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Decentralized Fault Detection and Isolation in Wireless Structural Health Monitoring 

Systems using Analytical Redundancy 

 

Kay Smarsly1 and Kincho H. Law2 

 

Abstract 

 

One of the most critical issues when deploying wireless sensor networks for long-term 

structural health monitoring (SHM) is the correct and reliable operation of sensors. Sensor 

faults may reduce the quality of monitoring and, if remaining undetected, might cause 

significant economic loss due to inaccurate or missing sensor data required for structural 

assessment and life-cycle management of the monitored structure. This paper presents a 

fully decentralized approach towards autonomous sensor fault detection and isolation in 

wireless SHM systems. Instead of physically installing multiple redundant sensors in the 

monitored structure (“physical redundancy”), which would involve substantial penalties in 

cost and maintainability, the information inherent in the SHM system is used for fault 

detection and isolation (“analytical redundancy”). Unlike traditional centralized 

approaches, the analytical redundancy approach is implemented distributively: Partial 

models of the wireless SHM system, implemented in terms of artificial neural networks in 
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an object-oriented fashion, are embedded into the wireless sensor nodes deployed for 

monitoring. In this paper, the design and the prototype implementation of a wireless SHM 

system capable of autonomously detecting and isolating various types of sensor faults are 

shown. In laboratory experiments, the prototype SHM system is validated by injecting 

faults into the wireless sensor nodes while being deployed on a test structure. The paper 

concludes with a discussion of the results and an outlook on possible future research 

directions. 
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1. Introduction 

 

The continuing progress in structural health monitoring (SHM) and wireless sensing 

technologies has led to prolonged periods of time wireless SHM systems are able to operate 

autonomously [1-3]. As a consequence, wireless SHM systems, if permanently installed on 

large-scale engineering structures such as bridges, dams, towers or wind turbines, require 

sensors operating correctly and precisely over long periods of time. However, when being 

deployed over extended time periods, sensors are increasingly exposed to harsh 

environmental conditions as well as ageing and degradation that may cause less accurate 

sensor data or even sensor faults. It is evident that wireless SHM systems deployed for 
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long-term structural health monitoring require continuous performance monitoring and 

calibration of the sensors. Monitoring and calibration, in common practice scheduled on a 

periodic basis, are typically conducted manually within maintenance trips to remote 

monitoring sites, which are time-consuming and costly. Due to a lack of knowledge about 

actual sensor conditions, the sensors deployed in wireless SHM systems are usually 

maintained and calibrated regardless of their performance, which causes causing further 

maintenance costs and a decreased monitoring quality because of unnecessary and 

inaccurate sensor calibrations and undetected sensor faults. 

 

To ensure a high quality of monitoring and to reduce maintenance costs, it is essential to 

continuously monitor the quality of sensor data and to automatically detect and isolate 

sensor faults. Although much progress has been made in developing intelligent SHM 

systems [4-11], undetected faults in SHM systems still remain an open problem posing 

substantial challenges in SHM research [12]. Faults in wireless SHM systems can have 

several reasons, for example malfunctioning hardware, bugs in the software embedded into 

the wireless sensor nodes, harsh weather conditions, or environmental hazards. While some 

faults in wireless SHM systems might be easy to detect – for example if sensor data is 

missing – other faults might be more subtle, e.g. if caused by small sensor drifts. In general, 

a fault can be defined as a defect that leads to an error, and an error corresponds to an 

incorrect system state that may result in a failure [13]. A sensor fault, if not being detected 

and isolated, can propagate throughout the entire SHM system causing severe failures that 

may degrade the overall system performance or even cause a total system malfunction [14, 

15]. Sensor failures, in general, can be categorized into hard and soft failures [16]. Hard 
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failures are, for example, large bias failures that occur instantaneously, and soft failures are 

small biases or drifts that accumulate relatively slowly over time. 

 

Fault diagnosis, according to [17], can be described as a process that includes (i) fault 

detection, (ii) fault isolation, (iii) fault identification, and (iv) fault accommodation. It 

should be noted that unstructured uncertainties, process noise, and measurement noise is 

usually outside the scope of fault diagnosis. The purpose of this paper focuses on the area 

of fault detection and isolation (FDI). The concept of FDI has widely been studied in 

computer science for several years [18-20], and numerous approaches towards FDI have 

been proposed including, e.g., model-based approaches, knowledge-based approaches, or a 

combination of both [17, 21-26]. More recently, FDI concepts have also been successfully 

implemented in a number of engineering disciplines, such as aerospace engineering, 

mechanical engineering and electrical engineering, to improve the availability and 

reliability of distributed engineering systems [27-29]. However, the investigation of fault 

detection and isolation in wireless SHM systems has received little attention. 

 

This paper presents a decentralized approach towards fault detection and isolation in 

wireless SHM systems. Implementing the analytical redundancy approach, neural networks 

are embedded into the wireless sensor nodes installed in the monitored structure enabling 

each sensor node autonomously detecting and isolating sensor faults in real time. The paper 

is organized as follows. First, background information on  FDI concepts is given. Then, the 

design and prototype implementation of a wireless SHM system capable of fault detection 

and isolation, with strong emphasis on the embedded neural network approach, is 
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described. Next, laboratory experiments are presented that are devised to validate the 

performance of the wireless SHM system. For the laboratory experiments, the prototype 

SHM system is installed on a test structure, and sensor data obtained during normal (i.e. 

non-faulty) system operation is used to train the fault diagnosis capabilities of the SHM 

system. Thereupon, faults are injected into the wireless sensor nodes to validate the 

system’s capabilities to autonomously detect and isolate sensor faults. The paper concludes 

with a discussion of the results and an outlook on possible future research directions.  

 

2. Fault detection and isolation based on analytical redundancy 

 

Traditionally, a key technique towards fault detection and isolation in distributed systems is 

the multiplication, i.e. the redundant installation of hardware components such as sensors, 

data acquisition units or computers (“physical redundancy”). For example, for measuring 

one single parameter of interest, multiple sensors are physically deployed. To make a 

decision whether one of the observed sensors is faulty, the outputs of the redundant sensors 

are compared using decision rules that are commonly based on simple majority voting 

logics [30]. However, physical redundancy involves substantial penalties in cost and 

maintainability because multiple hardware components must be installed in the monitored 

structure. Moreover, voting assumes independent faults, and sensors operating in the same 

environment can hardly be considered independent. Overcoming these problems, the 

concept of “analytical redundancy” has emerged, fostered by the rapid advancements in 

computer science and information technology [17]. 
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Instead of physically installing multiple sensors for measuring one single parameter, 

analytical redundancy takes advantage of the redundant information inherent in the 

observed SHM system and utilizes the coherences and relationships between the sensors 

regularly installed [25]. Analytical redundancy, when applied for fault detection and 

isolation in wireless SHM systems, has tremendous potential to reduce system costs and 

power consumption of wireless sensor nodes while substantially increasing availability, 

reliability, safety and maintainability of the SHM system. For each observed sensor, virtual 

sensor outputs representing non-faulty operation are predicted based on measured outputs 

of correlated sensors and on a priori knowledge about the system. Comparing actual and 

virtual sensor outputs, residuals are generated for each sensor. The residuals, reflecting 

inconsistencies between the actual sensor behavior and the model-based, virtual sensor 

behavior, serve as the basis for decision making with respect to potential sensor faults. 

 

As opposed to physical redundancy, which often uses simple voting logics to determine 

faulty sensors, analytical redundancy employs mathematical models of the observed 

decentralized (SHM) system for mapping the inherent redundancy contained in the system. 

The mathematical models used to generate the diagnostic residuals between actual and 

virtual sensor outputs can be either first-principle models derived analytically or black box 

models obtained empirically. To estimate the virtual sensor outputs as precisely as possible 

and to correctly interpret the residuals between actual and virtual sensor outputs, analytical 

redundancy, compared to physical redundancy, requires more sophisticated information 

processing techniques. For estimating virtual sensor outputs and for generating the 

residuals, several techniques have been proposed in related disciplines. Widely used and 
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well accepted approaches include, e.g., estimation filters [31, 32], band-limiting filters [33] 

as well as innovation testing based on Kalman filters [34], threshold logic [35], and 

generalized likelihood ratio testing [36]. Among the most efficient approaches for 

estimating virtual sensor outputs is the application of artificial neural networks, because 

neural networks are capable to accurately model non-linear and dynamic decentralized 

systems (such as wireless SHM systems) without the need for first-principle models or a 

priori knowledge about the complex internal structures of the system observed [37]. 

 

Neural networks, consisting of a set of processing units (neurons) and weighted 

connections between the units, have the ability (i) to find patterns and associations between 

given input and output values of the network and (ii) to estimate output values based on 

given input values – even if the input is inaccurate, noisy, or incomplete. During a training 

phase, a neural network learns from existing relationships, i.e. from given pairs of input and 

output values, resulting in a non-linear black box model that is applied in a subsequent 

runtime phase. In the runtime phase, new input values are presented to the neural network, 

which estimates the corresponding output values by adapting itself to the new inputs. For 

fault detection and isolation in wireless SHM systems, these distinct strengths of neural 

networks can advantageously be used to estimate virtual outputs of a sensor based on actual 

outputs recorded by correlated sensors presented to the neural network as inputs, which 

results in a precise and robust residual generation [38]. 

 

The characteristics of neural networks, particularly the approximation and adaptation 

capabilities, have led to a plenitude of neural networks applications deployed to achieve 
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analytical redundancy in various types of engineering systems. Examples include fault 

detection in wind turbine structures [39], aircraft engines [40], fossil-fuel power plants [38], 

flight control systems [41], unmanned airborne vehicles [42], and robotic systems [43]. 

However, most of the existing studies tackle the problem of fault detection and isolation 

with centralized approaches, in which sensor data originating from different sources is first 

transferred into a centralized repository and then analyzed with respect to anomalies or 

inconsistencies that might indicate sensor faults. Unfortunately, these centralized 

approaches bring up further technical issues because of the extensive global communication 

required and the large amounts of sensor data to be transmitted. 

 

3. Implementation of fault detection and isolation into a wireless SHM system 

 

Unlike traditional centralized approaches as described above, the research presented in this 

paper pursues a full decentralization to achieve reliable, robust and resource-efficient fault 

detection and isolation in wireless SHM systems. For that purpose, artificial neural 

networks are embedded into the wireless sensor nodes of the wireless SHM system. 

Hosting only a few neurons and communicating only with its local neighbors, each wireless 

sensor node is capable of autonomously detecting and isolating faults of its sensors based 

on real-time information received from neighboring sensor nodes, while efficiently using 

the limited computing resources. 

 

The architecture of the prototype wireless SHM system is shown in Figure 1. Sensors are 

installed in the monitored structure to continuously measure structural and environmental 
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parameters such as acceleration and temperature data. Each sensor is connected to a 

wireless sensor node designed to autonomously collect data from the sensors, to locally 

aggregate the sensor data and – in order to assemble a global picture about the structural 

condition – to communicate with other sensor nodes and with an Internet-enabled local 

computer placed near the structure. The local computer is primarily deployed to process 

and to store the sensor data and to enable further (remote) data processing. In case of 

potential structural anomalies detected from the sensor data, alerts are autonomously 

generated by the local computer and sent to the human individuals involved. 

 

For collecting, analyzing and communicating the sensor data, modular Java-based software 

programs, referred to as “SHM modules”, are embedded into the wireless sensor nodes. In 

addition to the SHM modules, further software programs, labeled “FDI modules”, are 

embedded into the wireless sensor nodes for autonomous detection and isolation of sensor 

faults. In the following subsections, after a general description of the sensor node hardware, 

the design and the implementation of the FDI modules are presented in detail. For details 

on the SHM modules, the interested reader is referred to [44-46]. 
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The computational core of the sensing units is an Atmel AT91RM9200 incorporating a 32-

bit processor with 16 kB instruction and 16 kB data cache executing at 180 MHz maximum 

internal clock speed [52]. Included are several peripheral interface units such as USB port, 

programmable I/O controller, I2C bus, etc. Memory of the sensing units is a Spansion 

S71PL032J40 with 4 MB flash memory and 512 kB RAM. For wireless communication, an 

integrated radio transceiver, the IEEE 802.15.4-compliant Texas Instruments (Chipcon) 

CC2420 single-chip transceiver is deployed, operating on the 2.4 GHz unregulated 

industrial, scientific and medical (ISM) band. Power supply is provided by an internal, 

rechargeable lithium-ion battery (3.7 V, 720 mAh). Each sensor node, besides a number of 

analog inputs and sensors, comprises of an integrated temperature sensor and a three-axis 

linear accelerometer. The accelerometer, type LIS3L02AQ manufactured by 

STMicroelectronics, measures a bandwidth of 4.0 kHz in x- and y-axis and 2.5 kHz in z-

axis over a scale of ± 6 g [53]. 

 

3.1 FDI module design 

 

The FDI modules embedded into the wireless sensor nodes integrate two interconnected 

sub-modules. As illustrated in Figure 2, each FDI module includes 

 

(i) a mathematical model of the SHM system for computing virtual outputs of the 

observed sensor and  
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(ii) a decision logic for the comparison of actual and virtual sensor outputs required 

for decision making with respect to faulty or non-faulty sensors.  

 

To illustrate the conceptual design of the FDI modules, a typical SHM system is considered 

in Figure 2. The dynamic system, which can be a complete SHM system or a distinct set of 

sensors being observed, has an input vector x and an output vector z. For a realistic system 

representation it is important to model all effects that can affect the system, such as sensor 

faults, modeling errors as well as system and measurement noise. These effects are 

included in the fault vector f, which is in the fault-free case f = 0 and f ≠ 0 in a faulty case. 

Further effects that are relevant to fault detection and isolation are summarized in the vector 

of unknown inputs d. The mathematical system model is implemented based on artificial 

neural networks that allow modeling non-linear systems and estimating virtual sensor 

outputs without detailed knowledge about the complex internal structures of the observed 

SHM system. The system model, using the actual system inputs x, estimates the virtual 

system outputs ẑ representing the outputs of the system in non-faulty operation. The 

residuals r between actual system outputs z and virtual system outputs ẑ are evaluated 

through the decision logic. 
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sensor. The “DecisionLogic” class includes methods and attributes for evaluating the 

diagnostic residuals, and it is capable to communicate the evaluation results by accessing 

the wireless transceiver of a wireless sensor node. Using adaptive thresholds, the decision 

logic supports the real-time detection of hard sensor failures, e.g. large biases, as well as 

soft sensor failures, such as drifts that increase relatively slowly with time. As shown in 

Figure 3, further classes are implemented to ensure a reliable fault detection and isolation. 

The “NeuralNetwork” class provides the generic structure and functionalities required to 

run specific instances of a neural network on a wireless sensor node. A neural network 

consists of a set of neurons (class “Neuron”), where each neuron j can have i = 1…n inputs 

xi and one output zj. The neurons are arranged in layers (class “Layer”) being connected 

with neurons of other layers through weighted connections (class “Connection”), where 

 

 neurons of an input layer receive sensor data from outside the neural network, 

 neurons of hidden layers, being connected with input and output layers, are 

responsible for the actual processing within the neural network, and 

 neurons of an output layer send the estimated virtual sensor outputs out of the 

network to the decision logic for evaluation. 
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study, a variety of linear and non-linear activation functions is implemented, based, e.g. on 

the identity function zj = yj, on linear functions zj = cyj, where c is a constant, and on 

sigmoid functions, as denoted in Eq. (2), including logistic and hyperbolic tangent 

functions. 

 

jyj
e

z 


1

1
                                                              (2) 

 

Finally, learning rules are implemented in the FDI module (class “LearningRule”) to train a 

neural network by providing it with sensor data obtained during normal operation of the 

wireless SHM system. The data sets used for training contain the desired network outputs 

(i.e. measurements recorded by the observed sensor) and given network inputs (i.e. 

measurements recorded by correlated sensors). The residuals between desired network 

outputs and the estimated network outputs are used by the learning algorithm to adjust the 

weights of the connections in the neural network in order to achieve optimum network 

outputs. For the adjustments, i.e. to train the network, the backpropagation algorithm [54] – 

one of the most studied supervised learning methods for neural networks training [55] – is 

prototypically embedded into each wireless sensor node (class “Backpropagation”), 

calculating the (k+1)-th adjustment of the connection weight wij following Eq. 3: 
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where E is the network error that is determined by the neural network output, η is the 

learning rate that defines to what extend the weights will change in one iteration within the 

training phase, and α is the momentum rate that allows the attenuation of oscillations when 

adjusting the weights [55, 56]. The objective function (or cost function) defined to measure 

the network performance is implemented using the sum of squares error function 

representing the total network error. Thus, the total network error is defined as the mean 

squared error: 

 


 


P

p

J

j
pjpj zt

PJ
MSE

1 1

2)(
1

,                                                  (4) 

 

where t and z are, respectively, the desired (target) output and the estimated output of the j-

th neuron in the p-th iteration, and P and J denote the total number of training sets and 

output nodes. To minimize the total network error, the embedded backpropagation 

algorithm performs gradient descent to adjust the network weights wij (Eq. 3). 

 

3.3 Neural network architecture 

 

The mathematical model of the SHM system introduced in Figure 2 is divided into partial 

system models, each of which embedded into one wireless sensor node. The partial system 

models implemented herein are, in general, based on multi-layer backpropagation 

feedforward neural networks, which have proven their effectiveness in parameter 

estimation problems in a number of engineering applications [57-59]. Before porting 
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specific neural network instances on the wireless sensor nodes, the optimum network 

topology and the network parameters are determined on a desktop PC using training data 

recorded in preliminary laboratory tests. In general, the dataflow from neurons of the input 

layer to neurons of the output layer is strictly feedforward, i.e. outputs to neurons of the 

same layer as well as outputs to neurons of a previous layer, as in recurrent neural 

networks, are not permitted. While the input function of a neuron is a priori given by Eq. 

(1), the hyperbolic tangent function is chosen, as a result of computational steering, as an 

appropriate sigmoid activation function for transforming the net input yj into a node’s 

output zj: 

 

1

2
1

2 


jyj
e

z .                                                            (5) 

 

The hyperbolic tangent activation function is chosen because it leads to faster convergence 

of the learning algorithms than other non-linear functions, as corroborated in previous 

studies [64]. It is worth mentioning that for embedding the hyperbolic tangent function into 

the resource-limited wireless sensor nodes, helper routines are implemented because the 

software of the wireless sensor nodes, as described earlier, is based on the Connected 

Limited Device Configuration (CLDC), which does not support resource-intensive 

mathematical functions. 

 

With respect to the network topology, the number of neurons on the input layer and the 

number of neurons on the output layer are predetermined by the sensors of the wireless 
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SHM system. More specifically, the output layer contains the estimated outputs of an 

observed sensor, and the input layer corresponds to the correlated sensors. By contrast, the 

optimum numbers of hidden layers and the optimum number of neurons per hidden layer 

(hidden neurons) are to be determined. Although it has been more than two decades since 

neural networks have been first introduced for processing sensor data [60], there still exists 

no generally accepted method to determine the optimum numbers of hidden layers and 

hidden neurons [61]. However, it has been shown that one hidden layer with 2n+1 nodes, 

where n is the number of input nodes, is sufficient to approximate any non-linear function if 

relatively complex activation functions and/or relatively high numbers of neurons are used 

[62]. On the other hand, if using activation functions of reduced complexity, such as regular 

sigmoid functions, and a small number of neurons, it has been suggested that two hidden 

layers are preferably to be implemented [63].  

 

Using the network error MSE as a performance measure, the optimum number of hidden 

layers and the optimum number of hidden neurons are determined in this study based on a 

heuristic search followed by trial and error. It is observed that the network error decreases 

with the number of hidden neurons, but too many hidden neurons cause overfitting 

problems, such that the neural network memorizes the training data instead of generalizing 

when new data sets are presented entailing a poor predictive performance of the neural 

network. Also, increasing the number of hidden layers and hidden neurons reduces the 

computational efficiency of the wireless sensor nodes; performance tests conducted in this 

study on several prototype network implementations show that each additional hidden 

neuron, on the average, adds about 75% computation time (taking one neuron on one 
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4. Laboratory experiments 

 

Two laboratory experiments are devised to validate the performance of the wireless SHM 

system and to test its fault detection and isolation capabilities. The SHM system is mounted 

on a three-story test structure as shown in Figure 5. The test structure is an aluminum shear 

frame structure of 1.52 m height. The lateral stiffness of each floor originates from four 

aluminum columns with cross sections of approximately 1.3 cm × 0.6 cm. Each floor, 

connected to the columns through bolted joints, has a dimension of 46.5 cm × 26.7 cm and 

weighs about 7.3 kg. The wireless sensor nodes of the SHM system are installed in the 

center of every floor. In addition to the wireless sensor nodes, the base station, connected to 

the local computer, is placed next to the test structure. In the first laboratory experiment, the 

performance of the SHM system under normal operation, i.e. in the absence of sensor 

faults, is validated. In the second experiment, faults are injected into the wireless sensor 

nodes to test the capabilities of the wireless SHM system with respect to autonomous FDI. 

The (unfaulty) sensor data recorded in the first laboratory experiment is used in the second 

laboratory experiment to train the neural networks of the wireless sensor nodes. 
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convert the measured accelerations from the time domain into the frequency domain. 

Thereupon, the primary modes of the test structure are derived through peak picking. 

 

For the laboratory experiment, the embedded FFT algorithm is performed on 256 

consecutive time points. The sensor data collected by the sensor nodes is sampled at 50 Hz, 

well above the primary modes of response of the test structure, as analytically calculated in 

previous studies from a numerical model of the test structure [65, 66]. Figure 6 shows the 

acceleration response recorded by the wireless sensor nodes. The frequencies of the 

calculated primary modes of response are determined by in this experiment as 2.1 Hz, 

5.7 Hz and 8.4 Hz, showing very good agreement with the theoretical response analytically 

determined from the numerical model (2.1 Hz, 5.7 Hz, 8.2 Hz). As an example, the 

frequency response function derived from the acceleration response of the second floor 

(floor B) through sensor node B is depicted in Figure 7. The test procedure conducted in 

this experiment is repeated 10 times to obtain sufficient quantities of sensor data for the 

second laboratory experiment. 
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The second laboratory experiment includes two steps. In the first step, the sensor data 

recorded in the first laboratory experiment is used in an offline training procedure as 

training data for the wireless sensor nodes. In the training procedure, the wireless sensor 

nodes of the SHM system learn from the previously recorded data sets, representing non-

faulty sensor operation, to identify signatures of non-faulty sensors or, in other words, to 

distinguish between non-faulty and faulty sensors. In the second step, faults are injected 

into the wireless sensor nodes to validate their fault detection and isolation capabilities. 

 

Offline training procedure 

 

Within the offline training procedure, the previously obtained acceleration data is used (i) 

to train, (ii) to validate, and (iii) to test the neural network of each wireless sensor node. For 

every sensor node, a total of 2,560 data points originating from the 10 test procedures is 

randomly subdivided into three disjoint subsets, 80% of which serving as training data 

(training set), 10% are used for cross validation (validation set), and 10% are used for 

testing the neural networks (test set). First, the training set is applied to adjust the 

connection weights of each neural network using the backpropagation algorithm introduced 

in Eq. (3). Each network is trained several times with random initial weights to avoid local 

minima problems when determining the optimum connection weights. After every training 

cycle (or epoch), the validation set, being independent from the training set, is used to 

validate the network performance. The validation set is used to monitor the network error 

during training and to stop training when the error – the mean squared error defined in Eq. 

(4) – is less than 0.002. To avoid overfitting, it is also monitored if the network error 
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Fault detection and isolation 

 

Two common sensor failures, a drift (soft failure) and a large bias (hard failure), are 

simulated. The corresponding faults are injected into the code of the embedded software 

module of sensor node B, which is implemented for collecting and analyzing acceleration 

data (“SHM module”). While sensor node B is affected by the simulated fault, sensor node 

A and sensor node C are capable of running in normal operation. 

 

Figure 11 depicts the time histories of the residuals between the actual measurements and 

the virtual sensor outputs that are estimated using the acceleration measurements of sensor 

node A and sensor node C, thus being fully independently from the actual measurements of 

sensor node B. As can be seen from Figure 11, the drift is inserted at t = 5 s. The time-

varying drift is simulated by adding a ramp with a slope of 0.03 g/s to the regular 

accelerometer reading. The fault is detected by sensor node B at about t = 11 s as soon as 

the pre-defined threshold of ±0.2 g is exceeded. At t = 18 s, the residuals are permanently 

out of the tolerable range for more than t = 5 s, a time span chosen based on data 

processing constraints, and trigger the automated fault correction. From this moment on, 

the virtual sensor outputs of sensor node B are used in lieu of the actual measurements 

recorded by the faulty accelerometer. Otherwise, the faulty sensor of sensor node B would 

continue feeding incorrect measurements into the SHM system, and it would affect the fault 

detection and isolation of the other wireless sensor nodes. 
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4.3 Discussion of the results  

 

In the laboratory experiments, different fault types have been injected into a wireless sensor 

node of the SHM system. While large biases, in general, can be detected relatively easy, it 

is known that drifts are among those failure types, which are, because of the temporal 

component in the failure signature, most difficult to detect [67]. Nevertheless, the results 

from the laboratory experiments demonstrate that the FDI modules of the wireless sensor 

nodes are capable to autonomously detect and isolate these faults. This is due to the virtual 

sensor outputs used for residual generation, which are calculated independently from the 

actual measurements of an affected sensor node. Although, for the sake of clarity in this 

paper, the sensor drift exemplarily injected in the experiment has a relatively large slope 

value (0.03 g/s), it is clear that the embedded FDI modules detect more subtle drifts of 

smaller slope values with the same accuracy and with a small probability of false alarms; 

the fault detection of smaller drifts, as elucidated in this paper, just takes a longer time 

because the time span between occurrence of the fault and fault detection depends on the 

fault magnitude and on the thresholds defined for the residuals. 

 

As demonstrated in the second laboratory experiment, sensor faults can be detected and 

isolated without the need for first-principle models and without a priori knowledge about 

the internal structures of the SHM system. In total, the dynamic, non-linear behavior of the 

SHM system has been captured very precisely by the (partial) system models implemented 

into the wireless sensor nodes. The coefficient of determination between measured and 

estimated acceleration data has been R2 = 0.959, and the mean squared error, as calculated 
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during network validation, has been less than 0.002. Furthermore, each wireless sensor 

node hosts only a few neurons – it has been found that two hidden layers with three hidden 

neurons each are adequately in this study – and communicates only with its local neighbors, 

achieving a reduced model complexity along with an increased resource efficiency of the 

SHM system. Nevertheless, although much attention has been paid to determine an 

optimum architecture of the embedded neural networks, both the precision and the 

computational efficiency could be refined by further investigations of network architectures 

and by additional optimizations of distinct network parameters. Also, collecting further 

quantities of sensor data from the test structure, to be used for training, validation and 

testing of the embedded neural networks, would help further improving the FDI 

performance of the wireless SHM system. 

 

With respect to the monitoring capabilities of the wireless SHM system, on the other hand, 

the practicability of the system has been demonstrated in the first laboratory experiment. In 

particular, real-time data acquisition and autonomous analyses of sensor data have been 

proven reliable when comparing the experimental results with the results obtained from the 

numerical model of the test structure. However, it has been unveiled in the laboratory 

experiments that there is still room for improvements in the network-wide synchronization. 

As in every wireless SHM system, the network-wide synchronization of the time references 

of the wireless sensor nodes in association with a reliable data transmission are essential to 

guarantee a correct real-time behavior of the system – an issue being even more important 

when measurements recorded by a sensor node are used by other sensor nodes for 

estimating virtual sensor outputs. Currently, the wireless sensor nodes are synchronized 
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upon launching the SHM system with a time resolution of 1 ms based on the Squawk 

virtual machines running on the sensor nodes. Although further investigations are needed, it 

might be assumed that the present time resolution could probably limit the real-time 

performance and might affect both the monitoring capabilities and the FDI performance of 

the SHM system if operating permanently over long periods of time. Based on the insights 

gained from the laboratory experiments, it is therefore proposed to improve the 

synchronization in further prototype implementations by directly accessing the 

timer/counter of the nodes’ processors. With a time resolution of the processors smaller 

than 1 s, very accurate timestamping of each recorded measurement can be obtained. 

 

5. Summary and conclusions 

 

Sensor faults in wireless structural health monitoring system systems may reduce the 

monitoring quality and might cause considerable economic loss due to inaccurate or 

missing sensor data required for structural assessment and life-cycle management of the 

monitored structure. Nevertheless, fault detection and isolation in wireless SHM system has 

received little attention. In this paper, a decentralized analytical redundancy approach 

towards autonomous sensor fault detection and isolation for wireless SHM systems has 

been presented. Instead of physically installing multiple redundant sensors in the monitored 

structure (“physical redundancy”), which would involve substantial penalties in cost and 

maintainability, the information inherent in the SHM system is used for fault detection and 

isolation. Furthermore, as opposed to traditional centralized FDI approaches that require 



33/43 

extensive global communication between the sensor nodes as well as large amounts of 

sensor data to be transmitted, the analytical redundancy approach presented in this study 

has been implemented in a fully decentralized fashion. 

 

As demonstrated in this paper, multi-layer backpropagation feedforward neural networks 

have been embedded into the wireless sensor nodes of the SHM system for autonomous 

fault detection and isolation. Although the application of neural networks in traditional FDI 

is not new, there have been no studies available that investigate the embedment of artificial 

neural networks into wireless sensor nodes achieving a fully autonomous real-time FDI for 

wireless SHM systems. The results obtained in this study clearly demonstrate that the 

analytical redundancy approach based on neural networks enables autonomous real-time 

FDI in wireless SHM systems in a decentralized manner. 

 

Representing another distinct advantage compared to traditional FDI approaches, fault 

detection and isolation has been conducted without the need for first-principle models of 

the SHM system and without a priori knowledge about the internal system structures. 

Nevertheless, opportunities exist for further improvements. For example, additional 

investigations of neural network architectures may be devised and additional fault 

injections may be conducted to further increase the FDI accuracy. Also, as delineated in the 

previous section, future work may be conducted on the network-wide synchronization, 

which can further advance the precision of the residual generation within the wireless SHM 

system and, hence, the reliability of fault detection and isolation. 
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