wing body
combination at a Reynolds number of 101 million
based on the root chord. Figure 5 shows the design
point, while the evolution of the design is shown in
Figure 6, using Vassberg's COMPPLOT software.
In this case the pressure contours are for the final
design. This wing is quite thick, with a thickness
to chord ratio of more than 14 percent at the root
and 9 percent at the tip. The design offers excellent
performance at the nominal cruise point. Figures 7
and 8 show the results of a Mach number sweep
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to determine the drag rise. It can be seen that a
double shock pattern forms below the design point,
while there is actually a slight increase in the drag
coefficient of about 1 \ counts at Mach .85. Finally,
Figure 9 shows a comparison of the pressure dis-
tribution at the design point with those at alternate
cruise points with lower and higher lift. The ten-
dency to produce double shocks below the design
point is typical of supercritical wings. This wing has
a low drag coefficient, however, over a wide range
of conditions.

CONCLUSIONS

We have developed a three-dimensional control the-
ory based design method for the Navier Stokes
equations and applied it successfully to the design
of wings in transonic flow. The method represents
an extension of our previous work on design with
the potential flow and Euler equations. The new
method combines the versatility of numerical op-
timization methods with the efficiency of inverse
design. The geometry is modified by a grid per-
turbation technique which is applicable to arbitrary
configurations. The combination of computational
efficiency with geometric flexibility provide a pow-
erful tool, with the final goal being to create practical
aerodynamic shape design methods for complete
aircraft configurations.
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Initial Wing. Cp on Upper Surface.

Figure la: M = .84, C, = .3000, Cd = .0205, Q = 2.935°.

Redisigned wing. Cp on Upper Surface.

Figure Ib: M = .84, C, = .2967, Cd = .0141, a = 2.935°

Figure 1: Redesign of the Onera M6 Wing. 1000 design cycles in inverse mode.
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Figure 2: Target and Computed Pressure Distributions of Redesigned Onera M6 Wing.
M = 0.84, CL = 0.2967, CD = 0.0141, Q = 2.935°.
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Initial Wing. Cp on Upper Surface.

Figure 3a: M = .83, Ct = .5498, Cd = .0196, a = 2.410°.

Redisigned wing. Cp on Upper Surface.

Figure 3b: M = .83, Cf = .5500, Cd = .0181, a = 1.959°.

Figure 3: Redesign of the wing of a wide transport aircraft. Stage 1 Inviscid design : 60 design cycles in
drag reduction mode with forced lift.
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Initial Wing. Cp on Upper Surface.

Figure 4a: M = 0.83, Ci = .5506, Cd = .0199, a = 2.317°

Redisigned wing. Cp on Upper Surface.
i

Figure 4b: M = 0.83, Ci = .5508, Cd = .0194, a = 2.355°

Figure 4: Redesign of the wing of a wide transport aircraft. Stage 2: Viscous re-design. 10 design cycles in
inverse mode.
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Figure 5: Pressure distribution of the MPX5X at its design point.
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Figure 6: Optimization Sequence in the design of the MPX5X.
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY

REN= lOl.(X) , CL =0.610
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Figure 7: Off design performance of the MPX5X below the design point.

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY

REN = 101.00 . CL = 0.610

Figure 8: Off design performance of the MPX5X above the design point.
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Figure 9: Comparison of the MPX5X at its design point and at lower and higher lift.
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