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Lord (1980) proposed formulas that provide direct relationships between IRT
discrimination and difficulty parameters and conventional item statistics. The purpose of
the present study was to determine the robustness of the formulas beyond the initial and
restrictive conditions identified by Lord. Simulation and real achievement data were
employed. Results from the simulation study indicate that the item discrimination
parameters were recovered quite well for low to moderately discriminating items regardless
of ability distribution, and the difficulty parameters were recovered quite well for the range
typically found for achievement tests. Results of the real data were consistent with those
found for the simulation study.

Lord (1980) a proposé des formules qui fournissent des rapports directs entre la
discrimination et les paramètres de difficulté de la théorie de la réponse d’item d’une part,
et les modèles classiques portant sur les items d’autre part. L’objectif de la présente étude
était de déterminer la robustesse des formules au-delà des conditions initiales et restrictives
identifiées par Lord. Nous avons utilisé des données de rendement d’une étude en
simulation et d’une analyse de données réelles. Les résultats provenant de l’étude en
simulation indiquent que les paramètres de discrimination d’item étaient assez bien
recouvrés pour les items dont le pouvoir de discrimination était bas ou moyen,
indépendamment de la distribution des capacités, et que les paramètres de difficulté étaient
assez bien recouvrés pour l’écart commun aux tests de rendement. Les résultats provenant
des données réelles étaient compatibles avec celles de l’étude en simulation.

The field of psychometrics encompasses alternative models for performing test
and item analyses. The classical test score theory (CTST) model, the foundation
of which was provided by Spearman (1904), is the traditional means of con-
ducting item and test analyses. The family of item response theory (IRT)
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models, first introduced by Lord in 1952 for dichotomously scored items, was
developed to circumvent the limitations of CTST. However, Lord (1980; Lord &
Novick, 1968) proposed formulas that link the item difficulty and item dis-
crimination indices of the CTST and the two-parameter IRT model under the
conditions that ability is normally distributed and there is no guessing (Lord).
One example in which these formulas can be profitably used is in the area of
computer adaptive testing. The cost associated with obtaining large enough
samples to use IRT to screen items for the needed item banks, Lord’s formulas,
which can be used with smaller sized samples, could provide the information
needed to screen items. Another is in the field testing of items that have been
embedded in operational test forms in such a way as to have a multiple matrix
sample design. The samples of students per item may not be sufficient to
conduct IRT analyses. In this case, the Lord’s estimates may be sufficient to
complete an item analysis of the embedded field test items to determine which
of these items should be selected for a future operational form.

Lord’s Formulas
For item discrimination, to the extent that number correct score x is a measure
of ability (θ), the biserial correlation between the item and test score (ρ′ix) is an
approximation of the correlation between the item score and ability estimate
(ρiθ). This association yields a relationship between the CTST biserial item-test
correlation and the IRT discrimination index (ai) (Lord, 1980, p. 33):

ai  =  
ρ′ix

√⎯⎯⎯⎯⎯⎯1 − ρ′ix2

The IRT item discrimination parameter and the CTST biserial correlation are
approximately monotonic increasing nonlinear functions of each other. How-
ever, Lord cautioned that the approximation is crude and may fall short be-
cause (a) test score x contains errors of measurement whereas θ does not, and
(b) x and θ may have differently shaped distributions.

Lord also proposed a monotonic relation between the IRT difficulty index
(bi) and the CTST difficulty index (πi) when all items are equally discriminating
(Lord, 1980, p. 33):

bi  ≈  
γi

ρ′ix

The difficult parameter bi is proportional to γi, the cut-point in the continuous
normal distribution underlying the binary item that separates the proportion of
incorrect answers (1 – πi) and the proportion of correct answers (πi). Both bi and
γi decrease as πi increases.

The formulas provided by Lord (1980) were first presented in Lord and
Novick (1968). Although the relationships described are the same, the only
qualifying condition in the earlier writing was that θ be normally distributed
with a mean of zero and unit variance. Several studies were conducted in the
mid to late 1970s using the formulas within the framework of the three-para-
meter model. Despite the use of an incorrect IRT model, the following studies
provide insight into how the formulas may function in the intended context.
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Using the formulas proposed by Lord and Novick (1968), Urry (1974) devel-
oped a graphical method. He devised graphs that consisted of mapping a grid
system to model the a- and b-parameters onto a coordinate system where the
population point-biserial correlation, rather than the biserial correlation, was
the ordinate and the population proportion passing an item was the abscissa.
By plotting the data points for a given item using the conventional indices, the
estimates of ai and bi may be interpolated. When there is no guessing, the graph
is symmetric. When there is guessing, the graph is displaced to reflect inflation
in the proportion passing the item and attenuation in the point-biserials
through error due to guessing.

Urry (1974) proposed that the following four conditions needed to be met
for effective application of the graphical method: (a) the latent trait is normally
distributed; (b) the CTST indices are based on large samples (n=2,000) in order
to approximate the set of parameters; (c) the items in the test must be
homogenous (KR20≥ 0.90); and (d) the items in the test must be of sufficient
number (k=80) for the point-biserial correlation between item and total test
score to bear a close relationship to the correlation between the item score and
the latent ability measured by the test. He then examined the graphical approx-
imations using data from 4,950 examinee responses to 98 unscreened mathe-
matics items from the Washington Pre-College Test Battery, a highly reliable
test (KR20=0.93). Correlations between the estimated a- and b-parameters
derived from the graphs and their corresponding maximum likelihood (ML)
estimates were 0.89 and 0.97 respectively. Urry concluded that the correlation
coefficients indicated a strong degree of accord between the graphical approx-
imations and the ML estimates.

 Subsequently, Schmidt (1977), in a theoretical paper, suggested that Urry’s
(1974) graphical procedure tended to systematically underestimate ai and over-
estimate ⏐bi⏐and the variance of bi because the point-biserial correlation be-
tween the item score and the estimated latent trait (i.e., total test score), riθ̂, was
taken as an estimate of the point-biserial correlation between the binary item
and the perfectly reliable latent trait, ρ̂i θ. Values of ri‘θ̂ are attenuated because
of guessing on item i, and the unreliability of θ̂. Schmidt pointed out that
increased values of the biserial correlation imply larger âi and smaller |b̂i|. He
argued that Urry’s four criteria would minimize rather than eliminate the bias
noted.

The graphical method has also been used with simulated data. Jensema
(1976) conducted a simulation study in which he compared the parameter
estimates set during the data generation phase to the estimates derived from
the graphical method and ML estimation. Forty-eight data sets were created
with a total of 2,800 items and 44,000 simulated examinees. True abilities of
examinees were normally distributed. The simulation design consisted of:
sample sizes of 250, 500, 750, and 1000; test lengths of 25, 50, and 100; a-para-
meters of 0.5, 1.0, 1.5, and 2.0, consistent within a dataset; b-parameters be-
tween –2.4 and 2.4 at intervals of 0.2; and c-parameters of 0.2. Parameter values
derived from the graphical method were used as starting values for the ML
procedure. The overall correlations between the true and graphical estimates
were 0.80 and 0.96 for the a- and b-values respectively, while the overall
correlations between the true and ML estimates were 0.86 and 0.97 for the a-
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and b-values respectively. Jensema concluded that the graphical estimates
were “surprisingly accurate” (p. 713). The correlations revealed that the agree-
ment between the true parameters and the corresponding graphical estimates
increased with increasing sample size and a greater number of test items, as
initially suggested by Urry (1974). Jensema concluded that the graphical meth-
od could be used as a convenient technique for examining the worth of an item
pool for tailored testing.

Ree (1979) also conducted a simulation study to assess the effectiveness of
the graphical method. The a- and b-values derived from the graphical method
and the a- and b-values derived from three common computer programs (i.e.,
ANCILLES, LOGIST, OGIVIA) were correlated with true item parameters.
Using the 3PL model, data were generated for an 80-item test for normally
distributed, positively skewed, and uniformly distributed groups of 2,000 ex-
aminees. The true item parameters represented real examination data and were
normally distributed (Ma=0.95, SDa=0.28; Mb=0.16, SDb=0.93; Mc=0.20,
SDc=0.05). The correlations between estimated and true parameters revealed
that the estimated b-values were more closely aligned to the true parameters
than the estimated a-values. The correlations were equal to or higher than 0.90
for the b-parameters. Correlations of a-parameters and the values obtained
from the graphical method were 0.32, 0.35, and 0.59 for the skewed, normal,
and uniform ability distributions respectively. Correlations of a-parameters
and the values obtained from the three computer programs also were variable
across ability distributions. The lowest correlations, ranging from 0.44 to 0.57,
were observed for the skewed data, whereas high correlations were found for
the normal distribution (range of 0.83 to 0.84), and the uniform distribution
(range of 0.87 to 0.90).

Although Lord’s formulas were used in the context of the three-parameter
model, the studies suggest that the transformation procedures from the CTST
item indices to the corresponding IRT item indices may have some promise
under certain conditions. Taken together, the findings of these early studies
indicated that the estimated b-parameters derived from the graphical method
were highly correlated with true or ML estimates of b-values regardless of the
shape of the ability distribution, whereas the correlations for the a-parameters
were moderately to highly correlated.

Correlations were presented as evidence of the accuracy of the graphical
method in the studies reviewed above. However, high correlations indicate
only that sets of values are strongly linearly related; they provide no evidence
of actual parameter recovery.

As indicated above, Lord clarified the circumstances for which the formulas
were relevant in 1980 when he stated that the formula were “valid only for the
case where θ is normally distributed and there is no guessing” (p. 33). However
the accuracy of the formulas under these two conditions has not been deter-
mined. Instead, attention has been given to the comparability of CTST and IRT
item indices determined by analyzing the same dataset with both models and
using correlational techniques to determine the degree of association between
the estimates (Fan, 1998; MacDonald & Paunonen, 2002; Stage, 1998a, 1998b,
1999). Although the correlations were high, they did not necessarily mean that
the estimated values were close in value. Consequently, the purpose of the
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present study was to investigate the robustness of the formulas beyond the
initial, restrictive conditions identified by Lord using fit statistics that assess
degree of agreement.

Method
The robustness of Lord’s formulas was investigated using simulated data and
actual achievement data. The simulated data were used to examine the be-
haviors of the formulas under different experimental conditions where the
population parameters were known. The achievement data were used to ex-
amine the extent to which the simulation results were generalizable to real
data.

Simulation Study
The research design for the simulation was a 3 x 3 x 2 x 3 (ability distribution-
by-test length-by-item discrimination-by-sample size) fully crossed design.
The levels of these factors were selected to represent realistic response data. 

Ability Distribution
Given that ability is probably not normally distributed for most groups of
examinees (Lord, 1980), two skewed distributions were modeled as well the
normal distribution. The skewed ability distributions were generated using the
beta probability density function. The positively skewed distribution, defined
as beta (2.9, 5.7), achieved an expected skewness of 0.40 and an expected
kurtosis of –0.30; the negatively skewed distribution, defined as beta (5.7, 2.9),
achieved an expected skewness of –0.40 and an expected kurtosis of –0.30. The
beta distributions were linearly rescaled so that the mean and standard devia-
tion of the distribution of θs were 0 and 1 respectively.

Test Length
Three test lengths were employed: a short exam of 20 items, a moderate exam
of 40 items, and a long exam of 80 items. The short and moderate exam lengths
are consistent with lengths frequently found in psychological and educational
applications (Seong, 1990; Yen, 1987). The longest exam is consistent with
Urry’s (1974) requirement for the item-test point-biserial correlation to be a
close approximation to the item-latent trait correlation.

Item Discrimination
Two conditions of item discrimination were investigated. One condition main-
tained a constant value of one for the a-parameters, which adheres to Lord’s
stipulation that there is a monotonic relation between bi and πi when items are
equally discriminating. Traub (1983) commented on the appropriateness of the
assumption that all item discrimination parameters are equal. Considering the
abundance of empirical evidence, he stated, “The fact that otherwise acceptable
achievement items differ in the degree to which they correlate with the under-
lying trait has been observed so very often that we should expect this kind of
variation for any set of achievement items we choose to study” (p. 64). There-
fore, variable discrimination values were also modeled. A log normal distribu-
tion (μ=0, σ=0.4) was chosen because it is the default distribution for slopes in
BILOG (Mislevy & Bock, 1990) and has been selected by other researchers
modeling achievement data (D.L. Henderson-Montero, personal communica-
tion, May 2, 2003; Seong, 1990).
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Sample Size
Samples of 250, 500, and 1,000 examinees were randomly selected from the
population of simulated examinees. The selection of these sample sizes is
consistent with the selection of sample sizes considered in the previous studies
in which the graphical procedure was used (see above).

Item Difficulty
Item difficulty, a random factor, was not considered in the present study.
Instead, wanting to observe the effect of extreme values outside the normal
range of –2 to 2, b-values were randomly selected from a normal distribution
(μ=0, σ=1) for all simulations. This procedure is consistent with the simulation
work conducted at ETS (D.L. Henderson-Montero, personal communication,
May 2, 2003).

Data Generation
The four-step item response generation technique described by Harwell, Stone,
Hsu, and Kirisci (1996) was used to create the data. Step 1 involved the genera-
tion of true ability scores (θ). In Step 2, tests were created according to the test
specifications (test length, a-parameters, and b-parameters). For each cell in the
experimental design, a unique test was created by deriving new sets of a- and
b-parameters consistent with the specifications for that cell. In Step 3, response
probabilities of a population of 10,000 examinees to the k (20, 40, and 80) items
based on the two-parameter IRT model were determined, producing a 10,000 x
k matrix. The matrix of response probabilities was translated into a 10,000 x k
data matrix of 0/1 responses in Step 4. Each response probability was com-
pared with a random number drawn from a uniform distribution of values in
the closed interval (0, 1). A 1 was assigned for that item if the response prob-
ability was equal to or greater than the random number; otherwise 0 was
assigned for that item.

Mathematica for Students (Version 4, Wolfram, 2000) was used to generate the
response data matrices. LERTAP (Version 5, Nelson, 2000), an Excel applica-
tion, was employed to obtain the classical item analyses and Lord’s estimation
of the a- and b-parameters. Random sampling from the 10,000 examinees was
performed with an Excel (Version 5) macro program.

Replications
The benefits of replicated over nonreplicated IRT simulation studies are the
same as those observed in empirical studies; aggregating results over replica-
tions produces more stable and reliable findings. The number of replications
influences the precision of the estimated parameters. Therefore, increasing the
number of replications is an attractive technique for reducing the variance
error of estimated parameters (Harwell et al., 1996). In the present study, 100
random samples of 250, 500, and 1,000 examinees were drawn from the popu-
lation for each experimental condition.

Achievement Data
Lord’s formulas were applied to two actual achievement data sets. These
datasets consisted of the item scores obtained on provincial examinations by
students who wrote the Biology exam (N=9,030), representing the sciences, and
the English exam (N=13,375), representing the humanities (Alberta Learning,
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1999a, 1999b). These examinations are high school graduation examinations,
which contribute 50% toward students’ final course grades. Only the multiple-
choice components of the exams were used, which comprised 48 items for the
Biology exam and 70 items for the English exam.

The assumptions underlying the two-parameter IRT model were assessed.
The shape of the Scree plot yielded by a principal component analysis showed
a dominant first component and a difference between successive pairs of
components that was small in comparison to the difference between the first
and second components (Hambleton, Swaminathan, & Rogers, 1991), suggest-
ing that each examination was essentially unidimensional (Nandakumar,
1994). Speed was not a factor; 24 (0.18%) English examinees and one (0.01%)
biology examinee did not respond to the last three items.

The psychometric properties of the biology and English examinations are
provided in Table 1. The total test mean and CTST mean p-values reveal that
the items were of moderate difficulty in both examinations. The observed score
distributions for both exams were somewhat negatively skewed and
playtykurtic. Item requirements for the exams include minimum and maxi-
mum acceptable difficulty levels 0.30 and 0.85 respectively and a minimum
acceptable point-biserial correlation of 0.20 (Alberta Education, 1999). The
mean biserial correlations met the criterion of 0.40 and above to be considered
high (Nelson, 2001).

Examination of the IRT information revealed that the ability distributions
for both exams were positively skewed and leptokurtic.1 The mean IRT item
difficulty and discrimination parameters for the achievement data were lower
than that modeled in the simulation study.

Statistical Analyses
The estimated item parameters derived from Lord’s formulas were compared
to the item parameters used to generate the data matrices for the simulated
data. Because the true item parameters for the achievement exams were not
known, the item parameters derived from BILOG using the two-parameter
model were used to evaluate the formulas for the diploma examination study.

Dependent Variables
Standard Errors
Empirical standard errors were calculated to determine how variable the es-
timates were over replications for each cell in the design. Gifford and
Swaminathan (1990) presented the following formula for variance error of the
estimates across 100 replications:

where σ̂ai
2 is the variance error of the estimated item discrimination for item i

and aî is the mean of the estimated a-parameters for item i across 100 replica-
tions. The variance error for bi was calculated similarly. Standard errors were
determined by taking the square root of the mean of the variance error for each
condition. Smaller values of the standard error suggest that the estimates are

σ̂ai
2  =  

∑ 
r = 1

100

( âir −  âi) 2

100
,
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fairly stable and reliable, whereas larger values indicate the estimates may be
unreliable.

Bias
Parameter recovery is generally assessed by comparing the difference between
an item parameter estimate and the corresponding parameter value (Harwell et
al., 1996). Estimation bias is defined as the mean difference between the es-
timated and true parameter value for an item across 100 replications. Bias in the
discrimination values for each item was calculated by:

Bias  ai  =  ∑ 
r = 1

100

 
( âi r  −  ai)

100
.

Bias in the difficulty values for each item was calculated similarly. Smaller
differences indicate that the estimates closely agree with the parameter values.
Maintaining the valence of the difference enabled determination of whether the
estimates systematically overestimated (positive bias) or underestimated
(negative bias) the parameter value.

Examining the nature of the bias is particularly important in the light of
Schmidt’s (1977) contention that Lord’s formulas tend systematically to under-
estimate ai and overestimate |bi|. A heuristic and conceptually reasonable
value of 0.20 was used in the present study to identify under- and overes-
timated difficulty and discrimination parameters.2 Item difficulty and dis-
crimination parameters were considered well estimated if the difference
between the corresponding estimate and zero was less than |0.20|, which
represents about 5% of the range for difficulty and 10% of the range of dis-
crimination.

Table 1
Psychometric Properties of Biology and English Examinations

CTST IRT
Biology English Biology English

Test Level

Mean 33.48 44.26 0.08 0.03
SD 7.83 11.08 1.21 1.09
Reliabilitya 0.86 0.89
Skewness –0.37 –0.13 0.78 0.66
Kurtosis –0.52 –0.69 0.53 0.35

Item Level

Mean Difficulty 0.70 0.63 –1.12 –0.87
Range of Difficulty 0.39-0.88 0.35-0.86 –2.44-0.90 –2.82-0.86
Mean Discriminationb 0.50 0.46 0.56 0.47
Range of Discrimination 0.30-0.73 0.21-0.67 0.25-1.09 0.14-0.89

aCronbach’s alpha.
bBiserial correlation for CTST.
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Results
Simulation Study
The simulation study examined the behavior of Lord’s formulas under condi-
tions congruent and incongruent with the conditions prescribed by Lord. Al-
though length of test was an independent variable, bias patterns were
consistent across the 20-, 40-, and 80-item tests. Similarly, the bias patterns were
consistent across the three sample sizes, although as expected, the standard
errors increased as sample size decreased. Therefore, in the light of space
limitations, the results for the 80 item tests with a sample size of 1,000 ex-
aminees are presented graphically to illustrate the patterns of bias in the
discrimination index and in the difficulty index (Figures 1, 2a, 2b).3 Bias is
presented on the y-axis and the CTST index is provided on the x-axis. However,
although the bias patterns were consistent across sample sizes, the numbers of
unbiased and biased estimates for the three sample sizes are provided in
accompanying tables given the importance of sample size in research and
testing (Tables 2-4).

Item Discrimination
Lord’s formula for converting a CTST biserial correlation to the corresponding
IRT discrimination is solely a function of the biserial correlation. Because IRT
discrimination values typically range between 0 and 2 (Hambleton et al., 1991),
mean standard errors were computed from the items within that range. The
mean standard errors for the normal, positively skewed, and negatively
skewed ability distributions were, rounded to two decimal places, 0.10, which
suggests that estimates were fairly stable.

The bias patterns for the normal, positive, and negatively skewed ability
distributions are illustrated as a function of the biserial correlation in Figure 1
for the sample size of 1,000 examinees. Items with discrimination estimates
within of their true values were considered well estimated (âi  =  aτ). Items
above 0.20 possessed positive bias (âi  >  aτ), while items –0.20 possessed nega-
tive bias (âi  <  aτ).

The numbers of well-estimated and positively and negatively biased item
estimates are reported in Table 2 for four categories of the biserial correlation
and the three sample sizes. The four biserial categories are based on values
probably found in practice (e.g., rb < 0.60 and 0.60  ≤ rb ≤0.69) and the observa-
tion that there were approximately equal numbers of items in each category.

The results shown in Figure 1 and reported in Table 2 reveal that Lord’s
formula for transforming a CTST biserial correlation to the corresponding IRT
discrimination index worked best when the biserial correlations were less than
0.70, regardless of shape of the ability distribution and sample size. For ex-
ample, when the biserial correlations were less than 0.70, more than 90% of the
item mean estimates âi were within two standard errors of their true values for
the six normal distribution/sample size combinations, four of the six positively
skewed distribution/size combinations, and two of the negative distribu-
tions/sample size combinations. With one exception (positive distribution/250
sample size), the remaining percentages exceeded 80%. The bias, when present,
was negative.

Robustness of Lord’s Formulas

521



T. Dawber, W.T. Rogers, and M. Carbonaro

522

T
ab

le
 3

N
um

be
r 

of
 B

ia
se

d 
an

d 
U

nb
ia

se
d 

D
iff

ic
ul

ty
 E

st
im

at
es

 C
at

eg
or

iz
ed

 b
y 

p-
va

lu
e 

fo
r 

th
e 

E
qu

al
 D

is
cr

im
in

at
io

n 
C

on
di

tio
n

p-
va

lu
e 

In
te

rv
al

p<
0.

15
0.

15
<p

<0
.8

5
p<

0.
85

 
n 

s
D

is
tr

ib
ut

io
n

U
nb

ia
se

d
+

B
ia

s
–B

ia
s

U
nb

ia
se

d
+

B
ia

s
–B

ia
s

U
nb

ia
se

d
+

B
ia

s
–B

ia
s

1,
00

0
N

or
m

al
2/

5
3

0
69

/6
9

0
0

6/
6

0
0

(4
0.

0%
)

(1
00

%
)

(1
00

%
)

P
os

 S
ke

w
6/

6
0

0
69

/7
0

0
1

0/
4

0
4

(1
00

%
)

(9
8.

6%
)

(0
%

)
N

eg
 S

ke
w

0/
9

9
0

67
/6

7
0

0
4/

4
0

0
(0

%
)

(1
00

%
)

(1
00

%
)

50
0

N
or

m
al

3/
6

3
0

69
/6

9
0

0
4/

5
0

1
(5

0%
)

(1
00

%
)

(8
0%

)
P

os
 S

ke
w

6/
6

0
0

71
/7

2
0

1
0/

2
0

2
(1

00
%

)
(9

8.
6%

)
(0

%
)

N
eg

 S
ke

w
0/

3
3

0
72

/7
2

0
0

5/
5

0
0

(0
%

)
(1

00
%

)
(1

00
%

)

25
0

N
or

m
al

7/
9

2
0

63
/6

3
0

0
6/

8
0

2
(7

7.
8%

)
(1

00
%

)
(7

5%
)

P
os

 S
ke

w
4/

4
0

0
65

/6
7

0
2

0/
9

0
9

(1
00

%
)

(9
7%

)
(0

%
)

N
eg

 S
ke

w
0/

8
8

0
66

/6
9

3
0

2/
3

0
1

(0
%

)
(9

5.
7%

)
(6

6.
7%

)



Lord’s formula for converting the CTST biserial correlation to the IRT
discrimination did not work as well when the biserial correlation exceeded 0.69
and especially 0.79. Although the formula worked well for the three normal
ability/sample size combinations and the negatively skewed distributions and
two larger sample size combinations (at least 80% within two standard errors)
for 0.70 ≤ rb ≤ 0.79, the formula worked less well for the remaining four
combinations. When the biserial correlation was at least 0.80, no more than 67%
of the estimates were within |0.20| of their true values. The largest bias
occurred for biserial correlations close to one (e.g., when rb = 0.98, ar = 2.92, and
n=1,000, the bias was 4.22).

In summary, the results suggest that Lord’s formula for converting a
biserial coefficient to the IRT discrimination index worked very well for items
with biserial coefficients less than 0.70 regardless of the shape of the ability
distribution and sample size and reasonably well for biserial correlations great-
er than or equal to 0.70 and less than 0.80 and sample size of at least 500
examinees. However, the formula tends to overestimate when the biserial
correlation is greater than or equal to 0.70 and less than 0.80 and the sample
size is 250 examinees and when the biserial correlation was at least 0.80.

Item Difficulty
Two conditions—equal discrimination and variable discrimination—were con-
sidered when investigating the performance of Lord’s formula for converting
the CTST difficulty index (p-value) to the corresponding IRT difficulty index
(b-parameter). The numerator of this formula is the z-score associated with an
item’s p-value. The z-score changes more rapidly as the two limits of the

Figure 1. Bias of IRT discrimination estimates as a function of the CTST biserial correlation for
the 80 item test, variable discrimination, and sample size of 1,000.
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p-value—0 and 1—are approached than when the p-values are moderate be-
cause there are fewer examinees with extreme score values. The result is
greater fluctuations from sample to sample within conditions, which serves to
increase the variance error. Consequently, to avoid unrealistically high stan-
dard errors, the mean variance errors of the estimated b-parameter estimates
were computed from items with difficulties within the range 0.05 < p < 0.95.
The mean standard errors for the normal, positive, and negatively skewed
distributions for the condition of equal (unit) discrimination were 0.08, 0.10,
and 0.11 and for the condition of variable discrimination were 0.08, 0.10, and
0.16 respectively. These values suggest that the estimated difficulties were
fairly stable.

The results for the equal discrimination case, which was stipulated by Lord,
are presented first. The results for the variable discrimination case follow.

Equal discrimination. Lord (1980) stipulated that the discrimination be con-
stant when using the formula for difficulty. The bias patterns for the normal,
positive, and negatively skewed ability distributions are illustrated as a func-
tion of the CTST difficulty in Figure 2a for the sample size of 1,000 examinees
and equal item discrimination. Items with difficulty estimates within |0.20| of
their true values were considered well estimated (b̂i  =  bτ). Items above the
upper limit of this interval possessed positive bias  (b̂i  >  bτ), while items below
the lower limit of this interval possessed negative bias (b̂i  <  bτ).

Figure 2a reveals that Lord’s formula for difficulty accurately predicted the
true b-parameter for p-values between approximately 0.10 and 0.90 for the
normal ability distribution. For items with the p-values less than 0.10, positive
bias was observed; for items with p-values greater than 0.90, negative bias was
observed. The distributions of bias for the positively and negatively skewed
ability distributions were mirror images of each other. For the positively
skewed ability distributions, the mean item b-parameters were well estimated
for p-values between 0 and 0.85, but were underestimated for p-values greater
than 0.85 (best fitting curve arced downward for the easier items). In contrast,
for the negatively skewed distributions, the mean item b-parameters were well
estimated for p-values between 0.15 and 1.00, but were overestimated for
p-values less than 0.15 (best fitting curve arced upward for the most difficult
items).

The numbers of well-estimated and positively and negatively biased item
estimates are reported in Table 3 for three intervals of CTST difficulty and the
three samples sizes. The limits of these difficulty intervals correspond to the
breaks between unbiased and biased estimates of the b-parameter identified
above. Figure 2a and Table 3 reveal that Lord’s formula for converting a
p-value to the corresponding b-parameter worked well in the interval
0.15<p<0.85 regardless of the shape of the ability distribution. No fewer than
95% of the b-parameters were well estimated.

As described above, Lord’s formula for converting p-values to b-parameter
estimates did not work as well when the p-values were less than or equal to 0.15
or greater than or equal to 0.85. For p ≤ 0.15 the bias was positive for approxi-
mately half of the items when ability was normally distributed, absent for all
the items when ability was positively distributed, and positive for all the items
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when ability was negatively distributed. In contrast, for p ≥ 0.85, the bias,
although not as prevalent, was negative when ability was normally dis-
tributed, negative for most of the items when ability was positively distributed,
and absent for most of the items when ability was negatively distributed.

Variable discrimination. The presence of bias and the patterns of bias when
converting p-values to b-parameter estimates using Lord’s formula but with
variable rather than equal discrimination were consistent with the presence
and patterns of bias observed with variable discrimination. As shown in Figure
2b and reported in Table 4, Lord’s formula for converting a p-value to the
corresponding b-parameter worked well again in the interval 0.15 < p < 0.85
regardless of the shape of the ability distribution; for p ≤ 0.15, the bias was
positive for approximately half of the items when ability was normally dis-
tributed, absent for all the items when ability was positively distributed, and
positive for all the items when ability was negatively distributed; and for
p≥0.85, the bias, although not as prevalent, was negative when ability was
normally distributed, negative for all the items when ability was positively
distributed, and absent for all the items when ability was negatively dis-
tributed.

Taken together, the results for unit and variable discrimination reveal that
Lord’s formula for predicting b̂i from pi and r′ix worked well for items with a
broad range difficulties typically found in achievement tests (0.15 < p < 0.85).
Item discrimination, whether constant or variable, had essentially no effect,
which implies that the formula for converting p-values to b-parameter es-
timates is robust. Without exception, when biases were observed, b̂i was over-
estimated for difficult items (p ≤ 0.15) and underestimated for easy items
(p≥0.85). The bias patterns for the negatively and positively skewed ability
distributions were mirror images of each other: the easier items (p ≥ 0.85) were
underestimated for the positively skewed ability distributions while the more

Figure 2a. Bias of IRT difficulty estimates as a function of CTST item difficulty for the 80 item
test, unit discrimination, and sample size of 1,000.
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difficult items (p ≤ 0.15) were overestimated for the negatively skewed distribu-
tions.

Achievement Data
Bias in the achievement data was calculated as the difference between Lord’s
estimate and the BILOG (Mislevy & Bock, 1990, 2000) parameter estimate. The
ability of Lord’s formulas to recover a- and b-parameters is considered with
respect to both the biology and English exams. The analysis was replicated for
100 random samples of 1,000 examinees in order to calculate standard errors
for the item parameters of the achievement data. The standard errors for the
a-parameters were 0.06 for the biology exam and 0.05 for the English exam. The
standard errors for the b-parameters were 0.15 for the biology exam and 0.14
for the English exam.

Because extreme bias values were not found with the achievement data, the
presentation of bias for the two diploma examinations is in increments of one
standard error in Figures 4 and 5. The CTST item indices appear on the
horizontal axes, and the bias appears on the vertical axis. Further, because all
the estimated a- and b-parameters were with five exceptions within two stan-
dard errors, the results are presented in graphical form only.

Item Discrimination
As shown in Figure 3a, Lord’s formula for converting a biserial correlation to
its corresponding a-parameter estimate worked well. All the a-parameter es-
timates for both examinations were well estimated, being within |0.20| of their
corresponding BILOG population values. Biases ranged between –0.035 and
0.081 for biology and between 0.016 and 0.080 for English.

Figure 2b. Bias of IRT difficulty estimates as a function of CTST item difficulty for the 80 item
test, variable discrimination, and sample size of 1,000.
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Item Difficulty
Figure 3b displays the estimation bias of the difficulty parameter for the biol-
ogy and English exams respectively in terms of item p-values. Again, Lord’s
formula for converting a p-value to a b-parameter estimate worked well. All but
two of the estimated b-parameters were within |0.20| of the corresponding
BILOG population values for biology and all but six b-parameters for English.
A common characteristic of the two biology items and the six English items, all
of which exhibited positive bias, is that they possessed low biserial correla-
tions, although it must be noted that not all items with low biserial correlations
had biased b-parameter estimates.

Discussion
Several differences are seen between the present research and earlier studies
that prevent direct comparison of the findings. First, the two-parameter IRT
model was used for the present study, whereas the three-parameter model was
used in the earlier studies. Second, the biserial correlation was used in the
present study, whereas the point-biserial correlation was used in the earlier
studies. Both these changes properly met the statistics identified by Lord (1980)
when we first proposed the two formulas. The third difference is that the
performances of Lord’s formulas were evaluated using different dependent
variables. Estimation bias and sampling variances were calculated in the
present study; correlational techniques were employed in the earlier studies.
The fourth difference relates to the psychometric frame of reference. The es-
timated IRT parameters were considered in relation to the classical item indices

Figure 3a. Bias of IRT discrimination estimates as function of CTST biserial correlation for the
English and biology exams.
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in the present study, whereas the IRT framework was used exclusively in the
previous studies. Hence we discuss the results in the light of these differences.

Item Discrimination
The results of the simulation study suggested that Lord’s formula for convert-
ing the CTST biserial correlation to IRT item discrimination performed very
well for biserial correlations of less than 0.70, and the results for the real
achievement data confirmed this finding. Although the real achievement data
represented a greater departure from normality than that modeled in the
simulation study, the results were more similar to the data from the normal
ability distribution where all items with biserial coefficients less than 0.70 were
well estimated. Another difference between the simulated and real achieve-
ment data was the kurtosis of the ability distributions. The IRT ability distribu-
tions of the two achievement data sets were leptokurtic, whereas the skewed
ability distributions in the simulation study were platykurtic. Therefore, it
appears that Lord’s discrimination formula is robust to the violation of the
assumption of a normal ability distribution when the biserial coefficients are
less than 0.70.

These findings are not consistent with the opinions put forth by Schmidt
(1977). In the context of Urry’s (1974) graphical procedure that used the point-
biserial correlation and the three-parameter IRT model, Schmidt proposed that
âi would be systematically underestimated. He reasoned that the point-biserial
correlation between the item score and the estimated latent trait (i.e., total test
score), ri θ̂ , is taken as an estimate of the point-biserial correlation between the
item score and the perfectly reliable latent trait, ρ̂i θ. Values of ri θ̂ will be
attenuated because of guessing on item i, and the unreliability of θ̂. Schmidt
pointed out that increased values of the correlation would lead to larger âi. No
subsequent work has verified this criticism of Urry’s research. However, the

Figure 3b. Bias of IRT difficulty estimates as a function of CTST item difficulty for the English
and biology exams.
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results of the present study suggest that the discrimination parameters were
not systematically underestimated. Rather, they were well estimated in the
context Lord intended: using the biserial correlation and the two-parameter
IRT model.

Item Difficulty
Schmidt (1977) contended that |b̂i| derived from Lord’s formula for convert-
ing CTST p-values to IRT b-parameter estimates would be systematically over-
estimated in the context of Urry’s (1974) work. Results from the present study
suggest that this is not the case when the biserial correlation and the two-para-
meter IRT model are used. The results of the simulation study suggested that
Lord’s formula for item difficulty performed quite well for p-values between
0.15 and 0.85, regardless of the shape of the ability distribution. The patterns of
bias in the b-estimates observed for the conditions of variable discrimination
were comparable to the patterns of bias in the b-estimates observed for unit
discrimination. Seemingly, Lord’s restrictions of equal item discrimination and
normal ability distribution are not required for a broad range of difficulty
values (i.e., 0.15 < p < 0.85).

When biased difficulty estimates occurred, they were differentially affected
by the direction of the skewness. Bias was most pronounced and negative for
the easy items in the positively skewed distribution and most pronounced and
positive for the difficult items in the negatively skewed distribution. These
results may be explained by examining the nature of the skewed distributions.
Fewer examinee ability values were observed in the non-tailed region than the
tailed region. There were few ability values at the high end of the ability scale
(θ > 2.20) for the negatively skewed population and there were few ability
values at the low end of the ability scale (θ < –2.20) for the positively skewed
population. The result is floor and ceiling effects respectively. The effect on
b-parameter estimation is dramatic. The numerator of the formula is a z-score,
which changes more rapidly as p-values reach very high and very low levels,
driving up the absolute value of the z-score. As a consequence, bi is overes-
timated when most examinees answer incorrectly and bi is underestimated
when most examinees answer correctly. Although high p-values (i.e., p > 0.85)
and low p-values (i.e., p < 0.15) are not desirable item characteristics, the
findings highlight the limitation of the formula to predict IRT difficulty para-
meters accurately in such circumstances.

Difficulty estimates using the real achievement data sets suggested that the
formulas performed very well. The b-parameters were estimated within 0.20 of
BILOG values for all items on the biology exam and all but five of the easier
items on the English exam. The bias for the easy items was positive rather than
negative, as found in the simulation study for the positively skewed ability
distributions. Two possible explanations were investigated. First, the place-
ment of these items in the English examination was considered. The English
examination consisted of seven testlets determined by the nature of the prose
the examinees were to read and answer questions (e.g., poems, short story,
excerpts from a play or essay). It was hypothesized that the first items in the
testlets might be easy and would correspond to the biased items. However,
only one of the five overestimated items was the first position. The second
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possible explanation is related to the violation of the assumption of non-guess-
ing. Hambleton et al. (1991) stated that the assumption of no guessing is most
plausible with constructed-response items, but may be met only approximately
with multiple-choice items when a test is not too difficult for the examinees.
For example, they suggested that this assumption might not be met when tests
are given to students following effective instruction.

A second reason why the assumption of guessing may have been only
partly met is the presence of items susceptible to the application of testwise-
ness. Review of the item content, including the item options, revealed that the
five items were susceptible to testwiseness. Testwiseness has been defined as a
person’s ability to use the characteristics and formats of the test and/or the
test-taking situation to improve his or her test score. If an examinee possesses
relevant partial knowledge of the content area and knowledge of testwiseness
strategies, and if the test contains testwise-susceptible items, then the combina-
tion of these elements may result in a higher test score (Rogers & Bateson,
1991). Examinees may eliminate incorrect options and select among the
remaining choices, thereby increasing their chances of success on these items.
Consequently, the five biased items exhibited low biserial correlations. As Lord
and Novick (1968) pointed out, this is what is expected from items that can be
answered correctly by guessing because the item score cannot be highly corre-
lated with any criterion. A low biserial correlation would contribute to the
overestimation of bi, given the biserial is the denominator of the formula for
converting p-values to b-parameter estimates.

Lord’s formulas have applications in any testing situation when the needed
sample size for calibrating items either is not available or cannot be achieved.
Lord’s formulas can be used for computer testing to obtain initial difficulty and
discrimination estimates for items to be included in item banks when only
small sample sizes are available. For example, an adaptive assessment system
is being introduced in grades 3-12 in four subject areas (English, mathematics,
science, and social studies) in Alberta. Because the samples of students to be
used to calibrate the items using IRT were initially small, and wanting some
preliminary indication of how well the items were working, Lord’s formulas
were employed with samples of sizes of about 200 students. Comparison of
these estimates with those obtained using BILOG when the complete sample
was realized revealed that both Lord’s formulas worked well except for very
easy and very difficult items (G. Sadesky, personal communication, September
14, 2007). Lord’s formulas could also be used to obtain IRT difficulty and
discrimination indices in situations where computer adaptive tests need to be
withdrawn due to exposure or in situations such as when a school system
wishes to compare the performance of the items in their system with the IRT
values derived for the state or province in which they are located. To conclude,
Hambleton (1989) commented on problems associated with the use of Lord’s
formulas that he attributed to the restrictive assumptions underlying the use of
the two formulas. The results from the present study suggest otherwise. Viola-
tions of the prescribed conditions—normally distributed ability, equal dis-
crimination, and non-guessing—appear not to have a detrimental effect on the
outcomes of Lord’s formulas for converting a classical test score biserial cor-
relation to and the corresponding item response a-parameter estimate and a
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classical test score p-value to the corresponding b-parameter estimate. To echo
the sentiments of Jensema (1976), Lord’s formulas yield “surprisingly accurate”
estimates of IRT discrimination and difficulty.

Notes
1The observation that the classical and IRT distributions have opposite directions of skewness is
attributable to the difference in way the difficulty parameter is defined in the two test models.
Low p-values reflect difficult items whereas negative b-values reflect difficult items.
2Use of a conceptually reasonable value was adopted instead of using standard errors and
confidence intervals so as to provide an overall fit criterion rather than one that varied by item
difficulty and/item discrimination.
3The results for the 20 and 40 item tests and sample sizes 250 and 500 for the 80 item test can be
obtained from the first author.
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