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Abstract 

Studies of past emergency events have revealed that occupants’ behaviors, local geometry, and 

environmental constraints affect crowd movement and govern the evacuation. In addition to comply with 

code and standards, building designers need to take into consideration the occupants’ social characteristics 

and the unique layout of the buildings to design occupant-centric egress systems. This paper describes an 

agent-based egress simulation tool, SAFEgress, which incorporates human and social behaviors during 

emergencies. Simulation results on two scenarios are presented. The first scenario illustrates the effects of 

exit strategies adopted by the occupants on the evacuation. The second scenario shows the influence of 

social group behavior on evacuation. By assuming different occupants’ behaviors using the SAFEgress 

prototype, engineers, designers, and facility managers can study the important human factors on egress 

situation and, thereby, improve the design of safe egress systems and procedures. 



1. INTRODUCTION 

Computer simulations are often used to evaluate building egress and occupant safety. Despite 

observations and studies about human behaviors during emergencies, most simulation tools assume 

simplistic behavioral rules and mostly ignore social behaviors of the occupants. The deficiencies in 

modeling human behaviors for egress simulation have been echoed by authorities in fire engineering and 

social science (Aguirre et al., 2011; Kuligowski 2011). To address the needs to incorporate human and 

social behaviors, we design SAFEgress (Social Agent For Egress), an agent-based model, for egress 

simulation. SAFEgress models occupants as agents with affiliation to social groups, each defined by a 

unique social structure and group norm. The agents, being part of their own group rather than isolated 

individuals, make decisions considering group members and neighbors, in addition to individual 

preferences. Moreover, each agent is equipped with the capabilities of sensing, cognitive reasoning, 

memorizing, and locomotion to decide and execute its actions. By incorporating the agents with plausible 

behaviors, SAFEgress can be used to study the effects of human and social behaviors on collective crowd 

movement patterns and egress performance. 

The focus of this paper is to show the effects of human and social behaviors on egress performance and 

evacuation patterns. Simulation results from our case studies indicate that occupants’ exit strategies and 

social group behavior among social groups can lead to very different congestion patterns and evacuation 

times. This kind of analysis can be critical in many applications. For example, architects can design 

occupant-centric floor layouts and ensure that the safe egress design can handle a broad range of occupant 

behaviors. The simulation results can also help design and placement of exit signage to guide evacuation. 

Last but not least, such analysis can be useful for facility management to plan evacuation strategies and 

design emergency training programs. 



2. RELATED WORK 

2.1. Human behaviors during emergencies 

Researchers have proposed a variety of social theories regarding human behaviors during emergencies. 

For example, the affiliative theory and place script theory examine individuals’ behaviors based on their 

personal knowledge, risk perceptions, experience, and routines (Mawson, 2005; Sime, 1983). The 

emergent norm theory (McPhail, 1991) and the pro social theory (Aguirre et al., 2011) suggest that people 

continue to maintain group structure and behave in a pro social manner during emergencies. The social 

identity theory infers that people have a tendency to categorize themselves into one or more “in-groups,” 

building their identity in part on their membership in the groups and enforcing boundaries with other 

groups (Drury et al., 2009).  Moreover, studies in sociology and psychology suggest that people influence 

each other’s behaviors through the spreading of information and emotions (Rydgren 2009; Hoogendoorn 

et al. 2010).  

Social theories can provide valuable insights into occupants’ behaviors during emergencies. However, 

developing a unified theory that fully explains occupants’ behaviors in different situations is difficult. We 

conjecture that egress models require individual, group and crowd level characteristics and mechanisms 

to predict the outcome of an egress situation. At the individual level, occupants may refer to their past 

experiences and knowledge to decide on their actions. At the group level, the pre-existing social structure 

(relations between group members) and group norms (expectations of each other's behavior) would affect 

the behavior of an individual. Crowd-level behaviors are emergent phenomena and often follow social 

norms. As evidenced from recent studies of emergency incidents, occupants interact with their group 

members and the people nearby to guide their decision-making process (Kuligowski, 2011). Therefore, 



egress model should properly reflect the social structure and capture the social interactions among the 

occupants, in addition to assuming occupants as individual constructs (Macy and Flache, 2009). 

2.2. Human and crowd simulations 

Humans, instead of moving randomly, tend to perform way finding when navigating the environment 

(Gärling et al., 1986; Turner and Penn, 2002). During the way-finding process, they examine the 

surrounding layout and perceive sensory (visual or audio) information, and then move towards a direction 

based on their purpose of navigation, destinations, and knowledge of the space. The way-finding process, 

unlike the motion of molecules or particles that are determined by interaction with their immediate 

neighbors, depends on both the short-term, nearby information and the long-term decision-goal (Turner 

and Penn, 2002). Since human movements aggregate to form the collective crowd flow, egress simulations 

need to model properly the individual agent navigation decision in order to predict the overall egress 

performance.  

 Agent-based modeling (ABM) has been widely adopted for crowd simulation, among many other 

different simulation approaches (Zheng, Zhong and Liu, 2007).  In most ABMs, the agent navigation 

routes are usually pre-defined by specifying explicitly the origins and destinations of the occupants 

(Aguirre et al., 2011; Turner and Penn, 2002). Optimal routes (usually defined in terms of travel time or 

distance) are obtained by assuming that the agents have good, often perfect, knowledge of the 

environment. Examples are the way-finding model in EXODUS (Veeraswamy et al. 2009) and the 

simulation model proposed by Kneidl at. al. (2013). In real situations, however, occupants usually decide 

their final destinations dynamically in real time and may not have complete knowledge of the space, 

particularly during emergencies in an unfamiliar environment. Researchers in environmental and 

cognitive psychology have argued that the evacuees use their perceptions to guide their navigation 



(Gärling et al., 1986; Turner and Penn, 2002). With proper spatial representation of the environment, 

Turner and Penn (2002) have shown that natural human movement can be reproduced in simulations 

without the needs to assign the agents with extra information about the location of destination and escape 

route.  

Other ABMs model agents’ navigation decisions as the outcomes of decision-making processes, rather 

than pre-defined or optimized routes. For example, ViCrowd (Musse and Thalmann, 2001) is a crowd 

simulation tool in which crowd behaviors are modeled as scripted behaviors, as a set of dynamic 

behavioral rules using events and reactions, or as externally controlled behaviors in real time. 

MASSEgress (Pan, 2006) gauges the agents’ urgency level and invokes a particular behavior implemented 

using decision tree to determine the navigation target. These models consider agents’ behaviors as a 

perceptive and dynamic process subjected to external changes. SAFEgress also adopts the perceptive 

approach when updating the agents’ behaviors. 

3. SAFEGRESS  

SAFEgress is an agent-based model designed to simulate human and social behaviors as well as 

emerging crowd behaviors during evacuations. Figure 1 depicts the system architecture of SAFEgress. 

The key modules of the framework are the Global Database, Crowd Simulation Engine, and Agent 

Behavior Models Database and the supporting sub-modules include Situation Data Input Engine, 

Geometry Engine, Event Recorder, Population Generator, and Visualizer.  



 The Global Database holds all the information about the geometry of the building, the status of 

emergency situations, and the agent population, which are input through the Situation Data Input 

Engine, the Geometry Engine, and the Population Generator. 

 The Crowd Simulation Engine interacts closely with the Agent Behavior Models Database. It keeps 

track of the simulation, and records and retrieves information from the Global Database. The generated 

simulation results are sent to the Event Recorder and the Visualizer.  

 The Agent Behavior Models Database contains the individual, group and crowd behavioral models. 

Apart from the default behavioral models, new models can be added by users to investigate different 

behaviors and different scenarios. 

 Details of the system have been described by Chu and Law (2013). In particular, some algorithms 

(proximity and visibility computation) have been carefully designed to allow the platform to handle a 

large number of agents. 

3.1. Spatial representation of the environment 

A floor space includes physical obstacles, such walls and furniture. Agents navigate the virtual space 

and avoid colliding with physical obstacles. To enable the agents to “sense” the vicinity of the physical 

Figure 1: System architecture of SAFEgress 
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obstacles and the visible space, an obstacle model is built according to the user-input building geometry, 

which describes the locations and the dimensions of different building objects, such as walls, doors, and 

windows. The obstacle model is constructed to represent the boundary surfaces of the physical obstacles 

as a set of polygon planes. Using the obstacle model, an agent can perform proximity tests to determine 

the distances from nearby obstacles and visibility tests to determine if a given point in the virtual space is 

visible to the agent.  

Besides avoiding collisions with the obstacles, agents also need to detect the obstacle-free space in 

their surroundings for navigation. According to prior way-finding studies (Gärling et al., 1986; Turner and 

Penn, 2002), the choice of next navigation direction is motivated by the subsequent movements to get 

closer to the final destinations. To facilitate this navigation decision process, a navigation map is 

constructed, which represents the obstacle-free space. This map is later used by SAFEgress to speed up 

the computations that allow agents to “perceive” the possible navigation directions in the virtual space. 

The navigation map is constructed using the following procedure:  

1) The continuous space is first discretized into square cells to form a 2-D grid for computational 

efficiency. The cells with the building features (such as exits, doors, and windows) are identified to 

(a) Subdividing the space into 

square cells and initializing exits 

as navigation points 

(b) Adding navigation points 

with the cells with large areas of 

visibility 

(c) Linking the navigation points 

which are visible to each other 

within a certain radius 

Figure 2: Procedure for generating navigation map 



form the initial set of navigation points (Figure 2a). 

2) The algorithm computes the area of visibility for each cell on the 2-D grid. Then, each cell’s visibility 

area is compared to the area of its neighboring cells. The cells with the locally largest visible areas 

become additional navigation points (Figure 2b). 

3) Edges are added to link the navigation points that are visible to each other within a certain radius. The 

resulting navigation map is a graph representing the connectivity of the obstacle-free space (Figure 

2c). 

In the real world, humans can only perceive their local obstacle-free surroundings. Similarly, in 

SAFEgress, the virtual agents can access only the “visible” portion of the navigation map to decide their 

navigation directions. More precisely, every agent can query the navigation map to identify a navigation 

points that are visible from the agent’s current position. Then, the agent selects its navigation target based 

on its motivation and its prior knowledge and working memory of the building layout. For example, an 

agent having the knowledge of a familiar exit might choose the navigation point that is near the familiar 

Figure 3: Illustration of visible navigation points given the agent’s position 
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exit. In Figure 3, the agent, with knowledge of the main entrance as its familiar exit, can choose the point 

labelled “1” to move closer to the main entrance among the 5 visible navigation points. On the other hand, 

if an agent does not have prior knowledge of the spatial layout, the agent would assign equal weight to all 

the options and choose a navigation target randomly. For example, if the agent in Figure 3 is unfamiliar 

with the environment, it can choose randomly one of the navigation points to explore the space. Finally, 

each agent can “memorize” the areas traveled by registering the visited navigation points in its cognition 

module. Therefore, an agent can avoid repeated visits to the same area, because it will assign less weight 

to the visible navigation points that it has visited before. This cognitive ability to memorize the previously 

travelled areas is particularly important for generating a natural navigation trajectory when an agent has 

no prior knowledge of the environment and attempts to explore the surroundings for exit.  

3.2. Agent representation of occupants 

Each agent is given a set of static and dynamic attributes to model the occupants. Static attributes are 

defined prior to the simulation and dynamic attributes are updated during the simulation. The choice of 

the attributes is crucial since it implicitly determines the range of tests users can do with SAFEgress. To 

make this choice we relied mainly of published work (See Section 2). The agent 1attributes, listed in Table 

1, can be further categorized into three levels—individual, group, and crowd as described below with the 

static attributes shown in bold: 

 At the individual level, an agent has a physical profile, a level of familiarity (Mawson, 2005) with 

the building, and prior known exits (Sime, 1983) of at least one that the agent enters. 

 At the group level, social groups are defined by the following attributes (Aguirre et. al., 2011, McPhail, 

1991): a group leader (if any), the group intimacy level (e.g., high intimacy among a family group), 

the group-seeking property (describing willingness to search for missing members), and the group 



influence (describing the influence of a member to the others in the same group). The agents belonging 

to the same group share the same group attributes. 

 At the crowd level, an agent’s social position is defined by the social order (Drury et. al., 2009), 

stating the likelihood to exhibit deference behavior. The lower the social order, the higher the chance 

for the agent to defer to other agents when negotiating the next move. A special agent, such as 

authorities, a safety personal, etc., may have assigned roles, which is responsible to execute actions, 

such as sharing information and giving instructions (Kuligowski, 2011). 

Based on the studies by researchers in disaster management and fire engineering (Lindell and Perry, 

2011; Kuligowski, 2011) about emergency occupant behaviors, a five-stage process model, perception – 

interpretation – decision-making – execution – memorization, is executed to update the agents’ behaviors.  

Each stage may lead to changes in parameter values for dynamic attributes (shown in bold), as described 

below: 

  At the perception stage, the agents perceive the nearby environment by detecting threats and visible 

features nearby (such as exits and doors). They also detect the visible group members, and 

neighboring agents within a certain radius. 

Table 1: Agents’ static and dynamic attributes 

Level Individual Group Crowd 

Static  
 Physical Profile1 

 Familiarity 

 Known Exits 

 Group Affiliation2  Social Order 

 Assigned Roles 

Dynamic  
 Spatial Position 

 Urge 

 Spatial Knowledge 

 Visible Group 

Member 

 Neighboring Agents 

1 The physical profile includes attributes such as age, gender, body size, travel speed, and personal space. 
2 The group characteristics include group leader(s), group intimacy level, group seeking, and group influence. 



 At the interpretation stage, the agents revise their internal urge level according to the perception and 

the perceived urge level of the visible social group and neighbors. 

 At the decision-making stage, the agents select and invoke the behavioral decision trees according to 

their urge level, social affiliation, and crowd condition. A behavioral decision tree consists of 

intermediate nodes (which compare the agents’ attributes and parameter values to the threshold values 

defined by users) and leaf nodes (which are either conditional checks leading to another decision tree, 

or low-level locomotion functions). The outcomes of decision-making are the exhibited behaviors and 

the navigation targets. 

 At the execution stage, the agents perform low-level locomotion to move toward a navigation target 

determined by the decision-making process. 

 Finally, at the memorization stage, the agents register the decision made in this cycle and update the 

spatial knowledge about their previous locations and visited areas. 

Each stage mimics a cognitive process or an act by an occupant during evacuation. Collectively they 

define the behavioral process of the occupants.  



4. CASE STUDIES  

In this section, we study the impacts of different behavioral assumptions on egress performance. Based 

on real-life observations and social studies, we construct different plausible agents’ behavioral models 

and compare the results of different simulations using a museum as the physical setting. The museum 

consists of several exhibition halls with four exits (the main entrance, the right exit, the left exit, and the 

café exit), as highlighted in Figure 4. Assuming an occupancy load of 30ft2 per person in exhibition areas, 

a total of 550 agents are assigned in the simulation runs.  

4.1. Effects of different individual exiting behaviors 

In an emergency situation, the primary goal of the occupants is to exit the building safely in an 

emergency situation. Depending on their familiarity with the building and previous experience, the 

occupants may adopt a broad range of strategies in choosing an evacuation route. For example, occupants 

who are unfamiliar with the building may select the entrance they used to enter the building as the possible 

exit (Sime, 1983). On the other hand, occupants who visit the building regularly may have learned their 

Figure 4: Geometry of the building and initial locations of 550 agents 
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preferred exit over time or have knowledge of the nearest exit. In this study, we conjecture and design 

four simple individual exiting behaviors as follows: 

 Case 1: agents have the knowledge of the main entrance of the museum and exit through the main 

entrance. 

 Case 2: agents have the knowledge of all four exits and choose to evacuate through the nearest exit 

given their initial starting position. 

 Case 3: agents have knowledge of one pre-defined familiar exit and escape through the familiar exits; 

in this case, we assign the agent population evenly to the four exits. 

 Case 4: agents have no prior knowledge of any exits and solely follow the visual cues at their spatial 

position to guide their navigation and exit the building when a visible exit is detected. 

Table 2 summarizes the results of each case, assuming all agents act as an individual (without group 

affiliation) and exhibit the same exiting behavior. The average computation time for each simulation run 

is 4 minutes 30 seconds using an Intel Core i5-650 machines at 3.2 GHz. 

 

Table 2: Results of simulation runs assuming different exiting strategies adopted by the agent 

population 

Agent exiting  

behavior 

Egress time 

(s)1 

Exit usage 
Max. retention time 

(s)2 Main 
Left 

Exit 

Right  

Exit 

Cafe  

Exit 

1-Main Entrance 200 +/- 5 100% - - - 62 

2-Nearest Exit 84 +/- 4.5 39% 16% 31% 14% 30 

3-Known Exit 180 +/- 10 25% 25% 25% 25% 30 

4-Visible Exit 166 +/- 22.6 30% 30% 30% 10% 30 
1 Results are averaged over 10 simulation runs, with +/- one standard deviation 
2 Maximum retention time measures the maximum time that an agent remains within an area of 1m2 



The result from Case 1 and Case 2 generated by SAFEgress are consistent with the common 

understanding of crowds. In Case 1, there are high level of congestion at the main entrance, as shown in 

Figure 5a which leads to long retention and egress times. In Case 2, when all agents exit through the 

nearest exit, the evacuation time is significantly shorter and there is less congestion at the exits (by 

comparing the crowd density at the exits in Figure 5b to that in Figure 5a). Escaping through the nearest 

exit is often considered as the most efficient exiting strategy.  

By including the spatial cognitive ability and the visual sensing capability of the agents, we observe 

some interesting results in the egress patterns and performances. In Case 3 wherein all agents “know” and 

follow their familiar exit, the evacuation time is only slightly less than that for Case 1, implying that 

following familiar exits may well be as inefficient as congestion at the main entrance. In this case, the 

inefficiency and prolonged egress time are due to the long distances for some agents to travel from their 

 Figure 5: Density patterns of resulted from different exiting strategies 

(a) Case 1- Exit through the main entrance (b)   Case 2- Exit through the nearest exit 

(c)      Case 3- Exit through the known exit (d)      Case 4- Exit through any visible exit 
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initial position to their familiar exit. As shown in Figure 5c, congestion due to cross flow at narrow 

corridors occurs. For Case 4, when agents follow visual cues as a guide, evacuation appears to be a more 

random process as reflected from the large standard deviation (shown in Table 2) on egress time. This 

situation may occur when the occupants are unfamiliar with the building and have to explore the building.   

The prolonged egress time is due to the time spent exploring the space without predefined routes before 

the agents “see” an exit for evacuation. As shown in Figure 5d congestion occurs along the corridor and 

intersections than at the exits. As depicted in Figure 5, the agents’ knowledge of the building and visual 

capability can affect the choice of egress route, and thus lead to different flow patterns. 

4.2. Effects of social group 

     Studies have shown that people in the same group tend to evacuate as a group and escape through 

the same exit (Aguirre et al., 2011).  The social structure and norm persist and guide the evacuation 

behaviors. As depicted in Figure 6, we simulate the social effect of the group behavior by constructing a 

decision tree that takes into consideration of group-level parameters: “group intimacy level”, “group 

leader(s)”, and “group separation distance”. In this study, agents are assigned to affiliate with a group with 

size ranging from one to six. We vary the parameter value of the attribute “group intimacy level” of the 

group to test the effect of group behaviors. A high intimacy level group represents a closely-related group, 

like family or couple, while a low intimacy group represents a loosely-related group, such as co-workers. 

Exit Individually 

Follow Group Leader 

Exit through the Main Entrance 

Follow Visible Group Members 

Group Intimacy Level 

<= LOW 
Group Leader 

Group Separation 

Distance <= LOW 

FALSE 

TRUE 

Figure 6: Group exiting behavioral decision tree, BEHAVIOR [Exiting with Group] 



In the baseline model, Case 1, all groups are defined to have a low group intimacy level, in which all 

agents are loosely affiliated to their group and choose to exit individually through either the main entrance 

or a visible exit. In Case 2 and Case 3, a high group intimacy level is assigned to 50% and 100% of the 

groups, respectively. Table 3 summarizes the simulation results for the three cases with different group 

assumptions. The average computation time for each simulation run is 5 minutes 45 seconds using an Intel 

Core i5-650 machines at 3.2 GHz. 

 As shown in the simulation results, we found that the group behaviors can have significant effects on 

the evacuation patterns and performances. In Case 1, as shown in Figure 7a, congestions occur at the exits 

where the agents exhibit individual behaviors exiting the building. In Case 2 and Case 3, as shown in 

Figure 7b and 7c, the crowding is less serious at the exits, but high crowd densities are observed at the 

Table 3: Results of simulations assuming different group traits of the agent population 

Group intimacy level 

assumption 

Egress time 

(s)1 

Exit usage 

Main Left Exit Right Exit Cafe Exit 

1 - low intimacy;  exit 

Individually 
120 +/- 15 58% 7% 29% 6% 

2 - 50% high intimacy  140 +/- 16.5 59% 6% 28% 7% 

3 - 100% high intimacy  152 +/- 18 58% 6% 28% 8% 
1Results are averaged over 10 simulation runs, with +/- one standard deviation 

Figure 7: Density pattern of Case 1, 2, and 3 assuming different group intimacy levels 
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intersections of corridors and at the locations connecting the exhibition halls to the corridor. The result 

also shows that group behaviors have a prolonging effect on evacuation. The effects on congestion patterns 

and lengthened evacuation are due to the waiting time for group members and as well as the fact that 

agents may take a detour in order to move closer to the group, therefore causing congestion at the corridors 

and the intersections as they leave of the exhibition halls. 

5. DISCUSSION 

To realistically predict the building egress performance, designers and managers of the building need 

to consider the building geometry unique to each building, and more importantly, the occupants’ 

individual and social characteristics and their relationships with the building. Our framework allows users 

to assume a wide range of combinations of occupant populations and behaviors in a convenient and 

flexible manner. Agents’ behaviors are modeled as different behavioral decision trees, which represent 

different plausible occupant behaviors in emergencies. Sensitivity analysis on different simulation 

parameters can be conducted to identify and assess the impacts of important social factors in different 

physical and environmental settings, like the case studies we present in this paper. This kind of analysis 

can give insights to architects, building designers, and facility managers to design user-centric safe egress 

and improve emergency procedures and training programs. 

Our simulation results confirm the needs of incorporating social behaviors in egress simulation. We 

show that the inclusion of a social parameter like group intimacy significantly alters the behavior of the 

agents in scenarios of emergency. By embedding individuals into groups, our model adds flexibility to 

established plausible occupant models based on the spreading of information within social groups and 

crowds (Rydgren, 2009, Hoogendoorn et al. 2010) and the role of authorities (Kuligowski 2011). The 



described platform represents a step forward toward incorporating social science knowledge of social 

interactions into engineering models that capture human behaviors. 
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