Optimization of Linear Systems

by

ANTONY JAMESON

Grumman Aerodynamics Report 393-68-2

1 Introduction

The optimization of linear systems will be considered, subject to restrictions on the form of the control. If x is the state vector and u the control vector the system can be described by

$$
\begin{equation*}
\dot{x}=A x+B u \quad, x(0)=x_{0} \tag{1.1}
\end{equation*}
$$

We are generally interested in controlling an output vector of the form

$$
\begin{equation*}
y=C x \tag{1.2}
\end{equation*}
$$

and it is convenient to measure the performance by a quadratic cost function

$$
\begin{equation*}
J=\int_{0}^{t}\left(y^{T} Q y+u^{T} R u\right) d s \tag{1.3}
\end{equation*}
$$

We seek to minimize J. A penalty on u is included to limit its magnitude which might otherwise approach infinity at a minimum of J. It is often desirable to use a feedback control of the form

$$
\begin{equation*}
u=D x \tag{1.4}
\end{equation*}
$$

Then

$$
\begin{array}{ll}
\dot{x}=F x & , \\
\dot{J}=x^{T} S x & , J(0)=0 \tag{1.5b}\\
& , J)=0
\end{array}
$$

where

$$
\begin{align*}
& F=A+B D \tag{1.6a}\\
& S=C^{T} Q C+D^{T} R D \tag{1.6b}
\end{align*}
$$

D may be constant or may be allowed to vary with time. For the sake of engineering simplicity we may also wish to restrict the form of D. If no feedback is allowed from the $j^{\text {th }}$ state variable to the $i^{\text {th }}$ control, then

$$
D_{i j}=0
$$

2 Properties of the transition matrix

If the system satisfies (1.5a), the since the principle of superposition may be applied to solutions for different initial conditions,

$$
\begin{equation*}
x(t)=\phi(t, s) x(s) \tag{2.1}
\end{equation*}
$$

where for all t, s, τ

$$
\begin{equation*}
\phi(t, t)=I \quad, \phi(t, \tau) \phi(\tau, s)=\phi(t, s) \tag{2.2}
\end{equation*}
$$

and for arbitrary $x(s)$

$$
\frac{d}{d t} \phi(t, s) x(s)=F(t) \phi(t, s) x(s)
$$

whence

$$
\begin{equation*}
\frac{d}{d t} \phi(t, s)=F(t) \phi(t, s) \tag{2.3}
\end{equation*}
$$

Also

$$
\frac{d}{d s} x(t)=0=\left[\frac{d}{d s} \phi(t, s)\right] x(s)+\phi(t, s) F(s) x(s)
$$

whence

$$
\begin{equation*}
\frac{d}{d s} \phi(t, s)=-\phi(t, s) F(s) \tag{2.4}
\end{equation*}
$$

if F is constant ϕ depends only in the difference $t-s$.
Then (2.3) and (2.4) yield

$$
\begin{equation*}
F \phi=\phi F \tag{2.5}
\end{equation*}
$$

If there is a forcing function $y(t)$ such that

$$
\dot{x}=F x+y
$$

then it is easy to verify by differentiation that the solution is

$$
\begin{equation*}
x(t)=\phi(t, s) x(s)+\int_{s}^{t} \phi(t, \tau) y(\tau) d \tau \tag{2.6a}
\end{equation*}
$$

In the case of a backward integration it is more convenient to write

$$
\begin{equation*}
x(s)=\phi(s, t) x(t)-\int_{s}^{t} \phi(s, \tau) y(\tau) d \tau \tag{2.6b}
\end{equation*}
$$

3 Gradient of a function with respect to time-varying and fixed parameters

It is convenient to give a parallel treatment of optimization with respect to time-varying and fixed parameters by introducing the concept of the gradient in function space for time-varying parameters. Consider a linear space of vector functions on the interval $(0, t)$ for which the inner product is defined as

$$
\langle x, y\rangle=\int_{0}^{t} \sum_{i} x_{i} y_{i} d s
$$

If f depends on the function v, and a small variation δv in v causes f to change by

$$
\delta f=\left\langle\frac{\partial f}{\partial v}, \delta v\right\rangle
$$

in the sense that

$$
\lim _{e \rightarrow 0} \frac{f(v+\epsilon h)-f(v)}{\epsilon}=\left\langle\frac{\partial f}{\partial v}\right\rangle
$$

then $\frac{\partial f}{\partial v}$ is called the gradient (weak derivation) of f with respect to v. If we wish to minimize a function J of the final state $x(t)$,
where

$$
\begin{equation*}
\dot{x}_{i}=f_{i}(x, v, t) \tag{3.1}
\end{equation*}
$$

and v is a time-varying vector parameter, then for a small change δv in v,

$$
\begin{align*}
\delta \dot{x}_{i} & =\sum_{k} \frac{\partial f_{i}}{\partial x_{k}} \delta x_{k}+\sum_{j} \frac{\partial f_{i}}{\partial v_{j}} \delta v_{j} & , \delta x_{i}(0)=0 \tag{3.2a}\\
\delta J & =\sum_{i} \frac{\partial J}{\partial x_{i}} \delta x_{i}(t) & \tag{3.2b}
\end{align*}
$$

We introduce a set of 'costate' functions ψ, satisfying the 'adjoint' equations

$$
\dot{\psi}_{i}=-\sum_{k} \frac{\partial f_{k}}{\partial x_{i}} \psi_{k} \quad, \psi_{i}(t)=\frac{\partial J}{\partial x_{i}}
$$

Then

$$
\begin{array}{r}
\frac{d}{d t}\left(\sum_{i} \psi_{i} \delta x_{i}\right)=\sum_{j} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}} \delta v_{j} \\
\delta J=\int_{0}^{t} \sum_{i} \sum_{j} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}} \delta v_{j} d s=\langle G, \delta v\rangle
\end{array}
$$

Where

$$
\begin{equation*}
G_{j}(s)=\sum_{i} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}} \tag{3.3}
\end{equation*}
$$

G may thus be identifined as the gradient in function space. Evidently if J reaches a minimum it is necessary that G should vanish throughout the intercal: otherwise one could find a δv such that $\delta J<0$.

If v is a fixed vector the development is similar.
Denote $\frac{\partial x_{i}}{\partial v_{j}}$ by $\sigma_{i j}$. Then

$$
\begin{array}{rlr}
\sigma_{i j} & =\sum_{k} \frac{\partial f_{i}}{\partial x_{k}} \sigma_{i j}+\frac{\partial f_{i}}{\partial v_{j}} &
\end{array}
$$

Again introducing the costate variable ψ :

$$
\frac{d}{d t}\left(\sum_{i} \psi_{i} \sigma_{i j}\right)=\sum_{i} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}}
$$

and denoting the gradient by G,

$$
\begin{equation*}
G_{j}=\frac{\partial J}{\partial v_{j}}=\int_{0}^{t} \sum_{i} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}} d s \tag{3.4}
\end{equation*}
$$

For a fixed interval the gradient with respect to a fixed parameter is thus the integral of the gradient with respect to the same parameter when it is allowed to vary with time.

If the cost function is an integral

$$
J=\int_{0}^{t} h(x, v, s) d s
$$

then (3.2b) is replaced by

$$
\begin{equation*}
\delta \dot{J}=\sum_{i} \frac{\partial h}{\partial x_{i}} \delta x_{i}+\sum_{j} \frac{\partial h}{\partial v_{j}} \delta v_{j} \tag{3.5}
\end{equation*}
$$

It is convenient to identify J with an additional variable x_{n+1} satisfying

$$
\dot{x}_{n+1}=h(x, v, t)
$$

Since x_{n+1} does not appear in any of the f_{i}

$$
\dot{\psi}_{n+1}=0, \quad \psi_{n+1}(t)=\frac{\partial J}{\partial x_{n+1}}=1
$$

whence

$$
\psi_{n+1}=1
$$

Also

$$
\psi_{i}(t)=\frac{\partial J}{\partial x_{i}}=0 \quad, i=1, n
$$

Thus the gradient with respect to a time-varying parameter is

$$
\begin{equation*}
G_{j}(s)=\sum_{i} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}}+\frac{\partial h}{\partial v_{j}} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\psi}_{i}=-\sum_{i} \frac{\partial f_{k}}{\partial x_{i}} \psi_{k}-\frac{\partial h}{\partial x_{i}} \quad, \psi_{i}(t)=0 \tag{3.7}
\end{equation*}
$$

and the gradient with respect to a fixed parameter is

$$
G_{j}=\int_{0}^{t}\left[\sum_{i} \psi_{i} \frac{\partial f_{i}}{\partial v_{j}}+\frac{\partial h}{\partial v_{j}}\right] d s
$$

4 Evaluation of the cost function

If (1.5) holds then according to (2.1)

$$
\begin{align*}
J(t)-J(s) & =\int_{s}^{t} x^{T}(\tau) S(\tau) x(\tau) d \tau \tag{4.1}\\
& =x^{T}(s) P(t, s) x(s) \tag{4.2}
\end{align*}
$$

where

$$
\begin{equation*}
P(t, s)=\int_{s}^{t} \phi^{T}(\tau, s) S(\tau) \phi(\tau, s) d \tau \tag{4.3}
\end{equation*}
$$

This may be differentiated, using the properties of the transition matrix expressed in (2.2) and (2.4), to give

$$
\begin{equation*}
\frac{d}{d s} P(t, s)=-S(s)-F^{T}(s) P(t, s)-P(t, s) F(s) \quad, \quad P(t, t)=0 \tag{4.4}
\end{equation*}
$$

Denote the outer product $x x^{T}$ by X, and denote the trace $\sum_{i} A_{i i}$ of a square matrix A by $\operatorname{Tr}(A)$. Note that

$$
\operatorname{Tr}\left(A^{T}\right)=\operatorname{Tr}(A)
$$

and that as long as $A B$ is square

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

even if A and B are not square.
Then (1.5b) and (4.1) may be written as

$$
\begin{align*}
\dot{J} & =\operatorname{Tr}(S X) \tag{4.5}\\
J(t)-J(s) & =\operatorname{Tr}[P(t, s) X(s)] \tag{4.6}
\end{align*}
$$

where P is determined from (4.3) and

$$
\begin{equation*}
\dot{X}=F X+X F^{T} \quad, X(0)=X_{0} \tag{4.7}
\end{equation*}
$$

If A, B, C, D, Q and R are constant so that F and S are constant, $P(t, s)$ depends only
on $t-s$ and may be written as $P(t-s)$, so that

$$
\dot{P}=S+F^{T} P+P F \quad, P(0)=0
$$

For a constant system an alternative expression for the cost is

$$
J=\operatorname{Tr}(S W)
$$

where

$$
W=\int_{0}^{t} X(s) d s
$$

and (4.6) may be integrated to give

$$
\begin{equation*}
\dot{W}=X_{0}+F W+W F^{T} \quad, W(0)=0 \tag{4.8}
\end{equation*}
$$

5 Gradient with respect to feedback coefficients

The variational equation corresponding to (1.5) are

$$
\begin{align*}
\delta \dot{x} & =F \delta x+B \delta D x \tag{5.1a}\\
\delta \dot{J} & =2 x^{T} S \delta x+2 x^{T} D^{T} R \delta D x \tag{5.1b}
\end{align*}
$$

The adjoint equations (3.7) become

$$
\begin{equation*}
\dot{\psi}=-F^{T} \psi \quad, \psi(t)=0 \tag{5.2}
\end{equation*}
$$

The gradient in function space with respect to $D_{q r}$ is thus

$$
G_{q r}(s)=\sum_{i} \psi_{i}(s) B_{i q}(s) x_{r}(s)+\sum_{i} \sum_{j} x_{i}(s) D_{j i}(s) R_{j q}(s) x_{r}(s)
$$

or using matrix notation and denoting the outer product $x x^{T}$ by X,

$$
\begin{equation*}
G(s)=B^{T}(s) \psi(s) x^{T}(s)+2 R(s) D(s) X(s) \tag{5.3}
\end{equation*}
$$

The gradient with respect to fixed gains is therefore

$$
\begin{equation*}
G=\int_{0}^{t}\left(B^{T}(s) \psi(s) x^{T}(s)+2 R(s) D X(s)\right) d s \tag{5.4}
\end{equation*}
$$

Let $\zeta(t, s)$ be the transition matrix of the adjoint equations. Since

$$
\psi(t)=0
$$

when (2.6b) is applied to (5.1a) it follows that

$$
\psi(s)=2 \int_{s}^{t} \zeta(s, t) S(\tau) x(\tau) d \tau
$$

where

$$
\frac{d}{d s} \zeta(s, t)=-F^{T}(s) \zeta(s, t) \quad, \quad \zeta(t, t)=I
$$

But if ϕ is the transition matrix for x, then according to (2.4)

$$
\frac{d}{d s} \zeta(s, t)=-F^{T}(s) \zeta(s, t) \quad, \zeta(t, t)=I
$$

so $\zeta(s, t)$ can be identified as $\phi^{T}(s, t)$ and

$$
\begin{aligned}
\psi(s) & =2 \int_{s}^{t} \phi^{T}(\tau, s) S(\tau) x(\tau) d \tau \\
& =2\left[\int_{s}^{t} \phi^{T}(\tau, s) S(\tau) \phi(\tau, s) d \tau\right] x(s)
\end{aligned}
$$

By comparison with (4.2) it can be seen that

$$
\begin{equation*}
\psi(s)=2 P(t, s) x(s) \tag{5.5}
\end{equation*}
$$

where P is the kernel of the quadratic form for the cost.
Thus the gradient with respect to time-varying gains is

$$
\begin{equation*}
G(s)=2\left[B^{T} P(t, s)+R D(s)\right] X(s) \tag{5.6}
\end{equation*}
$$

and the gradient with respect to fixed gains is

$$
\begin{equation*}
G=2 \int_{0}^{t}\left[B^{T} P(t, s)+R D\right] X(s) d s \tag{5.7}
\end{equation*}
$$

If D is allowed to vary with time and there is no restriction on its form then the gradient vanishes regardless of the state when

$$
\begin{equation*}
D(s)=-R^{-1}(s) B^{T}(s) P(t, s) \tag{5.8}
\end{equation*}
$$

This is a natural optimal solution which does not depend on the initial condition and subsequent path. Substituting (5.4) and (1.6) in (4.3), the equation for P when D is optimal is

$$
\begin{equation*}
-\frac{d}{d s} P(t, s)=C^{T} Q C+A^{T} P+P A-P B R^{-1} B^{T} P \quad, P(t, t)=0 \tag{5.9}
\end{equation*}
$$

This is the well known matrix Riccati equation, the properties of which have been thoroughly explored. Its integration yields jointly the optimal P and the optimal D.

If A, B, C, Q, and R are constant and D is restricted to be constant then

$$
P=P(t-s)
$$

In this case if $t \rightarrow \infty$ and the system is stable P approaches a limiting value P_{∞} so that the gradient vanishes for all X if

$$
D=-R^{-1} B^{T} P_{\infty}
$$

The integrand is then everywhere zero, so this is also the optimal solution for an infinite internal when D is allowed to vary with time. For a finite interval, on the other hand, P is not constant and $B^{T} P+R D$ cannot be made to vanish throughout the interval by choice of a fixed D, so the optimal fixed D depends on X, and therefore on the initial state. One can then fine the minimum of J by using one of the gradient or conjugate gradient techniques for functions of a finite number of variables. The gradient can be evaluated from (5.2) and (5.4) or (4.3) and (5.7).

6 Gradient with respect to the controls

It is interesting to compare the gradient with respect to the feedback matrix of a closed loop system with the gradient with respect to the control vector u of the corresponding open loop system, (1.1) and (1.5b) yield the variational equations

$$
\begin{array}{ll}
\delta \dot{x}=A \delta x+B \delta u & , \delta x(0)=0 \\
\delta \dot{J}=2 x^{T} V \delta x+2 u^{T} P \delta u & , \delta J(0)=0
\end{array}
$$

where

$$
V=C^{T} Q C
$$

The adjoint equations (3.7) now become

$$
\dot{\psi}=-A^{T} \psi \quad, \psi(t)=0
$$

and the gradient in function space is

$$
g_{j}(s)=\sum_{i} \psi_{i}(s) B_{i j}(s)+2 \sum_{k} u_{k}(s) R_{k j}(s)
$$

or in vector notation

$$
g(s)=B^{T}(s) \psi(s)+2 R(s) u(s)
$$

Also we can try to satisfy

$$
g(s)=0
$$

by setting

$$
u(s)=D(s) x(s)
$$

Then $\psi(s)$ is given by (5.5) and it can be seen that the gradient does in fact vanish if D is given by (5.8). The optimal feedback solution with time-varying gains is thus also the optimal solution for a free choice of u.

7 Gradient in terms of the outer product

The gradient may alternatively be deduced from the equation written in terms of the outer product X.
(4.4) and (4.6) yield the variation equations

$$
\begin{align*}
\delta \dot{X} & =F \delta X+\delta X F^{T}+B \delta D X+X \delta D^{T} B^{T} & , \delta X(0) & =0 \tag{7.1a}\\
\delta \dot{J} & =\operatorname{Tr}(S \delta X)+2 \operatorname{Tr}\left(D^{T} R \delta D X\right) & , \delta J(0) & =0 \tag{7.1b}
\end{align*}
$$

Let P be a symmetric matrix satisfying

$$
\begin{equation*}
\dot{P}=-F^{T} P-P F-S \quad, P(t)=0 \tag{7.2}
\end{equation*}
$$

Then after cancelling terms, remembering that

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

it can be seen that

$$
\frac{d}{d t}=\operatorname{Tr}(P \delta X)=2 \operatorname{Tr}\left(B^{T} P X \delta D^{T}\right)-\operatorname{Tr}(S \delta X)
$$

Thus

$$
\frac{d}{d t}[\delta J+\operatorname{Tr}(P \delta X)]=\operatorname{Tr}\left(G \delta D^{T}\right)
$$

where

$$
\begin{equation*}
G=2\left(B^{T} P+R D\right) X \tag{7.3}
\end{equation*}
$$

and since $\operatorname{Tr}(P \delta X)$ vanishes at both boundaries

$$
\begin{equation*}
\delta J(t)=\int_{0}^{t} \operatorname{Tr}\left(G \delta D^{T}\right) d s=\int_{0}^{t} \sum_{i} \sum_{j} G_{i j} \delta D_{i j} d s \tag{7.4}
\end{equation*}
$$

Thus $G_{i j}$ is the gradient with respect to $D_{i j}$. By comparing (4.3) and (7.2) P may be identified with the kernal $P(t, s)$ of the quadratic form for the cost. This kernal is thus seen to be precisely the costate variable for the outer product.

8 The statistical case

Let

$$
\begin{equation*}
\dot{x}=A x+B u+G v \tag{8.1}
\end{equation*}
$$

where v is a white noise vector with zero mean and correlation matrix $V(t) \delta(t-s)$. Let \bar{x} be the mean of x, and let X denote the expectation $E\left(x x^{T}\right)$. The covariance matrix $E\left\{(x-\bar{x})(x-\bar{x})^{T}\right\}$, the mean \bar{x}, and X are related by the equation

$$
X=E\left\{(x-\bar{x})(x-\bar{x})^{T}\right\}+\bar{x} \bar{x}^{T}
$$

If

$$
u=D x
$$

then \bar{x} and X now satisfy the seperate equations

$$
\begin{align*}
\dot{\bar{x}} & =F \bar{x} \tag{8.2}\\
\dot{X} & =F X+X F^{T}+W \tag{8.3}
\end{align*}
$$

where F is defined by (1.6a) and

$$
\begin{equation*}
W=G V G^{T} \tag{8.4}
\end{equation*}
$$

Also if for the performance index we now take the expectation

$$
J=E\left\{\int_{0}^{t}\left(y^{T} Q y+u^{T} R u\right) d s\right\}=E\left\{\int_{0}^{t} x^{T} S x d s\right\}
$$

where S is defined by (1.6b) then

$$
\dot{J}=\operatorname{Tr}(S X)
$$

It can easily be verified by differentiation that

$$
X(t)=\phi(t, s) X(s) \phi^{T}(t, s)+\int_{s}^{t} \phi(t, \tau) W(\tau) \phi^{T}(t, \tau) d \tau
$$

Thus

$$
\begin{aligned}
\dot{J} & =\operatorname{Tr}\left[S(t) \phi(t, s) X(s) \phi^{T}(t, s)\right]+\operatorname{Tr}\left[S(t) \int_{s}^{t} \phi(t, \tau) W(\tau) \phi^{T}(t, \tau) d \tau\right] \\
& =\operatorname{Tr}\left[\phi^{T}(t, s) S(t) \phi(t, s) X(s)\right]+\operatorname{Tr}\left[\int_{s}^{t} \phi^{T}(t, \tau) S(t) \phi(t, \tau) W(\tau) d \tau\right]
\end{aligned}
$$

and

$$
\begin{aligned}
J(t)-J(s)=\operatorname{Tr} & {\left[\int_{s}^{t} \phi(\tau, s) S(\tau) \phi(\tau, s) X(\tau) d \tau\right] } \\
& +\operatorname{Tr}\left[\int_{s}^{t} d \tau \int_{s}^{t} \phi(\tau, \rho) S(\tau) \phi(\tau, \rho) W(\rho) d \rho\right]
\end{aligned}
$$

The first term is $\operatorname{Tr}[P(t, s) X(s)]$ where P has been defined in (4.2), and the second term is

$$
\operatorname{Tr}\left[\int_{s}^{t} W(\rho) d \rho \int_{\rho}^{t} \phi^{T}(\tau, \rho) S(\tau) \phi(\tau, \rho) d \tau\right]=\int_{s}^{t} \operatorname{Tr}[W(\rho) P(t, \rho)] d \rho
$$

Thus

$$
J(t)-J(s)=\operatorname{Tr}[P(t, s) X(s)]+Y(t, s)
$$

where

$$
\frac{d}{d s} Y(t, s)=-\operatorname{Tr}[P(t, s) W(s)] \quad, \quad Y(t, s)=0
$$

The variational equations

$$
\begin{aligned}
\delta \dot{X} & =F \delta X+\delta X F^{T}+B \delta D X+X \delta D^{T} B^{T} \\
\delta \dot{J} & =\operatorname{Tr}(S \delta X)+2 \operatorname{Tr}\left(D^{T} R \delta D X\right)
\end{aligned}
$$

are identical to (7.1) with the new definition of X.
Thus in the absence of any restriction of the feedback paths the optimal time-varying gains are unchanged by the presence of white noise and may be determined by integrating the matrix Riccati equation (5.9) Ths cost is increased by the term $Y(t, s)$.

