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Abstract

We present a mathematical framework for deformation and strain localization analyses of partially saturated gran-

ular media using three-phase continuum mixture theory. First, we develop conservation laws governing a three-phase

mixture to identify energy-conjugate expressions for constitutive modeling. Energy conjugate expressions identified

relate a certain measure of effective stress to the deformation of the solid matrix, the degree of saturation to the matrix

suction, the pressure in each phase to the corresponding intrinsic volume change of this phase, and the seepage forces to

the corresponding pressure gradients. From the second of law of thermodynamics we obtain the dissipation inequality;

from the principle of maximum plastic dissipation we derive a condition for the convexity of the yield function. Then,

we formulate expressions describing conditions for the onset of tabular deformation bands under locally drained and

locally undrained conditions. Finally, we cast a specific constitutive model for partially saturated soils within the pro-

posed mathematical framework, and implement it in the context of return mapping algorithm of computational plas-

ticity. The proposed constitutive model degenerates to the classical modified Cam-Clay model of soil mechanics in the

limit of full saturation. Numerical examples are presented to demonstrate the performance of the return mapping algo-

rithm as well as illustrate the localization properties of the model as functions of imposed deformation and matrix suc-

tion histories.
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1. Introduction

Porous media consist of three separate phases: solid, liquid, and gas. Description of the deformation and

movement/transport of both liquid and gas relative to the solid phase, and the deformation of the solid ma-

trix itself, is one of the most challenging aspects of multiphase mechanics. In geology, the topmost layer of
the earth�s crust comprises a three-phase system called the unsaturated, or partially saturated, zone. In the

western United States the unsaturated zone can be more than a hundred meters thick, whereas in wetlands

it may fluctuate seasonally or not exist at all [1]. Where an unsaturated zone exists, proper treatment of the

significant variables and phenomena affecting its behavior, such as capillary flow, adsorption, chemical

potential, and temperature, must all be considered whenever possible. Prediction of the mechanical behav-

ior of unsaturated zones is crucial for the construction of underground structures, such as tunneling by

compressed air [2,3].

Mechanical models for partially saturated soils must encompass models applicable to fully saturated
soils in the limit as the degree of saturation approaches unity. This has motivated much work extending

classical plasticity models for fully saturated soils to include additional variables reflecting the relevant phe-

nomena associated with partial saturation, such as the surface tension induced by the presence of water

meniscus surrounding two contacting solid grains. There seems to be a universal consensus that for consti-

tutive modeling purposes these phenomena may be lumped into a macroscopic variable called the matrix

suction, defined as the difference between the pore air and pore water pressures in the void (see e.g., the

editorial of Thomas [4]). Energy consideration provides support for this idea, at least from a continuum

standpoint, as well as elucidates possible definitions for a constitutive effective stress conjugate to the mac-
roscopic deformation of the solid matrix. Possible constitutive effective stresses include the net stress and

the Bishop stress [5–15].

Like many other engineering materials undergoing non-homogeneous deformation, partially saturated

granular media can also exhibit localized deformation behavior leading to rapid loss of shear strength.

For example, instabilities on moraine slopes have been reported in [16] due to loss of suction. Similar phe-

nomena have been described in [17–20] associated with rainfall-induced loss of shear strength in partially

saturated slopes. Although material instability as a whole generally covers a wide range of possible failure

modes and thus is beyond the scope of this paper, we address in this work one type of failure mode, that
associated with the formation of a tabular deformation band. For one-phase materials bifurcation theory

may be used to detect the onset of a deformation band [21–23] largely responsible for loss of shear strength.

In fully saturated geomaterials the presence of fluids in the voids is known to influence the associated local-

ized deformation behavior [24–26], and is thus typically analysed using some definitions of effective stress

for constitutive modeling purposes, such as the Terzaghi stress [27] and the Nur-Byerlee stress [28]. For par-

tially saturated media, however, such decomposition of the total stress is not so obvious. Unfortunately,

however the total stress is decomposed plays a key role in the assessment of the so-called drained and un-

drained deformation and strain localization responses of geomaterials [29–31].
In this paper we describe a mathematical framework for three-phase deformation and strain localization

modeling of partially saturated granular media. The paper begins with a presentation of the master balance

laws. From balance of energy we identify work-conjugate expressions suitable for constitutive modeling.

Energy conjugate expressions identified relate a certain measure of effective stress to the deformation of

the solid matrix, the degree of saturation to the matrix suction, the pressure in each phase to the corre-

sponding intrinsic volume change of this phase, and the seepage forces to the corresponding pressure gra-

dients. With these results, we then use the second law of thermodynamics to obtain an expression for the

reduced dissipation inequality; the principle of maximum plastic dissipation then leads to the convexity
condition for the yield surface. Furthermore, using this framework we formulate essential conditions for

the emergence of a shear band for three-phase media under the extreme cases of fully drained and fully un-

drained conditions. As usual, these localization conditions require continuity of the total traction vector
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across a surface of discontinuity. Undrained and drained localizations are herein treated with and without

jumps in the pore air and pore pressure fields, respectively.

As a specific example, we formulate analytically and implement numerically a two-invariant Cam-Clay-

type plasticity model for partially saturated soils. It must be noted that constitutive models for partially

saturated soils are now only coming of age, and much work remains to be done to improve on and calibrate
these models. The goal of the formulation and implementation of this specific plasticity model is not to

advocate its use per se, but rather to illustrate how more robust models, such as a three-invariant Cam-Clay

model [32,33], can be implemented within the proposed mathematical framework. For the numerical imple-

mentation of the plasticity model considered in this work, we utilize a return mapping algorithm in the elas-

tic strain invariant space advocated in [34,35]. Remarkably, the numerical implementation requires only

modest extension of the traditional Cam-Clay-type plasticity formulation for fully saturated soils [36–

39], suggesting the potential of the proposed framework for accommodating more complex elastoplastic

models.
Notations and symbols used in this paper are as follows: bold-face letters denote tensors and vectors; the

symbol � . � denotes an inner product of two vectors (e.g. a Æ b = aibi), or a single contraction of adjacent

indices of two tensors (e.g. c Æ d = cijdjk); the symbol �:� denotes an inner product of two second-order tensors

(e.g. c : d = cijdij), or a double contraction of adjacent indices of tensors of rank two and higher (e.g.

C : �e ¼ Cijkl�
e
kl); the symbol ��� denotes a juxtaposition, e.g., (a � b)ij = aibj; and for any symmetric second

order tensors a and b, (a � b)ijkl = aijbkl.
2. Conservation laws

We consider a three-phase mixture composed of a solid matrix whose voids are continuous and filled

with water and air. The solid matrix, or skeleton, plays a special role in the mathematical description in

that it defines the volume of the mixture, herein written in the current configuration as V = Vs + Vw + Va.

The corresponding total masses are M = Ms + Mw + Ma, where Ma = qaVa for a = solid, water, and air;

and qa is the true mass density of the a phase. The volume fraction occupied by the a phase is given by

/a = Va/V, and thus
/s þ /w þ /a ¼ 1: ð2:1Þ
The partial mass density of the a phase is given by qa = /aqa, and thus
qs þ qw þ qa ¼ q; ð2:2Þ
where q = M/V is the total mass density of the mixture. As a general notation, phase designations in the

superscript form pertain to average or partial quantities; and in the subscript form to intrinsic or true
quantities.
2.1. Balance of mass

In writing out the mass balance equations for a three-phase mixture, a key point is to focus on the cur-

rent configuration of the mixture and describe the motions of the water and air phases relative to the mo-

tion of the solid phase. We denote the instantaneous intrinsic velocities of the solid, water and air phases by

v, vw, and va, respectively, and the total time-derivative following the solid phase motion by
dð�Þ
dt

¼ oð�Þ
ot

þ gradð�Þ � v:
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Ignoring mass exchanges among the three phases, balance of mass for the solid, water, and air phases

then write [31]
dqs

dt
þ qsdivðvÞ ¼ 0; ð2:3aÞ

dqw

dt
þ qwdivðvÞ ¼ �divðwwÞ; ð2:3bÞ

dqa

dt
þ qadivðvÞ ¼ �divðwaÞ: ð2:3cÞ
Here, wa (for a = water, air) is the Eulerian relative flow vector of the a phase with respect to the solid ma-

trix, given explicitly by the relations
wa ¼ qa~va; ~va ¼ va � v; a ¼ w; a: ð2:4Þ

The flow vector wa has the physical significance that its scalar product with the unit normal vector n to a

unit surface area attached to the solid matrix is the mass flux Ja of the a phase relative to the solid matrix

flowing across the same unit area, i.e.,
wa � n ¼ Ja; a ¼ w; a: ð2:5Þ

Thus,
ma ¼
Z
A
Ja dA ¼

Z
A
wa � ndA ¼

Z
V
divðwaÞdV ð2:6Þ
represents the net mass flux of the a phase on the total volume V, and the terms on the right-hand side of

(2.3b,c) are thus the localizations of these mass fluxes to a material point attached to the solid matrix. If

there is no relative motion between the a phase and the solid phase such that the mass Ma contained in

the volume V moves exactly with the solid matrix, then ~va ¼ 0 and wa = 0. It is, however, possible that

ma = 0 even if wa 5 0 provided that the latter is divergence-free; in this case the net mass flux is zero as

a result of the a phase material being displaced by another a phase material of the same mass quantity.

For barotropic flows a functional relationship of the form f(pa, qa) = 0 exists for each phase [40], where

pa denotes the intrinsic pressure equal to the actual force per unit actual area acting on the a phase. Thus we
can write
dqa

dt
¼ q0

aðpaÞ
dpa
dt

; ð2:7Þ
where the prime denotes ordinary differentiation, and so,
dqa

dt
¼ dð/aqaÞ

dt
¼ /aq0

aðpaÞ
dpa
dt

þ qa

d/a

dt
: ð2:8Þ
Denoting the bulk modulus of the a phase as
Ka ¼ qap
0
aðqaÞ; a ¼ s;w; a; ð2:9Þ
the mass balance equations then become
d/s

dt
þ /s

Ks

dps
dt

þ /sdivðvÞ ¼ 0; ð2:10aÞ

d/w

dt
þ /w

Kw

dpw
dt

þ /wdivðvÞ ¼ � 1

qw

divðwwÞ; ð2:10bÞ
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d/a

dt
þ /a

Ka

dpa
dt

þ /adivðvÞ ¼ � 1

qa

divðwaÞ: ð2:10cÞ
Next let us introduce void fractions ww and wa, defined as the ratio between the volume of the a phase in

the void to the volume of the void itself,
ww ¼ V w

V w þ V a

¼ /w

1� /s ; wa ¼ V a

V w þ V a

¼ /a

1� /s ; ww þ wa ¼ 1: ð2:11Þ
In geotechnical literature, ww is commonly denoted as the degree of saturation Sr, and wa = 1 � Sr, but we

shall use the void fractions herein for simplicity in the notation. Taking the material time derivative with

respect to the solid phase motion, we obtain
d/a

dt
¼ ð1� /sÞ dw

a

dt
� wa d/

s

dt
¼ ð1� /sÞ dw

a

dt
þ wa /s

Ks

dps
dt

þ /sdivðvÞ
� �

; a ¼ w; a; ð2:12Þ
where the second equality follows from balance of mass for the solid phase, (2.10a). Thus, balance of mass

for the water and air phases, (2.10b,c), can be rewritten as
ð1� /sÞ dw
a

dt
þ /a

Ka

dpa
dt

þ wa/s

Ks

dps
dt

þ wadivðvÞ ¼ � 1

qa

divðwaÞ: ð2:13Þ
By definition, a fully saturated case corresponds to /a = wa = 0, and the above equation is non-trivial only

for the water phase. Further, if both the solid and water constituent phases are incompressible the above

equation reduces to divðvÞ þ divð~vwÞ ¼ 0, where ~vw ¼ /w~vw is often called the superficial Darcy velocity and
~vw is the true seepage velocity. Except for the assumption of barotropic flows, note that the above formu-

lation is perfectly general and includes the compressibilities of all the constituent phases.

2.2. Balance of momentum

Let ra denote the Cauchy partial stress tensor for the a phase, with a = solid, water, and air. The total

Cauchy stress tensor r is obtained from the sum
r ¼ rs þ rw þ ra: ð2:14Þ

In the above equation we ignore the stress arising from the presence of a meniscus, identified by Fredlund

and Morgenstern [5] as the �contractile skin� stress and subsequently considered by Houlsby [41] as the
fourth-phase stress. We also define the first Piola–Kirchhoff partial stress tensor Pa = Jra Æ F�t, where

J = det(F) is the jacobian and F is the deformation gradient of the solid phase motion. The total first Piola–

Kirchhoff stress tensor is then given by
P ¼ Ps þ Pw þ Pa: ð2:15Þ

Balance of linear momentum for the a phase may be expressed through the alternative expressions
divðraÞ þ qagþ ha ¼ qa d
ava
dt

; ð2:16aÞ

DIVðPaÞ þ JqagþHa ¼ Jqa d
ava
dt

; ð2:16bÞ
for a = s, w, a; where g is the vector of gravity accelerations, ha is the resultant body force per unit current

volume of the solid matrix exerted on the a phase; Ha = Jha is the corresponding resultant body force per

unit reference volume of the solid matrix; and div and DIV are the divergence operators evaluated with
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respect to the current and reference configurations, respectively. The operator da(Æ)/dt denotes a material

time derivative following the a phase motion and is related to the operator d(Æ)/dt via the relation
dað�Þ
dt

¼ dð�Þ
dt

þ gradð�Þ � ~va:
Furthermore, the forces ha and Ha are internal to the mixture and thus satisfy the relations

hs + hw + ha = Hs + Hw + Ha = 0.

Adding (2.16) for all the three phases, we obtain the balance of momentum for the entire mixture ex-

pressed in the alternative forms
divðrÞ þ qg ¼
X

a¼s;w;a

qa d
ava
dt

; ð2:17aÞ

DIVðPÞ þ q0g ¼
X

a¼s;w;a

Jqa d
ava
dt

; ð2:17bÞ
where q0 = Jq is the pull-back mass density of the mixture in the reference configuration. Note that the solid

phase material now at point x in the current configuration is the same solid phase material originally at the
point X in the reference configuration, but the water and air phases at x and X are not the same material

points. Hence, the total reference mass density q0 in V0 is not conserved by q in V. Now, if we rewrite the

equations of motion relative to the motion of the solid matrix, then balance of momentum for the entire

mixture becomes
divðrÞ þ qg ¼ q
dv

dt
þ
X
a¼w;a

qa d~va
dt

þ gradðvaÞ � ~va
� �

; ð2:18aÞ

DIVðPÞ þ q0g ¼ q0

dv

dt
þ
X
a¼w;a

Jqa d~va
dt

þ gradðvaÞ � ~va
� �

: ð2:18bÞ
A complete formulation for the dynamic problem then requires the specification of either: (a) the motions

of the three phases, or (b) the motion of the solid phase together with the relative motions of the water and

air phases to that of the solid phase, see [29,30].

2.3. Balance of energy

LetK be the kinetic energy and I be the internal energy of a three-phase mixture contained in a volume

V. The first law of thermodynamics states that
DK

Dt
þDI

Dt
¼ P; ð2:19Þ
where P is the total power and the symbol D(Æ)/Dt denotes a total material time derivative. For a three-

phase mixture the total kinetic energy is given by
K ¼
X

a¼s;w;a

Z
V

1

2
qava � va dV : ð2:20Þ
The time rate of change is obtained as
DK

Dt
¼
X

a¼s;w;a

da

dt

Z
V

1

2
qava � va dV ¼

Z
V

X
a¼s;w;a

qa d
ava
dt

� �
� va dV ð2:21Þ
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Note that the total material time derivative is obtained as the sum of the material derivatives of the indi-

vidual phases.

The total power P is the sum of the mechanical and non-mechanical powers. Our primary goal here is

to develop work conjugate expressions for the constitutive modeling of the mechanical behavior of three-

phase media, so we shall ignore the non-mechanical power in what follows (the reader is referred to [31,42]
for a more complete treatment including non-mechanical power). The mechanical power is the sum of the

powers of the surface tractions and the body forces, and for a three-phase medium we have
P ¼
Z
A

X
a¼s;w;a

ra : n� va dAþ
Z
V

X
a¼s;w;a

ðha � va þ qag � vaÞdV ; ð2:22Þ
where A is the surface area of the volume V, and n is the unit outward normal vector to dA. The surface

integral can be converted into a volume integral using Gauss theorem, yielding the following result
P ¼
Z
V

X
a¼s;w;a

divðra � vaÞ þ ha � va þ qag � va½ �dV

¼
Z
V

X
a¼s;w;a

ra : la þ divðraÞ � va þ ha � va þ qag � va½ �dV ; ð2:23Þ
where la = grad(va) is the spatial velocity gradient of the a phase motion. Subtracting DK=Dt and using the

balance of momentum (2.16) yields
DI

Dt
¼ P�DK

Dt
¼
Z
V

X
a¼s;w;a

ra : la dV ¼
Z
V

X
a¼s;w;a

ra : da dV ; ð2:24Þ
where da = sym(la) is the rate of deformation tensor for the a phase. The expression inside the volume inte-

gral sign is the internal power per unit current volume,
De

Dt
¼
X

a¼s;w;a

ra : la ¼
X

a¼s;w;a

ra : da: ð2:25Þ
The above result agrees with a similar expression presented in [43] for a fully saturated solid–water mixture.

In developing constitutive theories for a three-phase mixture a possible approach would be to relate an

objective rate expression for ra with its work-conjugate tensor da in view of the above structure of De/Dt.

An alternative approach would be to determine other possible constitutive stresses that are also work-con-

jugate to the velocity gradient of the solid matrix motion. We pursue the latter approach by first rewriting

(2.25) in the form
De

Dt
¼ r : l þ

X
a¼w;a

ra : ~la; ~la ¼ la � l; ð2:26Þ
where l � ls. The latter expression can be obtained simply by adding the null expression

(r � rs � rw � ra) : l to (2.25).
Next we exploit the isotropic nature of the partial stress tensors rw and ra and write them more specif-

ically as
rw ¼ �/wpw1; ra ¼ �/apa1; ð2:27Þ

where pw and pa are the intrinsic pore water and pore air pressures, respectively, as defined before, and 1 is

the second-order identity tensor. The internal power per unit volume can then be written as
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De

Dt
¼ r : l �

X
a¼w;a

/apadivð~vaÞ: ð2:28Þ
However, we note that the divergence of the Eulerian relative flow vector wa is
divðwaÞ ¼ divðqa~vaÞ ¼ divð/aqa~vaÞ ¼ /aqadivð~vaÞ þ ~va � gradð/aqaÞ: ð2:29Þ
Substituting (2.29) into (2.13), solving for divð~vaÞ, and substituting the final result back into (2.28), we

obtain
De

Dt
¼ r0 : l þDe0

Dt
; ð2:30Þ
where r 0 is a constitutive effective stress that is also work-conjugate to l, given explicitly by the relation
r0 ¼ rþ p1; p ¼
X
a¼w;a

wapa; ð2:31Þ
and
De0

Dt
¼
X
a¼w;a

1

qa

~va � gradð/aqaÞ þ ð1� /sÞ dw
a

dt
þ /a

Ka

dpa
dt

þ wa/s

Ks

dps
dt

� �
pa: ð2:32Þ
In the fully saturated regime, we have wa = /a = 0, ww = 1, and /w + /s = 1. In this case the constitutive

stress reduces to the effective stress of [27],
r0 ¼ rþ pw1: ð2:33Þ
In the partially saturated regime, we have /s = 1 � n, /w = nSr, /
a = n(1 � Sr), w

w = Sr, and wa = 1 �
Sr, where n is the porosity and Sr is the degree of saturation. The constitutive stress thus reduces to the
form
r0 ¼ rþ p1; p ¼ Srpw þ ð1� SrÞpa: ð2:34Þ
The above form of effective stress for the partially saturated case appears to have originated from [44,45].

The first term in De 0/Dt can be written as
De01
Dt

¼
X
a¼w;a

1

qa

~va � gradð/aqaÞ
� �

pa ¼
X
a¼w;a

1

qa

divðwaÞ � /adivð~vaÞ
� �

pa: ð2:35Þ
The second term in De 0/Dt simplifies to
De02
Dt

¼ ð1� /sÞ
X
a¼w;a

dwa

dt
pa ¼ �ns

dSr

dt
; s ¼ pa � pw: ð2:36Þ
Here, s is the suction stress representing the difference between the water and air pressures in the voids. We

note that De02=Dt vanishes in the perfectly saturated regime since Sr = 1 = constant. The third term in De 0/

Dt represents the effect of the compressibilities of the constituent phases, and if we assume incompressible
solid and water phases we get
De03
Dt

¼
X
a¼w;a

/a

Ka

dpa
dt

þ wa/s

Ks

dps
dt

� �
pa ¼

/a

Ka

dpa
dt

pa ¼
/a

qa

dqa

dt
pa: ð2:37Þ
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Since qa = Ma/Va, then
1

qa

dqa

dt
¼ 1

Ma

dMa

dt
� 1

V a

dV a

dt
; ð2:38Þ
and thus, if the air mass is conserved in the solid skeleton volume then De03=Dt represents the unit power of
the partial air pressure pa = /apa in compressing the air volume.

It is illuminating to compare the above formulation to that presented by Houlsby [41,46], who postu-

lated an expression for the mechanical power input of the form
P0 ¼
Z
A

X
a¼s;w;a

ra : m � va dAþ
Z
V

X
a¼s;w;a

qag � va dV : ð2:39Þ
The first term represents the power input of the surface tractions, whereas the second term represents the

power input of the gravity forces. This expression for the mechanical power differs from (2.23) in that the

internal body forces ha have been assumed to produce no power. Our rationale for including these forces is

that even if
P

ha ¼ 0,
P

ha � va 6¼ 0 since the constituent phases are moving at different velocities and thus

their individual mechanical powers do not cancel, see also [47–49].

Using the Gauss theorem on (2.39) and subtracting DK=Dt given by (2.21), the material time derivative

of the internal energy, ignoring the mechanical power of the forces ha, becomes
DI0

Dt
¼ P0 �DK

Dt
¼
Z
V

X
a¼s;w;a

ðra : la � ha � vaÞdV : ð2:40Þ
The above expression coincides with (2.24) only for the special case where va = v, i.e., when the three con-

stituent phases move at the same velocity. If we followed the developments of Section 4 step by step, the end

results would be the same except for the first term De01=Dt which would now contain the mechanical power
of the forces ha.

We note that (2.26) is perfectly consistent with Eq. (6) of Biot [50], who stated that for isothermal defor-

mations the power done on a mixture is equal to the power done by the total stresses in deforming the solid

skeleton volume plus the power done by the pressure function to inject a fluid mass into the element, i.e.,
De

Dt
¼ r : _�þ w _m; ð2:41Þ
where _� is the small strain rate computed from the motion of the solid matrix, w is the �pressure function,�
and m is the fluid mass injected in the soil element. In the finite deformation regime, _� generalizes to the

velocity gradient l, whereas the second term in (2.41) evidently has the same meaning as the termP
a¼w;ar

a : ~la in (2.26).

2.4. The second law of thermodynamics—reduced dissipation inequality

We denote by g the total entropy density per unit current volume of the mixture. Without loss of gen-
erality we shall assume in the following that there is no heat source and there is no heat flux in the system.

The Clausius-Duhem inequality then reads
D

Dt

Z
V
gdV P 0 ) Dg

Dt
P 0; ð2:42Þ
for any arbitrary current volume V.

Next, we define free energy density W per unit current volume of the mixture by W = e � Tg, where T is
the absolute temperature. For isothermal processes the time derivative of W takes the form
DW
Dt

¼ De

Dt
� T

Dg
Dt

: ð2:43Þ
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Assuming now that the free energy function W is representative of the total mixture and that it is

associated with a material point attached to the solid matrix [31], then DW=Dt ¼ dW=dt � _W, where the

symbol _ð Þ denotes a material time derivative following the solid phase motion. Since T > 0, we obtain

the inequality
E :¼ T
Dg
Dt

¼ De

Dt
� _W ¼

X
a¼s;w;a

ra : da � _W P 0; ð2:44Þ
where use is made of (2.25) for the internal mechanical strain power.

The functional form for W reflects the multiphase nature of the problem at hand and depends on the

specific form of the terms comprising the derivative De/Dt. Without much loss of generality we present
in the following the dissipation inequality assuming infinitesimal solid matrix deformation; the case of finite

deformation can be developed following very similar lines using appropriate measures of deformation (see

[43]), and will be discussed upon in a future publication. Using the effective stress concept of the previous

section, the dissipation inequality in the infinitesimal regime rewrites
E ¼ r0 : _�þ
X
a¼w;a

1

qa

~va � gradðqaÞ
� �

pa � ns _Sr þ
X
a¼w;a

ð _#a þ wa _#
sÞpa � _WP 0; ð2:45Þ
where _� is the infinitesimal strain rate tensor for the solid matrix, r 0 is the usual constitutive effective stress

tensor defined in the previous section, and _#
a ¼ /a _pa=Ka for a = s, w, a.

Assuming _� ¼ _�e þ _�p, where _�e and _�p are the elastic and inelastic components of �, respectively; and,

similarly, _#
a ¼ _#

a;e þ _#
a;p
, we can now take a free energy function of the form
W ¼ Wð�e; ~uw; ~ua; #s;e; #w;e; #a;e; nÞ; ð2:46Þ

where ~ua is defined such that _~ua � ~va for a = w, a; and n represents the usual vector of plastic internal var-

iables. Taking the time derivative gives
_W ¼ oW
o�e

: _�e þ
X
a¼w;a

oW
o~ua

� ~va þ
X

a¼s;w;a

oW
o#a;e

_#
a;e þ oW

on
� _n: ð2:47Þ
Substituting into (2.45) gives
E ¼ r0 � oW
o�e

� �
: _�e þ

X
a¼w;a

ga �
oW
o~ua

� �
� ~va þ

X
a¼w;a

pa �
oW
o#a;e

� �
_#
a;e

þ p � oW
o#s;e

� �
_#
s;e þ r0 : _�p � ns _Sr þ

X
a¼w;a

pa _#
a;p þ p _#

s;p þ q � _n P 0; ð2:48Þ
where ga = pagrad(q
a)/qa is the Gibbs potential for fluid a per unit current volume of the mixture (cf. [31]),

and q = � oW/on. For arbitrary _�e, ~va, and _#
a;e
, standard argument leads to the constitutive equations
r0 ¼ oW
o�e

; ga ¼
oW
o~ua

����
a¼w;a

; pa ¼
oW
o#a;e

����
a¼w;a

; p ¼ oW
o#s;e : ð2:49Þ
Implied in the first constitutive equation above is an elastic functional relation between the effective consti-

tutive stress tensor r 0 and the solid matrix elastic strain tensor �e. Note that the constitutive equation for p is
not a redundant equation since it is a function not only of pw and pa but also of the degree of saturation Sr.

Substituting back into (2.49) leads to the reduced dissipation inequality
E ¼ r0 : _�p � ns _Sr þ
X
a¼w;a

pa _#
a;p þ p _#

s;p þ q � _n P 0: ð2:50Þ
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Except for the terms associated with the compressibilities of the three phases and the additional term �ns _Sr

arising from partial saturation (which vanishes in the limit of full saturation), the above reduced dissipation

inequality is essentially the same as that derived for the fully saturated case [43].
3. Constitutive formulation and shear band analysis

With reference to the developments of the previous section, we herein present: (a) a constitutive frame-

work for three-phase partially saturated media, and (b) a framework for shear band analyses at both locally

drained and locally undrained conditions. In order to limit the scope of this paper, we shall follow the

developments of Section 2.4 and assume that the deformation of the solid matrix is infinitesimal. As usual,

the operator _ð Þ denotes a material time derivative following the solid phase motion.

3.1. Maximum plastic dissipation; convexity of the yield function

The principle of maximum plastic dissipation, often credited to von Mises (see [51,52]), states that, for

any stress state defined by the set (r 0, s, pw, pa, p, q), and for given (�p, Sr, #
w,p, #a,p, #s,p, n), the dissipation

function attains its maximum at the actual state. With reference to the reduced dissipation inequality (2.50),

we have
r0 � r0
r� �

: _�p � n s� s
r

� �
_Sr þ

X
a¼w;a

pa � pr
a

 !
_#
a;p þ p � p

r
� �

_#
s;p þ q� q

r� �
� _n P 0; ð3:1Þ� �
for all r0
r
, s
r
, p
r
w, p

r
a, p

r
, q
r

in the admissible set E.

Classical plasticity theory requires a yield function representing the boundary of the elastic region. Let

F(r 0, s, pw, pa, p, q) = 0 be such a yield function for the problem at hand. Note that the arguments of F are

motivated by classical thermodynamics as demonstrated by the developments of the previous section. As

noted in [52] maximum plastic dissipation implies the following:

(a) associativity of the flow rule in stress space,
_�p ¼ _k
oF
or0 ; � _Sr ¼ _k

oF
os

; _#
a;p ¼ _k

oF
opa

����
a¼w;a

; _#
s;p ¼ _k

oF
op

; ð3:2Þ
(b) associativity of the hardening in the sense
_n ¼ _k
oF
oq

; where q ¼ � oW
on

; ð3:3Þ
(c) loading/unloading conditions in Kuhn–Tucker form
_kP 0; F 6 0; _kF ¼ 0; ð3:4Þ

and, finally,

(d) convexity of the yield function F.

Implied above is that the yield function F may depend on s, pw, and pa, even if these three variables are

not mutually independent. Obviously, one can construct more elaborate delineations of F, say,
F ðr0; s; pw; pa; p; qÞ ¼ F 1ðr0; s; q1Þ þ F 2ðpw; pa; p; q2Þ ¼ 0; ð3:5Þ

where q1 [ q2 = q, or even �break down� F2 further to reflect yield conditions for the individual phases. In

this case, requiring that both F1 and F2 vanish results in two yield functions, two sets of Kuhn–Tucker
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loading/unloading conditions, two non-negative plastic multipliers _k1 and _k2, etc. However, this elaborate

treatment is deemed unnecessary at this point since current limitations in experimental capabilities al-

ready inhibit a precise characterization of the plastic evolution in the solid matrix, let alone the plasticities

in the individual constituent phases. If we drop the function F2 altogether, then pw and pa enter into the

expression for the yield function F only through the suction stress s, and thus _#
a;p � 0 for a = s, w, a,

which implies that the individual constituent phases are assumed to behave elastically. In fact, in the fol-

lowing developments we shall assume further that the solid phase is incompressible, which is typical for

soil grains (relative to the water and air phases). Thus, the expression for the maximum plastic dissipation

reduces to
r0 � r0
r� �

: _�p � n s� s
r

� �
_Sr þ q� q

r
� �

� _n P 0: ð3:6Þ
Thus, a yield function of the form F(r 0, s, q) = 0 would guarantee maximum dissipation if
_�p ¼ _k
oF
or0 ; � _Sr ¼ _k

oF
os

; _n ¼ _k
oF
oq

: ð3:7Þ
Note again that the inclusion of s in the arguments of F is motivated by thermodynamic considerations.

In reality, the developments shown above are only useful theoretically but generally cannot reproduce

observed soil behavior since soils do not obey any of the normality rule in the sense of (3.7). In the follow-

ing section we describe a constitutive framework, based on Cam-Clay plasticity theory, that more accu-
rately captures the observed mechanical behavior of partially saturated soils. This model does not satisfy

any of the three equations in (3.7), and some authors have even noted that the resulting yield function is

non-convex [53,54]. We show in Section 4.4 that this lack of convexity of the yield function does not engen-

der any numerical problem with regard to the implementation of the widely used return mapping algorithm

of computational plasticity.

3.2. Constitutive framework

We recall from the previous section that the constitutive laws must relate: (a) the evolution of the con-

stitutive effective stress r 0 with imposed solid matrix deformation �; (b) the degree of saturation Sr with suc-

tion stress s; (c) the intrinsic mass densities with intrinsic pressures on all three phases; and (d) the relative

flow vector ~va with intrinsic pressure pa for the water and air phases. We elaborate each aspect of these con-

stitutive relations in the following.

(1) Constitutive model for solid matrix. For the solid matrix we assume an elastoplastic behavior de-

scribed by a yield function of the form F = F(r 0, s, pc) = 0, where the scalar variable pc now takes the role

of q in the argument of F representing a stress-like plastic internal variable at zero suction. We then assume
a rate expression for the effective constitutive stress r 0 of the form
_r0 ¼ ce : ð _�� _kgÞ; g ¼ oG
or0 ; ð3:8Þ
where ce = o2W/o�eo�e is the Hessian of the free energy function W, _� is the total strain rate tensor, G is the
plastic potential function, and _k is a non-negative plastic multiplier satisfying the usual Kuhn–Tucker

conditions
_kP 0; F ðr0; s; pcÞ6 0; _kF ðr0; s; pcÞ ¼ 0: ð3:9Þ

Next, we consider a phenomenological hardening law of the form
_pc ¼ _khðr0; pcÞ; ð3:10Þ
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where h is a scalar-valued function. Many constitutive hardening laws for geomaterials can be cast in the

above form. For Cam-Clay-type models _pc usually varies with _k through the volumetric component of the

plastic strain, _�pv ¼ trð _�pÞ ¼ _ktrðgÞ. The quantity h is generally a function of r 0 and even pc itself. The con-

sistency condition can be written as
_F ¼ f : _r0 þ u_s� H _k ¼ 0; ð3:11Þ
where
f ¼ oF
or0 ; u ¼ oF

os
; H ¼ � oF

opc
hðr0; pcÞ; ð3:12Þ
with H being the generalized plastic modulus. For a constant s the sign of H determines the type of re-

sponse: hardening if H > 0, softening if H < 0, and perfectly plastic if H = 0. Note that for a non-stationary

s the sign of H alone does not determine whether the material is hardening, softening, or exhibiting a per-

fectly plastic response.
Solving for the plastic multiplier gives
_k ¼ 1

v
ðf : ce : _�þ u_sÞ; v ¼ f : ce : g þ H : ð3:13Þ
Since _k > 0 and v > 0 for a plastic process (the latter inequality is required for an acceptable material re-

sponse, see [55]), we must have
f : ce : _�þ u_s > 0: ð3:14Þ

Note that the sign of the scalar product f : ce : _� alone does not determine whether the material is yielding

plastically or unloading elastically; the variation of s also must be considered. With the above form for _k,
the rate constitutive equation now becomes
_r0 ¼ cep : _�� 1

v
ðce : gÞu_s; ð3:15Þ
where
cep ¼ ce � 1

v
ce : g � f : ce ð3:16Þ
is the elastoplastic constitutive tensor. If _s ¼ 0 we recover the classical elastoplastic constitutive relations.

(2) Degree of saturation–matrix suction relation. A number of phenomenological relationships exist relat-

ing the matrix suction s to the degree of saturation Sr (e.g., the Brooks–Corey [56] and van Genuchten [57]

relations). For isothermal loading we consider a constitutive relation of the form
Sr ¼ SrðsÞ; ð3:17Þ

This law may be influenced by the so-called air entry value (or bubbling pressure), which is the character-

istic pressure required before the air enters the pores. The material time derivatives, again following the

motion of the solid matrix, are given by
_Sr ¼ S0
rðsÞð _pa � _pwÞ: ð3:18Þ
The slope S0
rðsÞ determines the rate of change of Sr as a function of the rate of change of s.

(3) Intrinsic mass density–intrinsic pressure relations. The intrinsic mass densities and intrinsic pressures

on all three phases are related by the bulk moduli of the corresponding constituent phases, scaled by the

intrinsic mass densities, see (2.9). The bulk moduli Ks and Kw are available from handbooks of material
properties [58], and Ks for solids may be considered infinite for practical purposes. The bulk modulus Ka
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of the air phase typically depends on the temperature; however, for isothermal deformations Boyle–Mar-

iotte�s law may be assumed to hold [59], i.e., paVa = paMa/qa = constant, and thus we have
_ðpaMa=qaÞ ¼ 0: ð3:19Þ

Expanding the derivative, noting that _pa ¼ p0aðqaÞ _qa for barotropic flows, and using the definition of the

bulk modulus for the air phase, we get
qapa
Ma

_Ma þ ðKa � paÞ _qa ¼ 0; ð3:20Þ
where _Ma is the net change in the total air mass contained in the volume V of the moving solid matrix. If the

mass Ma is conserved in the volume V then _Ma ¼ 0 and we get Ka = pa, i.e., the bulk modulus Ka is equal to

the (absolute) intrinsic air pressure pa.
(4) Diffusion constitutive relations. We seek constitutive laws relating the relative flow vector ~va ¼ /a~va to

the intrinsic pressure pa for a = w, a. Alternatively, we can relate ~va ¼ va � v to the internal body force ha

via the constitutive equations
ha ¼ �na � ~va; ð3:21Þ

where
na ¼ ð/aÞ2 ka

la

� ��1

ð3:22Þ
are symmetric positive-definite second-order tensors. The term ka (with dimension L2, or Darcy, as used in

the oil industry) is the tensor of specific or intrinsic permeabilities of the a pore, and la is the viscosity of the
a permeant. However, balance of momentum for the two fluid phases gives
ha ¼ gradð/apaÞ þ qaðaa � gÞ; ð3:23Þ

where aa ¼ _va. Thus, combining (3.21) and (3.23) gives the desired diffusion constitutive relations (see also

[60,61]).

3.3. Shear band analyses

The model described above is suitable for strain localization analysis into tabular deformation bands.

Under conditions of locally drained and locally undrained deformations, criteria for the emergence of a

tabular deformation band may be formulated. To capture a tabular deformation band, and following

the notation of [62], we define a velocity field by the ramp-like relation
v ¼
�v if g6 0;

�vþ gsvt=h if 06 g6 h;

�vþ svt if gP h;

8><
>: ð3:24Þ
where �v is a continuous velocity field and svt represents the relative velocity of the opposite faces of the

band. Assuming svt is uniform over Ŝ, the corresponding velocity gradient fields outside and inside the

band take the form
l ¼ r�v in X n �D;

r�vþ ðsvt� nÞ=h in D

�
ð3:25Þ
where D ¼ S� ð0; hÞ is the open band domain, �D is the closure of D, and n is the unit normal vector to the

band (since h is assumed small, nmay be taken as normal to eitherS or Ŝ). We note that the orientation of
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n is perfectly symmetric in the sense that it may be directed either outward or inward to the band. The

velocity gradient is thus discontinuous across the band, and upon evaluating just inside and just outside

the surface of discontinuity we obtain the relations
l1 ¼ l0 þ 1

h
svt� n () _�1 ¼ _�0 þ 1

h
symðsvt� nÞ; ð3:26Þ
where _�1 ¼ symðl1Þ and _�0 ¼ symðl0Þ. Throughout this paper we will use the superscript symbols ‘‘1’’ and

‘‘0’’ to refer to points on S interpreted to lie just inside and just outside this surface, respectively.

From (2.31) the total Cauchy stress rate tensor can be obtained from the chain rule as
_r ¼ _r0 � _p1; _p ¼ Sr _pw þ ð1� SrÞ _pa; Sr :¼ Sr þ S0
rðsÞs; ð3:27Þ
where we have used (3.18) for _SrðsÞ. We recall the effective constitutive stress rate _r0 to have the form
_r0 ¼ cep : _�� u
v
ðce : gÞ_s; _s ¼ _pa � _pw; ð3:28Þ
where _� is the strain rate in the solid matrix and _s is the matrix suction rate.

We first consider the case of fully drained condition. In this case the Cauchy stress rate just outside the

band is given by
_r0 ¼ cep : _�0 � u
v
ce : g þ ð1� SrÞ1

� �
_p0a þ

u
v
ce : g � Sr1

� �
_p0w; ð3:29Þ
whereas the Cauchy stress rate just inside is
_r1 ¼ cep : _�1 � u
v
ce : g þ ð1� SrÞ1

� �
_p1a þ

u
v
ce : g � Sr1

� �
_p1w: ð3:30Þ
By fully drained condition we mean that the pore pressures inside and outside the band are continuous, i.e.,
_p0a ¼ _p1a, and _p0w ¼ _p1w. Continuity of the incremental traction vector then requires that
n � _r0 ¼ n � _r1: ð3:31Þ

This results in the usual localization condition
A �m ¼ 0; A ¼ n � cep � n: ð3:32Þ

In the above, A is the elastoplastic acoustic tensor calculated from the elastoplastic constitutive operator cep

for the underlying drained solid, and m is the unit vector in the direction of the jump velocity vector svt.
Observe that the effect of the matrix suction enters only through the elastoplastic constitutive tensor cep of
the underlying drained solid.

Next we consider the problem of locally undrained deformation. By fully undrained condition we mean
that va = vw = v, i.e., all three phases move as one material and thus the masses of the pore air and pore

water phases are conserved in the motion of the solid matrix. This means that it is possible to calculate

the pore air and pore water pressures from the motion of the solid matrix alone, and thus their bulk stiff-

nesses can be statically condensed with the elastoplastic constitutive tensor cep for the drained solid to arrive

at a total undrained elastoplastic constitutive tensor for the entire three-phase mixture.

Without loss of generality, we assume in the following that the solid grains are incompressible relative to

the water and air phases. This is a reasonable assumption in a majority of cases; if we insist to include the

solid grain compressibility in the formulation, the developments presented below require only simple mod-
ifications. With this assumption, we then rewrite the balance of mass for the solid phase, (2.10a), as
_/
s ¼ �/sdivðvÞ; ð3:33Þ
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where a simple overdot has been used since the three phases move together as one body and thus there is no

ambiguity as to what motion we follow. From the relations
/w ¼ ð1� /sÞww; /a ¼ ð1� /sÞwa; ww ¼ Sr; wa ¼ 1� Sr; ð3:34Þ
we get
_/
w ¼ ð1� /sÞ _ww � ww _/

s
; _/

a ¼ ð1� /sÞ _wa � wa _/
s
; ð3:35Þ
where
_w
w ¼ � _w

a ¼ _Sr ¼ S0
rðsÞð _pa � _pwÞ: ð3:36Þ
The last equation emanates from the assumed constitutive relation between the degree of saturation and the

matrix suction.

We now use (3.33), along with (3.35) and (3.36), to rewrite the balance of mass for the water phase,

(2.10b) with ww = 0, as
S0
rðsÞð1� /sÞ _pa þ

/w

Kw

� S0
rðsÞð1� /sÞ

� �
_pw ¼ �wwdivðvÞ; ð3:37Þ
and the balance of mass for the air phase, (2.10c) with wa = 0, as
/a

Ka

� S0
rðsÞð1� /sÞ

� �
_pa þ S0

rðsÞð1� /sÞ _pw ¼ �wadivðvÞ: ð3:38Þ
We see that the expressions for _pa and _pw may be uncoupled when S0
rðsÞ ¼ 0, which occurs when the solid

matrix is either nearly wet or nearly dry (see Section 5). The partially saturated case requires a simultaneous
solution of these equations in general, which gives
_pa ¼ �k
a
divðvÞ; _pw ¼ �k

w
divðvÞ; ð3:39Þ
where
k
a ¼ 1

D
S0
rðsÞð1� /sÞ � wa/w

Kw

� �
; ð3:40aÞ

k
w ¼ 1

D
S0
rðsÞð1� /sÞ � ww/a

Ka

� �
; ð3:40bÞ

D ¼ S0
rðsÞð1� /sÞ /w

Kw

þ /a

Ka

� �
� /a/w

KaKw

: ð3:40cÞ
We now reformulate the elastoplastic constitutive operators for a three-phase mixture moving as one

body. Noting that _s ¼ �ðka � k
wÞdivðvÞ and divðvÞ ¼ 1 : _� for infinitesimal deformation, the effective con-

stitutive stress rate _r0 from (3.28) reduces to the form
_r0 ¼ cep : _�; cep ¼ cep þ u
v
ðka � k

wÞce : g � 1: ð3:41Þ
The total stress rate _r from (3.27) becomes
_r ¼ ~cep : _�; ~cep ¼ cep þ k
v
1� 1; ð3:42Þ
where
k
v ¼ Srk

w þ ð1� SrÞk
a ð3:43Þ
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is the average bulk modulus of the void, Sr ¼ Sr þ S0
rðsÞs, and ~cep is the undrained elastoplastic constitutive

tensor of the total mixture. The modulus k
v
relates the weighted pore pressure rate _p (see (2.31) and (2.34))

to the volumetric strain rate of the solid matrix, div(v), under a locally undrained condition, i.e.,
_p ¼ �k
v
divðvÞ: ð3:44Þ
When the material is nearly dry Sr � 0, which gives k
v � k

a ¼ Ka=/
a. Similarly, S � 1 when the material is

nearly saturated, which gives k
v � k

w ¼ Kw=/
w. This suggests a range Ka=ð1� /sÞ6 k

v
6Kw=ð1� /sÞ,

where (1 � /s) � n is the porosity of the mixture. In reality, the formulation for partially saturated medium

does not allow the degree of saturation to equal zero or unity exactly, as elaborated in the next section.

The condition for the emergence of a tabular deformation band for a three-phase mixture under a locally

undrained condition is as follows. Let _r0 ¼ ~cep : _�0 and _r1 ¼ ~cep : _�1, continuity of the incremental traction

vector, n � _r0 ¼ n � _r1, results in the localization condition
~A �m ¼ 0; ~A ¼ n � ~cep � n: ð3:45Þ

Note that the acoustic tensor ~A is now calculated from the total elastoplastic constitutive operator ~cep for

the entire mixture. Because the pore air and pore water pressures depend on the motion of the solid matrix,

which in turn admits a possible discontinuity in the form of a jump in the velocity gradient field, the above

undrained formulation likewise admits a possible jump in the incremental pore air and pore water pressures

across the band.
4. Formulation and implementation of a constitutive model

Enhanced versions of Cam-Clay-type models have been developed over the years to capture the mechan-

ical behavior of partially saturated soils [6–9,14,15]. These models contain the suction stress s as an addi-

tional variable, which influences the effective size of the elastic region as well as the amount of plastic

deformation. In the limit of full saturation they reduce to classical Cam-Clay plasticity models. In the pres-

entation below we describe a particular version that we have implemented using the classical return map-

ping algorithm of computational plasticity. To limit the scope of the presentation we shall focus only on the
infinitesimal case and address finite deformation effects in a future work.

4.1. Analytical model

The first element of the model describes the non-linear elastic response. Here, we assume a free energy

function of the form
W ¼ Weð�eÞ þ Ŵð~uw; ~ua; #s;e; #w;e; #a;e; nÞ; ð4:1Þ

where We(�e) is the stored elastic strain energy. The effective constitutive stress r 0 may thus be expressed as
r0 ¼ oWe

o�e
: ð4:2Þ
Specifically, we assume that We takes the form (see [34,35] for further details)
Weð�eÞ ¼ ~W
eð�evÞ þ

3

2
le�e2s ; ð4:3Þ
where
~W
eð�evÞ ¼ �p0~j expx; x ¼ � �ev � �ev0

~j
; le ¼ l0 þ

a
~j
~W

eð�evÞ: ð4:4Þ
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The independent variables are the infinitesimal volumetric and deviatoric strain invariants
�ev ¼ trð�eÞ; �es ¼
ffiffiffi
2

3

r
keek; ee ¼ �e � 1

3
�ev1: ð4:5Þ
The required material parameters are the reference strain �ev0 and reference pressure p0 of the elastic com-

pression curve, and the elastic compressibility index ~j. The above model produces pressure-dependent elas-

tic bulk and shear moduli, in accord with an accepted soil behavioral feature. The model permits the

capture of a constant elastic shear modulus le = l0 by setting a = 0 in (4.4). This non-linear elasticity model
is conservative in the sense that no energy is generated or lost in a closed loading cycle [63]. That We has

been isolated from s implies that the suction stress does not influence the elastic response, see also [6].

The second element of the formulation describes the plasticity model. Here, we first define the volumetric

and deviatoric stress invariants of r 0 as
p0 ¼ 1

3
trðr0Þ; q ¼

ffiffiffi
3

2

r
ksk; s ¼ r0 � p01: ð4:6Þ
Note the boldfaced symbol s for the deviatoric Cauchy stress tensor should not be confused with the light-

faced symbol s for the suction stress. More specifically, we assume a two-invariant yield function of the form
F ðr0; s; pcÞ ¼
q2

M2
þ ðp0 � p0sÞðp0 � pcÞ ¼ 0: ð4:7Þ
This yield surface has the shape of an ellipsoid in principal stress space, with the hydrostatic axis as the

generating axis. The parameter M is related to the internal friction angle of the material and defines the

geometric axis ratio of the ellipsoid. The �noses� of the ellipsoid on the hydrostatic axis where q = 0 have

coordinates p0 ¼ p0s P 0 and p 0 = pc < 0, see Fig. 1.

The first coordinate p0s captures the apparent adhesion developed in the material resulting from the appli-

cation of the matrix suction. Theoretically speaking, p0s ¼ 0 in the effective constitutive stress formulation, but
in a net stress formulation the yield surface shifts to the tension side to accommodate the suction-dependency

of the critical state line [6]. To accommodate both formulations, and to show that the performance of the

algorithm is not affected by the presence of this additional stress variable, we shall take the form
p0s ¼ ks; ð4:8Þ

where k is a dimensionless material parameter that can be set equal to zero or greater than zero depending
on the type of stress formulation.

The second coordinate pc is the effective preconsolidation stress, which is assumed to vary with the plastic

volumetric strain �pv and the matrix suction s. The word �effective� is used for pc to suggest that the active yield
q

p'

M

ξ > 0

pc
pc p's

ξ = 0

Fig. 1. Yield surface on the p 0–q plane.
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function can expand or shrink depending on the applied matrix suction s, even in the absence of any plastic

deformation [14]. For the evolution of pc we adopt the compressibility law proposed by Gallipoli et al. [15], a

variant of the evolution law proposed by Loret and Khalili [14] based on the notion of effective stresses, ex-

cept that we now use the specific volume v = 1 + e (defined as the total volume of the mixture for a unit vol-

ume of the solid phase) in lieu of the void ratio e. The use of the specific volume v is consistent with the
bilogarithmic compressibility law proposed by Butterfield [64], and is shown in [34] to lead to an analytical

formulation amenable to implicit numerical integration. The expression for pc is (see Eq. (10) of [15])
pc ¼ � exp½aðnÞ�ð�pcÞ
bðnÞ

; ð4:9Þ

where
aðnÞ ¼ N ½cðnÞ � 1�
~kcðnÞ � ~j

; bðnÞ ¼
~k� ~j

~kcðnÞ � ~j
: ð4:10Þ
Note the typographical error for a(n) in Eq. (10) of [15] where the term ‘‘1 + N’’ should read simply as ‘‘N.’’

The scalar dimensionless quantity n P 0 in (4.9) is called the �bonding variable� and has a minimum

value of zero in the fully saturated limit. It varies with the air void fraction (1 � Sr) and a suction function
f(s) according to the equation
n ¼ f ðsÞð1� SrÞ; f ðsÞ ¼ 1þ s=patm
10:7þ 2:4ðs=patmÞ

; ð4:11Þ
where patm = 101.3 kPa = 14.7 psi is the (normalizing) atmospheric pressure. The suction function f(s) is a

hyperbolic approximation to the curve developed by Fisher [65] describing the meniscus-induced interpar-

ticle force between two identical spheres (see Fig. 2); as s increases this interparticle force increases, and thus

the function f(s) increases. The void fraction (1 � Sr), on the other hand, accounts for the number of water
menisci in the partially saturated mixture, reducing to zero in the perfect saturation limit. For isothermal

deformations Sr may be expressed as a function of s alone, and below we adopt the relation between Sr and

s proposed by van Genuchten [57] as
Sr ¼ S1 þ ðS2 � S1Þ 1þ s
sa

� �n� ��m

; ð4:12Þ
where S1 is the residual degree of saturation below which it is no longer possible to withdraw water from the

pores (which has a value somewhat greater than zero), S2 is the maximum degree of saturation on subse-
quent wetting of the soil (which has a value somewhat less than unity due to trapped air bubbles), sa is the

air entry value, or bubbling pressure, and m and n are parameters to fit the experimental data. We see that

for isothermal deformations within the degree of saturation range S1 < Sr < S2, nmay be expressed in terms

of s alone. Typical plots of the Sr � s functions for silt and marl are shown in Fig. 3 [2,3].

The parameter c(n) represents the ratio between the specific volume v of the virgin compression curve in

the partially saturated state to the corresponding specific volume vsat in the fully saturated state. That this

ratio is a unique function of n has been demonstrated by Gallipoli and co-workers [15] to be true for various

soils. Strictly, Gallipoli and co-workers showed that the ratio between the void ratio e in the partially sat-
urated state to the corresponding void ratio esat in the fully saturated state is given by the curve
e
esat

¼ 1� ~c1½1� expðc2nÞ�; ð4:13Þ
where ~c1 and c2 are fitting parameters. Thus, the corresponding ratio of specific volumes is
cðnÞ :¼ v
vsat

¼ 1þ e
1þ esat

¼ 1=esat þ e=esat
1=esat þ 1

¼ 1� c1½1� expðc2nÞ�; ð4:14Þ
where c1 ¼ ~c1=ð1=esat þ 1Þ.
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In the fully saturated regime c(n) = 1, a(n) = 0, and b(n) = 1, and thus, pc ¼ pc. Thus, pc < 0 is the satu-

rated preconsolidation stress, the value which pc tends to in the limit of full saturation. The word �saturated�
is used for pc to suggest that it varies with the plastic deformation alone, and so it may be considered as the
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plastic internal variable of the material model. The evolution of pc may be obtained from the commonly

used bilogarithmic compressibility law for a perfectly saturated soil,
vsat ¼ N � ~k ln pc; ð4:15Þ
where N is the reference value of vsat at unit saturated preconsolidation stress, and ~k > ~j is the virgin com-

pression index for the saturated soil. Solving for pc and subtracting the elastic part gives the plastic hard-

ening relation
_pc ¼
�pc
~k� ~j

trð _�pÞ: ð4:16Þ
Note that the sign of _pc follows the sign of trð _�pÞ: negative (hardening) under plastic compaction, i.e., the

size of the yield surface is increasing, positive (softening) under plastic dilation, and perfect plasticity at the
critical state.

A final component of the model is the flow rule defining the direction of the plastic strain rate. Alonso

et al. [6] proposed a non-associative flow rule based on a plastic potential function G such that
_�p ¼ _k
oG
or0 ¼ _k

1

3
ð2p0 � p0s � pcÞ1þ

2qb

M2

ffiffiffi
3

2

r
s

ksk

" #
; ð4:17Þ
where b is a constant that can be derived by requiring that the direction of the plastic strain rate for zero

lateral deformation agrees with the measured value of the coefficient of lateral stress K0 at the one-dimen-

sional constrained compression state (see Appendix 1 of [6]). If b = 1, then we have the case of associative

plastic flow. The non-negative consistency parameter _k satisfies the standard Kuhn–Tucker loading–

unloading conditions of plasticity theory.
4.2. Return mapping algorithm

From the standpoint of numerical integration at the local (Gauss point) level, the problem is to find the

evolutions of r 0 and pc corresponding to prescribed incremental solid matrix strain tensor D� and incremen-

tal matrix suction Ds, assuming their initial values are given at time tn. For loading simulations character-

ized by a constant matrix suction s, the procedure is identical to the classical return mapping algorithm of

computational plasticity. However, for a variable matrix suction the increment of s also must be prescribed
in addition to the incremental strain tensor to drive the algorithm.

The steps necessary to carry out the return mapping algorithm for the constitutive model are summa-

rized in Box 1. The box shows an operator split consisting of an elastic predictor followed by a plastic cor-

rector, where the plastic corrector is triggered by the non-satisfaction of the yield criterion (Steps 1–3). If

plastic yielding is detected in the elastic predictor phase, then the discrete plastic multiplier Dk is determined

iteratively as elaborated in the following paragraphs. Note that �e tr, s, and n are all fixed during the local

iteration phase (Step 4), although they themselves are iterated at the global (FE) level. Once Dk has been

determined, the plastic corrector update can be performed (Step 5).
To accommodate stress-dependent elastic moduli in Step 4 of Box 1, it is convenient to perform the re-

turn mapping in the strain invariant space (see [34] for details). The idea is as follows. First, we pre-multiply

(3.1) by the compliance tensor (ce)�1 and integrate to obtain
_�e ¼ _�� _k
oG
or0 ) �e ¼ �e tr � Dk

oG
or0 ð4:18Þ
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where �e ¼ �en þ D�e, �e tr ¼ �en þ D�, and Dk > 0 is the discrete consistency parameter. The above equation

can thus be viewed as a sequence of operations involving an elastic trial strain predictor followed by a plas-

tic corrector. For two-invariant plasticity models we can reduce the above tensorial equation to a pair of

scalar equations. Taking the volumetric and deviatoric parts gives
Ste

Ste

Ste

Ste

Ste
�ev ¼ �e tr
v � Dk

oG
op0

; ee ¼ ee tr � Dk
oG
os

; ð4:19Þ
where oG/os = (oG/oq)(3/2q)s. Now, since ee/keek = s/ksk from the coaxiality of the elastic strain and effec-
tive constitutive stress tensors, the return mapping simplifies to a pair of scalar equations
�ev ¼ �e tr
v � Dk

oG
op0

; �es ¼ �e tr
s � Dk

oG
oq

; ð4:20Þ
where �ev and �es are defined in (4.5). Note that the normalized deviatoric tensor n̂ ¼ ee tr=kee trk ¼ ee=keek
can be evaluated from the predictor values alone. From the flow rule (4.16), we easily get (see [34] for

details)
oG
op0

¼ 2p0 � p0s � pc; p0 ¼ p0 expx 1þ 3a
2~j

ð�esÞ
2

� �
; ð4:21aÞ

oG
oq

¼ 2b

M2
q; q ¼ 3ðl0 � ap0 expxÞ�es: ð4:21bÞ
Box 1. Return mapping algorithm for a hyperelastic–plastic constitutive model
p 1. Compute �e tr ¼ �en þ D�; ee tr = dev(�e tr); n̂ ¼ ee tr=kee trk; s = sn + Ds; Sr = Sr(s); p0s ¼ ks;
n = f(s)(1 � Sr); calculate c(n), b(n), and a(n).

p 2. Elastic predictors: r 0tr = oWe/o�e tr; ptrc ¼ pc;n; p
tr
c ¼ � exp½aðnÞ�ð�ptrc Þ

bðnÞ
.

p 3. Check if yielding: F ðr0tr; s; ptrc Þ > 0?
No, set �e = �e tr; pc ¼ ptrc and exit.

p 4. Yes, solve F(Dk) = 0 for Dk, see Box 2.

p 5. Plastic correctors: �e ¼ �ev1=3þ
ffiffiffiffiffiffiffiffi
3=2

p
�es n̂; pc ¼ pc;n exp½ð�ev � �e tr

v Þ=ð~k� ~jÞ� and exit.
So far the return mapping algorithm appears identical to the standard return maps for a Cam-Clay

model. Below we show that the effect of partial saturation is to slightly alter the discrete consistency con-

dition to include the presence of the matrix suction. First, we integrate (4.16) exactly to obtain the evolution

of the saturated preconsolidation stress as
pc ¼ pc;n exp
�ev � �e tr

v

~k� ~j

� �
; ð4:22Þ
where pc,n is the given value at the beginning of the load increment. Now, for a given matrix suction s we

can calculate the corresponding bonding variable n and obtain the evolutions of p0s and �pc, which we recall
below as
p0s ¼ ks; pc ¼ � exp½aðnÞ�ð�pcÞ
bðnÞ

: ð4:23Þ

Imposing the discrete consistency condition then gives
F ¼ q2

M2
þ ðp0 � p0sÞðp0 � pcÞ ¼ 0; ð4:24Þ
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where p 0 and q are defined in terms of the volumetric and deviatoric elastic strain invariants alone, accord-

ing to (4.21), but are otherwise unaffected by the matrix suction s. Thus, s affects the return mapping algo-

rithm only through the variables p0s and pc of the discrete consistency condition.

To solve for Dk in Step 4 of Box 1, we construct a residual vector r and a vector of unknowns x, with
elements
r ¼
�ev � �e trv þ Dk op0G

�es � �e trs þ Dk oqG

F

8><
>:

9>=
>;; x ¼

�ev
�es
Dk

8><
>:

9>=
>;: ð4:25Þ
The driving forces in this problem are the fixed trial elastic strains �e trv and �e trs , and the matrix suction s.

Note that even in the absence of imposed incremental strains a residual component could result from pre-

scribing an incremental matrix suction s, thus violating the discrete consistency condition and driving the

iterative algorithm. This would be the case, for example, when the matrix suction is reduced resulting in a

�wetting collapse� phenomenon as elaborated in [6].

To dissipate the residual vector we need a tangent operator for local Newton iteration. In the following

we shall adopt the procedure in [34] and construct such a consistent tangent operator, highlighting precisely
where the matrix suction enters into the algorithm. First, we recall the elastic tangential relation
dp0

dq

� 

¼ De

d�ev
d�es

� 

; ð4:26Þ
where De is a 2 · 2 Hessian matrix of We of the form
De ¼
De

11 De
12

De
21 De

22

� �
¼

o2�ev�ev o2�ev�es

o2�es�ev o2�es�es

" #
We ¼

�p0=~j ð3p0a�es=~jÞ expx
ð3p0a�es=~jÞ expx 3le

� �
: ð4:27Þ
Next, we define a 2 · 2 Hessian matrix of the plastic potential function G of the form
H ¼
H e

11 H e
12

H e
21 H e

22

� �
¼

o2p0p0 o2p0q

o2qp0 o2qq

" #
G ¼

2 0

0 2b=M2

� �
; ð4:28Þ
from which we construct
K ¼
K11 K12

K21 K22

� �
:¼ HDe: ð4:29Þ
The consistent tangent operator then takes the form
r0ðxÞ ¼
1þ DkðK11 þ Kpo

2
p0pc

GÞ DkK12 op0G

DkðK21 þ Kpo
2
qpc
GÞ 1þ DkK22 oqG

De
11op0F þ De

21oqF þ KpopcF De
12op0F þ De

22oqF 0

2
64

3
75; ð4:30Þ
where op0F ¼ op0G ¼ 2p0 � p0s � pc; oqF = 2q/M2; oqG = 2bq/M2; opcF ¼ �ðp0 � p0sÞ; o
2
p0pc

G ¼ �1; o2qpcG ¼ 0;

and Kp ¼ opc=o�
e
v ¼ bðnÞpc=ð~k� ~jÞ. The form for r 0(x) is clearly similar to that employed in [34] for the

standard Cam-Clay return mapping, the only major difference being that the effective preconsolidation
stress pc is now used for the partially saturated formulation. This suggests that from the implementational

standpoint the present (local) stress-point integration algorithm is practically the same as that used for the

perfectly saturated Cam-Clay model. However, some additional coding effort may be required at the global

level to consistently linearize the suction term, in addition to the elastic trial strains, which were both held

fixed at the local iteration level.
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The local Newton iteration algorithm is summarized in Box 2. Once the converged value of x, denoted as

x* in Box 2, has been determined, the elastic strain tensor for the solid matrix can be calculated as
Ste

Ste

Ste

Ste

Ste
�e ¼ 1

3
�ev1þ

ffiffiffi
3

2

r
�es n̂; ð4:31Þ
from which the effective constitutive Cauchy stress tensor is obtained as
r0 ¼ p01þ
ffiffiffi
2

3

r
qn̂; ð4:32Þ
where n̂ ¼ ee tr=kee trk.

Box 2. Structure of local Newton iteration algorithm. Typical value of etol <10�10
p 1. Initialize k = 0; Dkk = 0; �e;kv ¼ �e trv ; �e;ks ¼ �e trs .

p 2. Assemble r(xk).
p 3. Check convergence: krðxkÞk 6 etolkrðx0Þk?

Yes, set x* = xk and exit.
p 4. No, construct a = r 0(xk).
p 5. Set xk + 1 = xk � a�1 Æ r(xk); k = k + 1; and go to Step 2.
4.3. Constitutive tangent operators

In this section we develop expressions for the drained and undrained constitutive tangent operators use-

ful for the construction of the corresponding elastoplastic acoustic tensors.

We also describe how the matrix suction impacts the condition for the onset of a deformation band.

First, we recall from (3.16) the following expression for the drained elastoplastic constitutive operator

cep relating the effective constitutive Cauchy stress rate _r0 to the solid matrix strain rate _�,
cep ¼ ce � 1

v
ce : g � f : ce; v ¼ f : ce : g þ H : ð4:33Þ
The tangential elasticity tensor ce has the explicit form [34]
ce ¼ Ke1� 1þ 2le I � 1

3
1� 1

� �
þ

ffiffiffi
2

3

r
deð1� n̂þ n̂� 1Þ; ð4:34Þ
where Ke ¼ �p0=~j > 0 is the tangential elastic bulk modulus, le ¼ l0 � ap0 expx > 0 is the tangential

elastic shear modulus, de ¼ ð3p0a�es=~jÞ expx < 0 is a tangential coupling modulus, I is the rank-four iden-
tity tensor, and n̂ ¼ ee=keek. Note that if de 5 0 an elastic coupling between the volumetric and deviatoric

responses is generated due to enforcing a linear dependence of Ke and le on the mean normal stress p 0; oth-

erwise, if de = 0 no such coupling exists, which would be the case if le = l0 = constant. Since the elastic re-

sponse is assumed independent of the suction, ce is the same for partially and fully saturated cases.

The chain rule on the yield function gives
f ¼ oF
or0 ¼

1

3

oF
op0

� �
1þ

ffiffiffi
3

2

r
oF
oq

� �
n̂; ð4:35Þ
where
oF
op0

¼ 2p0 � p0s � �pc;
oF
oq

¼ 2q

M2
: ð4:36Þ
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The plastic flow direction takes a similar form,
g ¼ oG
or0 ¼

1

3

oF
op0

� �
1þ

ffiffiffi
3

2

r
b
oF
oq

� �
n̂; ð4:37Þ
where b is the non-associativity parameter. In both f and g the matrix suction enters only through the var-

iables p0s and pc.
Completing the formulation, the scalar product in the expression for v simplifies to
f : ce : g ¼ Ke oF
op0

� �2

þ deð1þ bÞ oF
op0

oF
oq

� �
þ 3ble oF

oq

� �2

> 0: ð4:38Þ
For this product to be strictly positive b must not be too different from unity, thus imposing a limit on the

severity of the non-associative plastic flow. Finally, the plastic modulus H for the constitutive model sim-

plifies to
H ¼ oF
opc

oF
op0

bðnÞ
~k� ~j

pc;
oF
opc

¼ �ðp0 � p0sÞ > 0: ð4:39Þ
In the limit of full saturation pc ¼ pc, p
0
s ¼ 0, and b(n) = 1. Since jpcj > jpcj, the effect of partial saturation is

to increase the absolute value of the plastic modulus relative to its value in the fully saturated case. In other
words, the suction amplifies the hardening response on the compactive side of the yield surface, as well as

amplifies the softening response on the dilatant side. These features in turn influence the deformation and

strain localization behavior of the material, as demonstrated in the next section.

For the locally undrained condition we recall from (4.19)–(4.21) the undrained elastoplastic constitutive

operator ~cep for the total mixture,
~cep ¼ cep þ u
v
ð�ka � �k

wÞce : g � 1þ �k
v
1� 1; ð4:40Þ
where cep is the elastoplastic constitutive operator for the underlying drained solid and �k
v
is a Lamé-like

parameter representing the weighted bulk response of the water and air phases in the void. We note that

the second term on the right-hand side arises from the suction-dependence of the constitutive model for

the drained solid, which destroys the symmetry of the constitutive operator for the entire mixture. The third

term arises from an additive decomposition of the total stress into a constitutive effective stress and linear

fractions of the pore air and pore water pressures. Below we outline the relevant derivatives necessary to
evaluate the operator ~cep.

By definition,
u ¼ oF
os

¼ �ðp0 � pcÞ
op0s
os

� ðp0 � p0sÞ
opc
os

; ð4:41Þ
where
op0s
os

¼ k;
opc
os

¼ opc
on

n0ðsÞ: ð4:42Þ
We recall that pc ¼ pcðpc; nðsÞÞ, and pc is the preconsolidation stress at full saturation and so is not a func-

tion of s, which explains the second part of (4.42). Differentiating pc with respect to the bonding variable n
gives
opc
on

¼ pc½a0ðnÞ þ b0ðnÞ lnð�pcÞ�; ð4:43Þ
where
a0ðnÞ ¼ NbðnÞ
~kcðnÞ � ~j

c0ðnÞ; b0ðnÞ ¼ �~kbðnÞ
~kcðnÞ � ~j

c0ðnÞ; c0ðnÞ ¼ c1c2 expðc2nÞ: ð4:44Þ
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Finally, we obtain from (4.11) the derivative of the bonding variable n with respect to s as
n0ðsÞ ¼ ð1� SrÞf 0ðsÞ � f ðsÞS0
rðsÞ; ð4:45Þ
where
f 0ðsÞ ¼ 10:7=patm
½10:7þ 2:4ðs=patmÞ�

2
ð4:46Þ
and
S0
rðsÞ ¼ �ðS2 � S1Þ

mn
sa

� �
s
sa

� �n�1

1þ s
sa

� �n� ��ðmþ1Þ

: ð4:47Þ
The above tangential relationship for S0
rðsÞ is also necessary for evaluating the coefficients �k

a
and �k

w
.

4.4. Some remarks on non-convexity of the yield function

Recently, some authors [53,54] have noted an important implication of the failure of many plasticity

models for partially saturated soils to satisfy the criteria for maximum plastic dissipation, that of non-con-

vexity of the resulting yield function. This feature manifests itself on a so-called loading collapse (LC) yield
curve representing the plot of the yield function on the p 0–s plane, as depicted in Fig. 4. The lack of con-

vexity occurs along the suction axis near the transition zone from a perfectly saturated state to a partially

saturated state (s � 0). Wheeler et al. [53] noted (p. 1569) that there is no conclusive experimental evidence

to show whether non-convex sections of LC yield curve do occur in practice, but this feature is likely to

cause practical problems in numerical analysis employing a stress return mapping algorithm. This is not so.

From a numerical standpoint, the lack of convexity of a yield function could result in two types of prob-

lems: (a) with a large load increment the elastic stress predictor could overshoot the plastic region on the

non-convex side resulting in an underestimation of the cumulative plastic strain (Fig. 4); and (b) the algo-
rithm could result in a non-unique plastic return map due to the existence of more than one normal plastic

direction to the yield surface on the non-convex side. The first problem can, of course, be circumvented

trivially by reducing the load increment. The second problem is more serious for a general non-convex yield

surface. However, the non-convexity pointed out in [53,54] occurs only on the suction axis, and since the

suction stress s is held fixed during the plastic corrector phase (see Box 1), the return direction is unique

(provided of course that the yield function F(r 0, s, pc) = 0 is convex for a fixed s). We recall that s = pa � pw,

and s can only be determined on the global level by applying field equations to determine pa and pw. In

other words, on the local level there is no return map on the suction axis that causes the numerical problem
pointed out in [53,54].
5. Simulations

In this section we illustrate the features of the constitutive model at the local level, including its strain

localization properties. Following the simulation procedure presented in [62], we prescribe different strain

and matrix suction histories and demonstrate the model response along with the performance of the return
mapping algorithm. We emphasize that a complete analysis of the boundary-value problem has the defor-

mation and matrix suction (through the pore air and pore water pressures) as the unknowns, but the per-

formance of the global algorithm relies heavily on what happens at the local level, which is why we have

chosen a deformation/suction-driven format for the present simulations.

The assumed hyperelastic model parameters are: ~j ¼ 0:03, �ev0 ¼ 0, a = 103, and l0 = 0. The elastic

volumetric and deviatoric responses are thus coupled, with a coupling parameter a taking on a value similar
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Fig. 4. Non-convexity of loading collapse yield curve: elastic predictor AB overshoots the plastic region on the non-convex side; elastic

predictor AC detects yielding on the non-convex side and returns to a unique map CD at constant suction s.
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to that determined for Vallericca clay [35]. The assumed plasticity model parameters are M = 1.0, ~k ¼ 0:11,
N = 2.76, k = 0.6, and b = 1.0. These values are approximately the same as those quoted in [6,15] from

model calibration utilizing laboratory test data (the assumed value of b results in associative plasticity,

so we shall study the influence of non-associativity by varying this parameter). The assumed van Genuchten
function parameters are: S1 = 0.25, S2 = 1.00, sa = 20 kPa, n = 2.5, and m = 0.6. These values are the same

as those used in [2,3] for silt, with the exception that they assumed S2 = 0.99 (the assumed value of S2 = 1.00

allows the preconsolidation stress pc to reach a value exactly equal to pc at zero suction). The fitting para-

meter values in the Gallipolli et al. [15] curve are c1 = 0.185 and c2 = 1.42.
5.1. Isotropic stress relaxation due to loss of suction

We assume initial elastic strain �e = 0, initial suction s = 20 kPa, initial preconsolidation pressure
pc = �10 kPa, and p0 = �20 kPa. This leads to initial isotropic stresses r0

11 ¼ r0
22 ¼ r0

33 ¼ �20 kPa, initial

bonding variable n = 0.250, and initial effective preconsolidation pc ¼ �92:7 kPa; hence the stress point

is initially well inside the elastic region. We then decrease the suction in increments of 0.5 kPa while keeping

the total strains fixed. Fig. 5 shows the movement of pc as the suction is decreased from its initial value at

point a until it meets the stress point at b. During this time the zero-suction zone remains stationary, rep-

resented by the dark shaded semi-ellipse on the p 0–q plane passing through point d. As the suction is re-

duced further beyond point b, where n = 0.078, the stress point �relaxes� to c, where n = 0, while the

zero-suction zone concurrently expands to the light shaded semi-ellipse passing through point c due to com-
pative plastic strain induced by the loss of suction. This phenomenon is called �wetting-collapse mechanism�
(see e.g., [6]). If the material had not yielded, the movement of pc beyond point b would have been denoted

by the dashed curve b–d on the v–p 0 plane as shown in Fig. 5.
5.2. Deviatoric stress relaxation due to loss of suction

We assume initial elastic strains �e11 ¼ ��e22 ¼ 0:00351, initial suction s = 20 kPa, and initial preconsoli-

dation pressure pc = �100 kPa, and p0 = �100 kPa. This leads to initial p 0 = �108.6 kPa, q = 126.1 kPa,
n = 0.250, and pc ¼ �740:4 kPa. We then decrease the suction in increments of 0.5 kPa while keeping



3.0

p', kPa

q

p'

ξ = 0.250

ξ = 0.078

M

v

2.8

2.6

2.4

0−100 −80 −60 −40 −20

ξ = 0.250

ξ = 0.078 ξ = 0

a

b

c

d
c

d

a b

pc

ξ = ƒ(s)(1−S  )r

= bonding variable

Fig. 5. Simulation of isotropic stress relaxation induced by loss of suction.

5328 R.I. Borja / Comput. Methods Appl. Mech. Engrg. 193 (2004) 5301–5338
the total strains fixed. Fig. 6 shows the stress point relaxing from b to c as n decreases from 0.113 to zero

(point b remains stationary while n decreases from 0.250 to 0.113). Concurrently, the zero-suction zone de-

noted by the dark shaded semi-ellipse on the p 0–q plane slightly increases in size as the stress point relaxes to

a fully saturated state at point c. The stress path b–c is nearly vertical on the p 0–q plane signifying a nearly

deviatoric stress relaxation. Consequently, b, c and d cluster together at the same point on the v–p 0 plane.

This example demonstrates that the stress point can relax from a nearly critical state (point b) to a nearly

isotropic state (point c) simply by varying the matrix suction.

The convergence profiles of the iterative algorithm for Examples 5.1 and 5.2 are shown in Fig. 7. Asymp-
totic quadratic rate of convergence is achieved in all the time steps requiring an iterative solution (i.e., when

the material undergoes plasticity).

5.3. Constrained compression combined with loss of suction

In this example we assume the same material parameters and initial conditions as in Example 5.2. How-

ever, at each time step we now impose an incremental strain D�22 = �0.001 holding all the other strain



Fig. 6. Simulation of nearly deviatoric stress relaxation induced by loss of suction.
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components fixed (constrained compression on the 2-axis), and concurrently apply an incremental suction

Ds = �0.5 kPa. Fig. 8 shows the results of the simulations. Starting from the initial point a, the material

loads elastically to point b while the bonding variable decreases from an initial value n = 0.250 to an inter-

mediate value n = 0.211. Thereafter, elastoplastic deformation takes place due to simultaneous loading and

loss of suction, represented by the curve b–c. Note an apparent softening along this path showing the dom-

inant effect of loss of suction, even when the stress point already lies on the compactive side of the yield

surface causing the zero-suction zone to expand from the dark shaded semi-ellipse to a light shaded one
on the p 0–q plane. At point c full saturation is achieved and the suction can no longer decrease. Path c–

d then shows plastic loading by constrained compression at full saturation, which is accompanied by expan-

sion of the fully saturated zone denoted by the lighter shaded semi-ellipse on the p 0–q plane. Note in this

case that in the fully saturated regime the zero-suction zone and the elastic region are the same (since

S2 = 1.0 and thus, pc ¼ pc at full saturation). The convergence profiles of the local Newton iterations for

this particular example are shown in Fig. 9.

5.4. Accuracy analysis: 3D loading with increasing suction

Here, we assume the same material parameters and initial conditions as in Example 5.2 except that the

initial suction is now zero. We then impose total additional strains �22 = �0.10 and c12 = 2�12 = 0.08 (all the



Fig. 7. Convergence profile of local Newton iterations for stress relaxation simulations induced by loss of suction.

Fig. 8. Simulation of constrained compression loading combined with loss of suction. Stress path denoted by a–b–c–d.
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other strain components are fixed), and total suction of s = 20 kPa in four, 40 and 400 equal increments.

The objective of this study is to investigate the accuracy of the integration algorithm by varying the step

size. Fig. 10 shows a comparison of the predicted stress paths on the p 0–q plane. The 40-step and 400-step



Fig. 9. Convergence profile of local Newton iterations for combined constrained compression loading-loss of suction simulation.

R.I. Borja / Comput. Methods Appl. Mech. Engrg. 193 (2004) 5301–5338 5331
solutions are nearly the same; in fact, even the excessively coarse discretization consisting of only four incre-

ments resulted in a stress path that is quite close to the �exact� solution and well demonstrates the accuracy

of the integration algorithm. Note the pronounced effect of suction on the size of the yield surface as the size

of the zero-suction zone, pc, easily lags the size of the yield surface, pc, even for this modest increase of the

matrix suction (pc ¼ pc initially, representing the size of the dark shaded semi-ellipse). Also worthy of note
is the stiffer response at higher values of suction exhibited by the model, which is very much evident from

the four-step solution where despite the fact that the strains and suction were applied in equal increments

the resulting stress increments increased with increasing suction.
p', kPa

q, kPa

pc 0−1000
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1000

pc−500

400 steps
40 steps
4 steps

pcpc
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−1278.565
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400
  40
    4

Fig. 10. Accuracy analysis for combined 3D loading-increase in suction simulation: shaded semi-ellipses denote yield surfaces at full

saturation.
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The convergence profiles of the local Newton iterations are compared in Fig. 11 for the 4-step and 400-

step solutions. The figure shows an increase in the number of iterations per increment as the increment

size increases, which is to be expected in a non-linear analysis of this nature. Otherwise, the iterations

demonstrate the expected asymptotic rate of quadratic convergence irrespective of the size of the load

increment.

5.5. Shear band analysis: drained case

For this example we assume the same material parameters and initial conditions as in Example 5.2, and

impose incremental strains D�11 = 0.0005, D�22 = �0.001, all other D�ij�s = 0 (plane strain on the 12-plane).

In the first simulation we assume a constant suction, while in the second simulation we assume Ds = �0.5

kPa. As shown in Fig. 6 the initial stress point lies slightly on the dilatant side of the critical state, and re-

mains on that side until the moment of initial yielding. As the yield surface shrinks due to softening induced
by plastic dilatancy for the constant suction simulation, combined with the loss of suction for the decreas-

ing suction simulation, the stress point moves toward the compactive side of the yield surface. Fig. 12(a)

shows that at the moment of initial yielding (step number N = 7) negative determinants of the drained elas-

toplastic acoustic tensor are detected immediately over a relatively wide range of band orientations, but as

the stress point moves toward the compactive side the determinants become all positive as the plastic mod-

ulus switches in sign from negative to positive. For the case of decreasing suction initial yielding occurs at

an earlier stage (N = 5), as shown in Fig. 12(b), at which instant nearly zero determinants of the drained

elastoplastic acoustic tensor are detected at band orientations approximately 44� and 136� on the plane
of the problem (orientations of band normal vector n relative to the x1-plane). At these band normals,

the orientation of the instantaneous velocity jump vector m are �44� and 44�, respectively, suggesting a

nearly isochoric shear band since n Æ m � 0 (see [22,23] for a discussion of various types of deformation

bands). This is consistent with the fact that bifurcation occurs near the critical state. However, the deter-

minants immediately become all positive as the stress point moves toward the compactive side of the yield

surface.

To demonstrate the effect of non-associativity, we assume a non-associativity parameter b = 0.5. This

value was calculated using Eq. (42) of Alonso et al. [6], where b was expressed in terms of the parameters
M, ~k and ~j satisfying a certain relationship for zero lateral deformation. The effect of having b less than
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unity is to reduce the magnitude of the incremental deviatoric plastic strain relative to the incremental vol-

umetric plastic strain. Fig. 13 shows the variations of the determinant function demonstrating a wider range

of band orientations with negative determinants compared to the associative plasticity case (cf. Fig. 12).

This is consistent with the well known result that for a shear band mode non-associative plasticity enhances

the loss of strong ellipticity of the acoustic tensor.
5.6. Shear band analysis: undrained case

In this example we illustrate the competing effects on the localization properties of the following addi-

tional terms comprising the undrained elastoplastic constitutive operator ~cep of a three-phase medium (cf.
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(4.40)): (a) the unsymmetric term uð�ka � �k
wÞce : g � 1=v which enhances the formation of a shear band rel-

ative to the drained case; and (b) the weighted bulk modulus term �k
v
1� 1 of the void which delays the onset

of a shear band when yielding on the dilatant side of the yield surface. It is well known that a non-associ-

ative flow rule favors the development of a shear band because it destroys the symmetry of the constitutive

tangent operator [21]; thus, the presence of the unsymmetric term (a) is expected to have the same effect of
enhancing the onset of a shear band. On the other hand, it is also well known that for dilatant frictional

materials drained localization precedes undrained localization since the presence of fluids in the voids intro-

duces a volume constraint that enables a frictional material to gain strength [24]; hence, on the dilatant side

of the yield surface the symmetric bulk term (b) generates the same volume constraint that delays the onset

of a shear band.

To illustrate the effect of the volume constraint on the onset of a shear band we repeat the analyses

of Example 5.5 and investigate the loss of strong ellipticity of the acoustic tensor at the end of each

time step utilizing the undrained constitutive operator ~cep for the total mixture. Care must be exercised
when intepreting the results of these analyses since, strictly speaking, we are not simulating an un-

drained deformation response but are simply comparing the localization properties of the drained

and undrained constitutive operators at the same effective stress point. From a physical standpoint

the simulation is equivalent to applying a load increment instantaneously at the beginning of each time

step and allowing the material to drain (or �consolidate�) before applying the next instantaneous load

increment, i.e., the load-time history is a step function. Fig. 14 shows the resulting determinant func-

tions at different band orientations. Compared with Fig. 13 we observe narrower ranges of band orien-

tation at which the determinant function is negative at initial yield. This suggests that the effect of the
symmetric bulk term (b) is more dominant than the effect of the unsymmetric term (a) for this partic-

ular example.

Finally, we show in Fig. 15 the variation of the weighted bulk modulus of the void, �k
v
, as a function of

the degree of saturation for the example with decreasing suction. The relevant phase relationships are as

follows. At the end of each time increment the void ratio is obtained as e ¼ cðnÞ½N � ~k lnð��pcÞ� � 1, from

which the volume fractions are then calculated. The elastic bulk modulus of water is taken as 2.2 · 107

kPa [58], whereas the bulk modulus of air is taken as the air pressure pa itself. The variation of pa is as-

sumed to follow Boyle–Mariotte�s law for isothermal deformation, paVa=constant, which means that the
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air pressure increases as the air volume decreases. Since the volume of air is Va = /a(1 + �v)V0, where V0

is the initial volume of the solid matrix and �v = tr(u) is the corresponding volumetric strain, then

pa / [/a(1 + �v)]
�1. For the sake of analysis, we assume pa = 200 kPa initially. The results of Fig. 15 show

the expected approach of �k
v
to Kw/(1 � /s) as Sr ! 1. Note, however, that Sr needs to be very, very close

to unity to get to this limit (Sr = 0.99 is not close enough). Theoretically, Ka ! inf as Sr ! 1, but

even with Sr = 0.99 the modulus Ka is still much smaller than Kw. We recall that Sr cannot be exactly

equal to unity due to trapped air bubbles as reflected by the value of the van Genuchten para-
meter S2 < 1.0. We also recall that in undrained deformation analysis of fully saturated media, �k

v
is

used as a �penalty parameter� to impose the incompressibility constraint [66]. However, in the pres-

ence of air voids this parameter may not attain a large enough value which could result in a volume

change of the mixture consistent with the compressibility of the solid skeleton as well as that of the

air voids.
6. Closure

We have presented a mathematical framework for three-phase deformation and strain localization

analyses of partially saturated porous media. Conservation laws have been used to identify energy-con-

jugate variables for constitutive model formulation. Using this framework we have cast a specific Cam-

Clay-type plasticity model for partially saturated soils and implemented it numerically using the standard

return mapping algorithm of computational plasticity. The implementation is remarkably simple and very

much similar to that used for the fully saturated formulation [34]. Numerical examples were run to dem-

onstrate the efficiency of the algorithm as well as the significant influence of the matrix suction, treated as
an additional strain-like variable, on the deformation and strain localization responses of three-phase

media. Results of these studies may be used to cast other, more robust constitutive models for partially

saturated soils within the proposed framework, such as those involving all three invariants of the stress

tensor.
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[5] D.G. Fredlund, N.R. Morgenstern, Stress state variables for unsaturated soils, J. Geotech. Engrg. Div. ASCE 103 (1977) 354–

358.

[6] E.E. Alonso, A. Gens, A. Josa, A constitutive model for partially saturated soils, Géotechnique 40 (1990) 405–430.
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