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1 Introduction

The optimization of linear systems will be considered, subject to restrictions on the form

of the control. If x is the state vector and u the control vector the system can be described

by

ẋ = Ax+Bu , x (0) = x0 (1.1)

We are generally interested in controlling an output vector of the form

y = Cx (1.2)

and it is convenient to measure the performance by a quadratic cost function

J =

∫ t

0

(

yTQy + uTRu
)

ds (1.3)

We seek to minimize J . A penalty on u is included to limit its magnitude which might

otherwise approach infinity at a minimum of J . It is often desirable to use a feedback

control of the form

u = Dx (1.4)

Then

ẋ = Fx , x (0) = 0 (1.5a)

J̇ = xTSx , J (0) = 0 (1.5b)

where

F = A+BD (1.6a)

S = CTQC +DTRD (1.6b)

D may be constant or may be allowed to vary with time. For the sake of engineering

simplicity we may also wish to restrict the form of D. If no feedback is allowed from the

jth state variable to the ith control, then

Dij = 0



2 Properties of the transition matrix

If the system satisfies (1.5a), the since the principle of superposition may be applied to

solutions for different initial conditions,

x (t) = φ (t, s) x (s) (2.1)

where for all t, s, τ

φ (t, t) = I , φ (t, τ)φ (τ, s) = φ (t, s) (2.2)

and for arbitrary x (s)
d

dt
φ (t, s) x (s) = F (t)φ (t, s)x (s)

whence
d

dt
φ (t, s) = F (t)φ (t, s) (2.3)

Also
d

ds
x (t) = 0 =

[

d

ds
φ (t, s)

]

x (s) + φ (t, s)F (s) x (s)

whence
d

ds
φ (t, s) = −φ (t, s)F (s) (2.4)

if F is constant φ depends only in the difference t− s.

Then (2.3) and (2.4) yield

Fφ = φF (2.5)

If there is a forcing function y (t) such that

ẋ = Fx+ y

then it is easy to verify by differentiation that the solution is

x (t) = φ (t, s)x (s) +

∫ t

s

φ (t, τ) y (τ) dτ (2.6a)

In the case of a backward integration it is more convenient to write

x (s) = φ (s, t) x (t) −

∫ t

s

φ (s, τ) y (τ) dτ (2.6b)



3 Gradient of a function with respect to time-varying

and fixed parameters

It is convenient to give a parallel treatment of optimization with respect to time-varying

and fixed parameters by introducing the concept of the gradient in function space for

time-varying parameters. Consider a linear space of vector functions on the interval (0, t)

for which the inner product is defined as

〈x, y〉 =

∫ t

0

∑

i

xiyids

If f depends on the function v, and a small variation δv in v causes f to change by

δf =

〈

∂f

∂v
, δv

〉

in the sense that

lim
e→0

f (v + ǫh) − f (v)

ǫ
=

〈

∂f

∂v

〉

then ∂f

∂v
is called the gradient (weak derivation) of f with respect to v. If we wish to

minimize a function J of the final state x (t),

where

ẋi = fi (x, v, t) (3.1)

and v is a time-varying vector parameter, then for a small change δv in v,

δẋi =
∑

k

∂fi

∂xk

δxk +
∑

j

∂fi

∂vj

δvj , δxi (0) = 0 (3.2a)

δJ =
∑

i

∂J

∂xi

δxi (t) (3.2b)

We introduce a set of ’costate’ functions ψ, satisfying the ’adjoint’ equations

ψ̇i = −
∑

k

∂fk

∂xi

ψk , ψi (t) =
∂J

∂xi



Then

d

dt

(

∑

i

ψiδxi

)

=
∑

j

ψi

∂fi

∂vj

δvj

δJ =

∫ t

0

∑

i

∑

j

ψi

∂fi

∂vj

δvjds = 〈G, δv〉

Where

Gj (s) =
∑

i

ψi

∂fi

∂vj

(3.3)

G may thus be identifined as the gradient in function space. Evidently if J reaches a

minimum it is necessary that G should vanish throughout the intercal: otherwise one

could find a δv such that δJ < 0.

If v is a fixed vector the development is similar.

Denote ∂xi

∂vj
by σij . Then

σ̇ij =
∑

k

∂fi

∂xk

σij +
∂fi

∂vj

, σij (0) = 0

∂J

∂vj

=
∑

i

∂J

∂xi

σij (t)

Again introducing the costate variable ψ :

d

dt

(

∑

i

ψiσij

)

=
∑

i

ψi

∂fi

∂vj

and denoting the gradient by G ,

Gj =
∂J

∂vj

=

∫ t

0

∑

i

ψi

∂fi

∂vj

ds (3.4)

For a fixed interval the gradient with respect to a fixed parameter is thus the integral of

the gradient with respect to the same parameter when it is allowed to vary with time.

If the cost function is an integral

J =

∫ t

0

h (x, v, s) ds



then (3.2b) is replaced by

δJ̇ =
∑

i

∂h

∂xi

δxi +
∑

j

∂h

∂vj

δvj (3.5)

It is convenient to identify J with an additional variable xn+1 satisfying

ẋn+1 = h (x, v, t)

Since xn+1 does not appear in any of the fi

ψ̇n+1 = 0, ψn+1 (t) =
∂J

∂xn+1

= 1

whence

ψn+1 = 1

Also

ψi (t) =
∂J

∂xi

= 0 , i = 1, n

Thus the gradient with respect to a time-varying parameter is

Gj (s) =
∑

i

ψi

∂fi

∂vj

+
∂h

∂vj

(3.6)

where

ψ̇i = −
∑

i

∂fk

∂xi

ψk −
∂h

∂xi

, ψi (t) = 0 (3.7)

and the gradient with respect to a fixed parameter is

Gj =

∫ t

0

[

∑

i

ψi

∂fi

∂vj

+
∂h

∂vj

]

ds



4 Evaluation of the cost function

If (1.5) holds then according to (2.1)

J (t) − J (s) =

∫ t

s

xT (τ)S (τ) x (τ) dτ (4.1)

= xT (s)P (t, s)x (s) (4.2)

where

P (t, s) =

∫ t

s

φT (τ, s)S (τ)φ (τ, s) dτ (4.3)

This may be differentiated, using the properties of the transition matrix expressed in (2.2)

and (2.4), to give

d

ds
P (t, s) = −S (s) − F T (s)P (t, s) − P (t, s)F (s) , P (t, t) = 0 (4.4)

Denote the outer product xxT by X, and denote the trace
∑

iAii of a square matrix A

by Tr (A). Note that

Tr
(

AT
)

= Tr (A)

and that as long as AB is square

Tr (AB) = Tr (BA)

even if A and B are not square.

Then (1.5b) and (4.1) may be written as

J̇ = Tr (SX) (4.5)

J (t) − J (s) = Tr [P (t, s)X (s)] (4.6)

where P is determined from (4.3) and

Ẋ = FX +XF T , X (0) = X0 (4.7)

If A,B,C,D,Q and R are constant so that F and S are constant, P (t, s) depends only



on t− s and may be written as P (t− s), so that

Ṗ = S + F TP + PF , P (0) = 0

For a constant system an alternative expression for the cost is

J = Tr (SW )

where

W =

∫ t

0

X (s) ds

and (4.6) may be integrated to give

Ẇ = X0 + FW +WF T , W (0) = 0 (4.8)



5 Gradient with respect to feedback coefficients

The variational equation corresponding to (1.5) are

δẋ = Fδx+BδDx (5.1a)

δJ̇ = 2xTSδx+ 2xTDTRδDx (5.1b)

The adjoint equations (3.7) become

ψ̇ = −F Tψ , ψ (t) = 0 (5.2)

The gradient in function space with respect to Dqr is thus

Gqr (s) =
∑

i

ψi (s)Biq (s)xr (s) +
∑

i

∑

j

xi (s)Dji (s)Rjq (s)xr (s)

or using matrix notation and denoting the outer product xxT by X,

G (s) = BT (s)ψ (s) xT (s) + 2R (s)D (s)X (s) (5.3)

The gradient with respect to fixed gains is therefore

G =

∫ t

0

(

BT (s)ψ (s)xT (s) + 2R (s)DX (s)
)

ds (5.4)

Let ζ (t, s) be the transition matrix of the adjoint equations. Since

ψ (t) = 0

when (2.6b) is applied to (5.1a) it follows that

ψ (s) = 2

∫ t

s

ζ (s, t)S (τ) x (τ) dτ

where

d

ds
ζ (s, t) = −F T (s) ζ (s, t) , ζ (t, t) = I



But if φ is the transition matrix for x, then according to (2.4)

d

ds
ζ (s, t) = −F T (s) ζ (s, t) , ζ (t, t) = I

so ζ (s, t) can be identified as φT (s, t) and

ψ (s) = 2

∫ t

s

φT (τ, s)S (τ) x (τ) dτ

= 2

[
∫ t

s

φT (τ, s)S (τ)φ (τ, s) dτ

]

x (s)

By comparison with (4.2) it can be seen that

ψ (s) = 2P (t, s) x (s) (5.5)

where P is the kernel of the quadratic form for the cost.

Thus the gradient with respect to time-varying gains is

G (s) = 2
[

BTP (t, s) +RD (s)
]

X (s) (5.6)

and the gradient with respect to fixed gains is

G = 2

∫ t

0

[

BTP (t, s) +RD
]

X (s) ds (5.7)

If D is allowed to vary with time and there is no restriction on its form then the gradient

vanishes regardless of the state when

D (s) = −R−1 (s)BT (s)P (t, s) (5.8)

This is a natural optimal solution which does not depend on the initial condition and

subsequent path. Substituting (5.4) and (1.6) in (4.3), the equation for P when D is

optimal is

−
d

ds
P (t, s) = CTQC + ATP + PA− PBR−1BTP , P (t, t) = 0 (5.9)

This is the well known matrix Riccati equation, the properties of which have been thor-

oughly explored. Its integration yields jointly the optimal P and the optimal D.



If A,B,C,Q, and R are constant and D is restricted to be constant then

P = P (t− s)

In this case if t → ∞ and the system is stable P approaches a limiting value P
∞

so that

the gradient vanishes for all X if

D = −R−1BTP
∞

The integrand is then everywhere zero, so this is also the optimal solution for an infinite

internal when D is allowed to vary with time. For a finite interval, on the other hand, P is

not constant and BTP +RD cannot be made to vanish throughout the interval by choice

of a fixed D, so the optimal fixed D depends on X, and therefore on the initial state.

One can then fine the minimum of J by using one of the gradient or conjugate gradient

techniques for functions of a finite number of variables. The gradient can be evaluated

from (5.2) and (5.4) or (4.3) and (5.7).



6 Gradient with respect to the controls

It is interesting to compare the gradient with respect to the feedback matrix of a closed

loop system with the gradient with respect to the control vector u of the corresponding

open loop system, (1.1) and (1.5b) yield the variational equations

δẋ = Aδx+Bδu , δx (0) = 0

δJ̇ = 2xTV δx+ 2uTPδu , δJ (0) = 0

where

V = CTQC

The adjoint equations (3.7) now become

ψ̇ = −ATψ , ψ (t) = 0

and the gradient in function space is

gj (s) =
∑

i

ψi (s)Bij (s) + 2
∑

k

uk (s)Rkj (s)

or in vector notation

g (s) = BT (s)ψ (s) + 2R (s) u (s)

Also we can try to satisfy

g (s) = 0

by setting

u (s) = D (s) x (s)

Then ψ (s) is given by (5.5) and it can be seen that the gradient does in fact vanish if D

is given by (5.8). The optimal feedback solution with time-varying gains is thus also the

optimal solution for a free choice of u.



7 Gradient in terms of the outer product

The gradient may alternatively be deduced from the equation written in terms of the

outer product X.

(4.4) and (4.6) yield the variation equations

δẊ = FδX + δXF T +BδDX +XδDTBT , δX (0) = 0 (7.1a)

δJ̇ = Tr (SδX) + 2Tr
(

DTRδDX
)

, δJ (0) = 0 (7.1b)

Let P be a symmetric matrix satisfying

Ṗ = −F TP − PF − S , P (t) = 0 (7.2)

Then after cancelling terms, remembering that

Tr (AB) = Tr (BA)

it can be seen that

d

dt
= Tr (PδX) = 2Tr

(

BTPXδDT
)

− Tr (SδX)

Thus
d

dt
[δJ + Tr (PδX)] = Tr

(

GδDT
)

where

G = 2
(

BTP +RD
)

X (7.3)

and since Tr (PδX) vanishes at both boundaries

δJ (t) =

∫ t

0

Tr
(

GδDT
)

ds =

∫ t

0

∑

i

∑

j

GijδDijds (7.4)

Thus Gij is the gradient with respect to Dij . By comparing (4.3) and (7.2) P may be

identified with the kernal P (t, s) of the quadratic form for the cost. This kernal is thus

seen to be precisely the costate variable for the outer product.



8 The statistical case

Let

ẋ = Ax+Bu+Gv (8.1)

where v is a white noise vector with zero mean and correlation matrix V (t) δ (t− s). Let

x̄ be the mean of x, and let X denote the expectation E
(

xxT
)

. The covariance matrix

E
{

(x− x̄) (x− x̄)T
}

, the mean x̄, and X are related by the equation

X = E
{

(x− x̄) (x− x̄)T
}

+ x̄x̄T

If

u = Dx

then x̄ and X now satisfy the seperate equations

˙̄x = F x̄ (8.2)

Ẋ = FX +XF T +W (8.3)

where F is defined by (1.6a) and

W = GV GT (8.4)

Also if for the performance index we now take the expectation

J = E

{
∫ t

0

(

yTQy + uTRu
)

ds

}

= E

{
∫ t

0

xTSxds

}

where S is defined by (1.6b) then

J̇ = Tr (SX)

It can easily be verified by differentiation that

X (t) = φ (t, s)X (s)φT (t, s) +

∫ t

s

φ (t, τ)W (τ)φT (t, τ) dτ



Thus

J̇ = Tr
[

S (t)φ (t, s)X (s)φT (t, s)
]

+ Tr

[

S (t)

∫ t

s

φ (t, τ)W (τ)φT (t, τ) dτ

]

= Tr
[

φT (t, s)S (t)φ (t, s)X (s)
]

+ Tr

[
∫ t

s

φT (t, τ)S (t)φ (t, τ)W (τ) dτ

]

and

J (t) − J (s) = Tr

[
∫ t

s

φ (τ, s)S (τ)φ (τ, s)X (τ) dτ

]

+Tr

[
∫ t

s

dτ

∫ t

s

φ (τ, ρ)S (τ)φ (τ, ρ)W (ρ) dρ

]

The first term is Tr [P (t, s)X (s)] where P has been defined in (4.2), and the second term

is

Tr

[
∫ t

s

W (ρ) dρ

∫ t

ρ

φT (τ, ρ)S (τ) φ (τ, ρ) dτ

]

=

∫ t

s

Tr [W (ρ)P (t, ρ)] dρ

Thus

J (t) − J (s) = Tr [P (t, s)X (s)] + Y (t, s)

where
d

ds
Y (t, s) = −Tr [P (t, s)W (s)] , Y (t, s) = 0

The variational equations

δẊ = FδX + δXF T +BδDX +XδDTBT

δJ̇ = Tr (SδX) + 2Tr
(

DTRδDX
)

are identical to (7.1) with the new definition of X.

Thus in the absence of any restriction of the feedback paths the optimal time-varying

gains are unchanged by the presence of white noise and may be determined by integrating

the matrix Riccati equation (5.9) Ths cost is increased by the term Y (t, s).


