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ABSTRACT 
 
Traditional structural control systems usually employ a centralized controller that requires 

measurement data from all sensors in the entire structure, and makes control decisions for all 
control devices. The installation of a centralized control system in a large scale structure can be 
prohibitively expensive, and the long latency in a centralized system can cause poor control 
performance.  As an alternative to centralized control, decentralized control architectures can be 
adopted, allowing control decisions based upon sensor data only from the vicinity of a control 
device, possibly transmitted via wireless communication.  This paper presents a time-delayed 
decentralized H2 controller design for large-scale feedback structural control. The decentralized 

H2 controller design is achieved through double homotopy transformation method. The bilinear 

matrix inequality (BMI) describing the H2  control criteria is approximately linearized as a 

convex linear matrix inequality (LMI) problem, which can be solved by standard LMI solvers.  
The proposed algorithm is validated through numerical simulations with a six-story example 
structure.  
 
INTRODUCTION 

 
Civil structural control has been widely studied in recent decades [1-5]. A feedback control 

system contains sensors, controllers, and control devices (which can be active or semi-active).  
During external excitation, sensors collect structural vibration data, which is then transmitted to 
controllers. Controllers perform control decision making according to the sensor data, and 
command control devices to generate desired forces to suppress excessive structural responses.  
Traditional structural control systems usually employ a centralized controller that requires data 
from all sensors in the entire structure and makes control decisions for all control devices. The 
installation of a centralized control system in a large scale structure can be prohibitively 
expensive, and the long latency in a centralized system can cause poor control performance.  As 



an alternative to centralized control, decentralized control architectures can be adopted.  A 
decentralized architecture allows control decisions to be made using sensor data only from the 
vicinity of a control device [6, 7].   By limiting data communication among nearby sensors and 
controllers, wireless devices can be a cost-effective alternative for the implementation of a 
feedback control system [8]. 

 Towards decentralized structural control, Wang et al. [8] described a decentralized static 
output feedback control strategy that is based upon the linear quadratic regulator (LQR) criteria.  
Sparsity shape constraints are imposed on the gain matrices to represent decentralized feedback 
patterns, which reflect the communications among the nearby sensors.  Iterative gradient method 
is adopted to search for decentralized gain matrices that optimize the control performance over 
the entire structure.  Lu et al. [9] studied the performance of fully decentralized sliding mode 
control algorithms based on the stroke velocity and displacement measured on each control 
device itself  to make control decision.  Swartz and Lynch [10] presented a partially decentralized 
linear quadratic regulation control scheme that employs redundant state estimation as a means of 
minimizing the need for the communication of data between sensors.  More recently, 
decentralized H∞ controller design, taking into consideration of time delay due to communication 

and computing requirements, has also been explored [11, 12].  The decentralized controller 
design employs a homotopy method that gradually transforms a centralized controller into 
multiple decentralized controllers.  Linear matrix inequality (LMI) constraints are included in the 
homotopic transformation to ensure optimal control performance.  While LMI has many 
computational advantages, the general output feedback decentralized control problem is 
inherently a bilinear matrix inequality (BMI) problem.  To deal with the BMI constraints, 
Mehendale and Grigoriadis proposed a double homotopy approach for decentralized H∞ control 

in continuous-time domain [13]. 
This paper presents a time-delayed decentralized double homotopy approach that aims to 

minimize the H2 norm of the closed-loop system.  The double homotopy algorithm is adapted 

from the continuous-time decentralized H∞ control proposed in [13].  The algorithm is modified 

to consider inherent discrete communication and computing time delays for the decentralized H2 

control formulation.  Using this approach, a non-convex bilinear matrix inequality (BMI) 
describing the H2 control criteria is approximately linearized as a convex LMI problem, which 

can be computed by standard LMI solvers.   The paper first introduces the problem formulation of 
decentralized structural control.  The decentralized H2 control design through double homotopy 

transformation is then described.  A six-story numerical example is provided to illustrate the 
performance of the time-delayed 
decentralized H2 controller design.   

 
PROBLEM FORMULATION 
 

Consider a structural control system 
with time delay shown in Figure 1.  
Following the derivations described in 
[11], the discrete-time open loop system 
can be formulated by concatenating the 
structural system and the system 
describing time delay and sensor noise as: 

 

 
Figure 1. Diagram of the structural control system. 
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where the system input w = [w1 w2]

T 1wn ×∈ℝ  contains both external excitation w1 and sensor noise 
w2. Vector u 1un ×∈ℝ  denotes the control force vector.  The open-loop state vector, x 1OLn ×∈ℝ , 
contains xS

2 1n×∈ℝ , the state vector of the structural system, and xTD
1TDn ×∈ℝ , the state vector of 

the time-delay and sensor noise system.  For a lumped mass structural model with n stories, the 
state vector of the structural system, xS, consists of the relative displacement qi and relative 
velocity iqɺ  (with respect to the ground) for each floor i, i = 1, …n. 
 

xS = [q1  1qɺ   q2  2qɺ  … qn  nqɺ ]T (2) 
 
The open-loop matrices A OL OLn n×∈ℝ , B1

OL wn n×∈ℝ , and B2
OL un n×∈ℝ  in Eq. (1) are, respectively, the 

state transition, the excitation influence, and the control influence matrices.  Vector z 1zn ×∈ℝ  

represents the response output (to be controlled through the feedback loop), and y 1yn ×∈ℝ  
represents the time-delayed and noisy sensor signals.  Correspondingly, the matrices C1, D11, and 
D12 are termed the output matrices, and the matrices C2 and D21 are the measurement matrices.  
Time delay of one sampling period ∆T is assumed for the sensor measurement signal (e.g. due to 
computational and/or communication latency).  The formulation can be easily extended to model 
multiple time delay steps, as well as different time delays for different sensors.   

To complete the feedback control loop, the controller system takes the time-delayed noisy 
signal y[k] as input and generates the desired (optimal) control force vector u[k], according to the 
following state-space equations:  
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where xG is the state vector of the controller system; AG, BG, CG, DG are the parameter matrices of 
the controller which need to be determined during the optimal controller design.   
 
DECENTRALIZED DISCRETE-TIME CONTROLLER DESIGN THROUGH DOUBLE 
HOMOTOPY TRANSFORMATION 
 

This section first introduces the basic setup for decentralized control formulation, and then 
describes in detail how the controller decentralization is achieved through double homotopy 
transformation.  

 
Decentralized Controller Setup 

Decentralized controller dynamics can be described as a combination of decoupled controllers 
that operate separately and in parallel during the control process.  Each controller only requires 
part of the measurement data.  Mathematically, this is described by constraining the controller 
parameter matrices in Eq. (3)  as block-diagonal matrices.  This block-diagonal pattern allows Eq. 
(3)  to be equivalent to the controller dynamics described in following decoupled equations: 
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where i = I...N is the sequence number of each decentralized controller; x

iG  is the state vector of 

the i-th decentralized controller; u i  is the i-th decentralized control force vector; y i  is the sensor 
signal available for the i-th decentralized controller.  The decentralized control force and sensor 
signal are divisions of the complete force vector u and sensor signal y in Figure 1: 
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(5b) 

 
For convenience in later derivation, matricesAɶ , 1Bɶ , 2Bɶ , 1Cɶ , 2Cɶ , 11Dɶ , 12Dɶ , 21Dɶ  are defined 

based on the open-loop system matrices in Eq. (1): 
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where nG is the order of the controller system, which is equal to the order of the open loop system.  
The closed-loop system matrices can be derived by connecting the open-loop system and the 
controller system: 
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2 2CL = +A A B GCɶ ɶɶ  (7b) 

1 2 21CL = +B B B GDɶ ɶ ɶ
 (7c) 

1 12 2CL = +C C D GCɶ ɶɶ
 (7d) 

11 12 21CL = +D D D GDɶ ɶ ɶ
 (7e) 

 
where G is the combined controller matrix whose entries are the controller parameter matrices in 
Eq. (3): 
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Classical H2 controller designs provide centralized controllers that minimize the H2 norm of 

the closed-loop system.  The H2 norm of the discrete-time closed-loop system is smaller than a 

given positive scalar γ, if and only if, there exist symmetric positive definite matrices P and R 
such that following matrix inequalities hold [14]. 
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Trace( ) γ<R  (9c) 
 
where * denotes a symmetric entry; “>0” means that the matrix at the left side of the inequality is 
positive definite. 

Substituting the closed-loop system matrices from Eq. (7) into inequalities (9a) and (9b), the 
matrix variable 1F  is defined as a function of G and P.  2F  is defined as a function of G, P, and R. 
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Therefore, the closed-loop H2 norm is smaller than γ, if and only if, there exist a controller matrix 

G and symmetric positive definite matrices P and R such that: 
 

( ) ( )1 20, 0,F G,P F G,P,R> > and Trace (R) < γ (11) 

 
Double Homotopy Transformation 

The inequalities shown in Eq. (10a) led to a bilinear matrix inequality (BMI) problem because 
P and G are both unknown variables and they co-exist in a number of entries [15].  If the 
controller parameter matrices are not required to be block-diagonal, algorithms to compute a 
typical centralized controller exist [16].  However, with a block-diagonal pattern constraint to the 
controller matrices, there is no general off-the-shelf packages or numerical algorithms for the 
decentralized control design problem.  The optimization problem becomes non-convex and NP 
hard; heuristic schemes are often necessary to solve the problem.  Mehendale and Grigoriadis 
proposed a double homotopy method for solving the continuous-time decentralized H∞ control 



problem [13]. In this study, the double homotopy method is adapted and modified for the 
discrete-time decentralized H2 controller design with feedback time delay. 

In the initial step (k = 0) of the double homotopy method, the centralized controller matrix GC 
and its associated matrix PC are first defined as: 

 

0 , ,C C diag C off= = +G G G G  (12a) 

0 C=P P  (12b) 
 
where ,C diagG  represents the controller matrix with only the block-diagonals of the centralized 

controller matrices GA , GB , GC , and GD .  The block-diagonal pattern satisfies the decentralized 

feedback requirement in Eq. (4). ,C offG  represents the controller matrix with only the off-diagonal 

blocks.  At each double homotopy step k (k = 1, 2, …, K), incremental changes are introduced to  
the double homotopy transformation process: 
 

1 Kλ =  (13a) 

1 ,k k k C offG G G Gλ−= + ∆ −  (13b) 

1k k k−= + ∆P P P  (13c) 
 
The decentralized constraint is applied to the increment k∆G  at every homotopy step.  As a result, 
starting from G0 defined in Eq. (12a), when k approaches from 0 to K, the off-diagonal blocks are 
gradually removed from Gk.  At the end of the double homotopy transformation process, GK 
approaches a decentralized controller with its GA , GB , GC , and GD  matrices being block-
diagonal.    

To ensure that the closed-loop H2 norm criterion is satisfied, at every k-th homotopy step, G 

and P in Eq. (11) are substituted with Gk and Pk in Eq. (13) such that the variables {Gk, Pk, Rk, γk} 
need to satisfy the inequalities in Eq. (11).  Otherwise, the increment (λ ) needs to be reduced. 
The basic idea of the double homotopy approach is to approximately linearize the BMI in Eq. 
(10a) into a linear matrix inequality (LMI).  When substituting Gk and Pk into Eq. (10a), the 
product terms ( )2 2k kP A B G C+ɶ ɶɶ  and ( )1 2 21k kP B B G D+ɶ ɶ ɶ , which are the cause of the bilinear 

inequality, are expanded and linearized. When k∆P  and k∆G  are small, it is reasonable to neglect 
the products that contain both terms.  In other words, the product terms are approximated as:    
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With the above approximation, the BMI problem is converted to an LMI problem where there is 
no cross multiplication involving k∆P  and k∆G . In addition, the two expressions in Eq. (10b) can 
be rewritten without the approximation as: 
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 Introducing the following new notations:

 

 

( )2 -1 2k C,offA A B G G Cλ= + −ɶ ɶɶ  (15a) 
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( )1 12 -1 2k C,offC C D G G Cλ= + −ɶ ɶɶ  (15c) 
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the three inequalities can be rewritten in terms of  ∆Gk, ∆Pk, Rk, and kγ  as follows: 
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Trace( )k kγR <  (16c) 
 
The procedure searching for a decentralized controller DG from a centralized controller CG  

can now be summarized below.   
Step 1: Compute variables CP  and  associated with the centralized controller . Define 

C,diagG  and
 C,offG  as described in Eq. (12a). Set  ← , and set an upper limit ( ) for 

, e.g. 25 . 
Step 2: Initialize the total number of double homotopy steps as K (e.g. 27); set an upper limit (Kmax) 

for K, e.g. 213; set 1 / Kλ = , k ← 1, 0P ← CP , 0G ← . 

Step 3: At step k, solve the following LMI problem with variables kP∆ , kG∆  (block-diagonal 

pattern), kR , and kγ . 

 

Cγ CG

0γ Cγ maxγ
γ Cγ

CG



minimize    kγ  

subject to    ( )1 , 0k kV G P∆ ∆ > , ( )2 , , 0k k kV G P R∆ ∆ > , Trace ( kR ) < γk , 

1k kλ −∆ <P P , k Cλ∆ <G G , 1k kγ γ −≥ . 

(17) 

 
Step 4: Set 1k k k C,offG G G Gλ−= + ∆ − and -1k k kP P P= + ∆ . Check that the solutions , , ,k k k kG P R γ  

satisfy Eq. (11). If they do, set k ← k+1 and go to Step 5. If not, set k ← 1 and K←2K. If 

maxK<K , repeat Step 2; otherwise set ← ( sγ  is a relaxation factor that is greater than 

one) under the constraint  and restart from Step 2. If , it is concluded that 
the algorithm does not converge. 

Step 5: If k=K, the desired decentralized H2 controller is given by GK; otherwise set k ← k+1, and 

go to Step 2. 
 
It should be noted that the algorithm described above is heuristic in nature and does not guarantee 
convergence. In addition, non-convergence does not imply the non-existence of a decentralized 
H2 controller. 

 
 
NUMERICAL EXAMPLE 

 
This section discusses the decentralized  structural control design problem using a six-

story example structure.  Numerical simulations are conducted to demonstrate the performance of 
different decentralized and centralized feedback architectures.   
 
Formulation of the Six-story Example Structure 

A six-story numerical example as shown in Figure 2(a) is used to validate the performance of 
the decentralized controllers. The in-plane lumped-mass model is based on a laboratory structure 
constructed by researchers at the National Center for Research on Earthquake Engineering 
(NCREE) in Taiwan [9]. The floor plan is 1.0 m by 1.5 m and the story height is 1.0 m.  In this 
simulation study, one actuator is allocated on each of the 1st, 3rd, and 5th floor.  Through a V-brace, 
every actuator applies horizontal force between two neighboring floors. 

Considering that excessive inter-story drifts are of concern, the output matrices of the 
structural system are defined such that the 2-norm of the output vector z[k] is a quadratic function 
of the inter-story drifts and the control forces: 

0γ Csγ γ

0 maxγ γ≤ 0 maxγ γ>

2H

 
(a) 

 
(b) 

Figure 2. A six-story model structure: (a) deployment of three actuators; (b) communication 
architecture for different degrees of centralization (DC). 
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The  controller design aims to minimize the closed-loop -norm, 
2zwH , which is the 

system norm from the input w (including ground excitation w1 and sensor noises w2) to the output 
z.  In addition, it is assumed that inter-story drifts can be measured.  Accordingly, the 
measurement matrices of the structural system are defined such that the measurement vector m[k] 
is given as follows. 
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Decentralized Control with Different Feedback Architectures 

As illustrated in Figure 2(b), different control feedback architectures are designed for 
different degrees of centralization (DC).  A larger number of DC represents a higher level of 
centralization.  In each feedback architecture, one or more communication subnets exist, with 
each communication subnet (as denoted by channels Ch1, Ch2, etc.) covering a limited number of 
stories.  The controllers covered by a subnet are allowed to access the sensor data within that 
subnet.  For example, case DC�  implies that each subnet covers only one story and a total of 
three subnets exist; case DC�  implies that each subnet covers two stories and a total of three 
subnets exist.  For case DC� , each subnet covers four stories and the two communication 
channels overlap at the 3rd and 4th stories, representing a decentralized architecture with 
information overlapping.  For DC� , one subnet covers all six stories, which results in a 
centralized information architecture.   

In practice, the control sampling time step for each control architecture is determined by the 
time required for communication and embedded computing (for example, using low cost wireless 
sensor devices [8,11]).  To simulate this effect, time delay is approximated as one sampling time 
step T∆  (in accordance with the formulation in Figure 1).  Due to different requirements on 
communication and computing, the shortest sampling time step ∆T that can be achieved by each 
control architecture may be different.  Because case DC�  requires minimum amount of 
computing, its 15ms time step (i.e. time delay) is the smallest.  Cases DC�  and DC�  require 
more communication and computing, and thus, have a time step of 20ms and 25ms, respectively.  
Due to the largest amount of communication and computing required by the centralized pattern, 
case DC�  has the longest time step of 52ms. The time delays are summarized in Table 1. 
 

Table 1  Feedback time delays for four different controllers 
 DC�  DC�  DC�  DC�  
Time delay (ms) 15 20 25 52 

 
The 1940 El Centro NS (Imperial Valley Irrigation District Station) earthquake excitation 

with the peak ground acceleration (PGA) scaled to 1m/s2 is employed in this study.  Figure 3(a) 
shows the peak inter-story drifts for different control architectures as well as for the uncontrolled 
structure during the ground excitation.  All controllers can successfully reduce structural response 
compared to the case without control.  Figure 3(b) shows the RMS (root-mean-square) inter-story 
drifts for the four control cases.  The case without control has an RMS drift of 2.5×10-3m at the 
2nd story, which is much larger than any of the control cases.  For clarity, the case without control 
is excluded from the plot in Figure 3(b).  Among the four control cases, the decentralized cases 
DC� and DC�  achieve less inter-story drifts that are more uniformly distributed over the 

2H 2H



structure.  On the other hand, case DC�  shows the “worst” control performance with the largest 
RMS inter-story drifts.  Such difference in control performance is mainly caused by the different 
time delays of different control architectures. 

For practical applications of feedback structural control, one of the major constraints is the 
capacity of realistic semi-active or active control devices.  Compared with the ideal actuators 
adopted in this study, a realistic control device may not be able to deliver a desired force with 
large magnitude.  Figure 3(c) shows the peak actuator forces required by different control 
architectures, and Figure 3(d) shows the RMS forces.  Both plots illustrate case DC�  has the 
highest requirement on actuator force, particularly at the base story.   

 
 
SUMMARY AND CONCLUSION 

 
This paper presents a decentralized controller design that minimizes the closed-loop H2 norm 

in structural control. The problem is studied in discrete-time domain with time delay. The 
decentralized controller is computed through a double homotopy method, which deforms a 
centralized controller to a decentralized pattern.  The non-convex bilinear matrix inequality (BMI) 
problem is approximately solved by linearizing it to a linear matrix inequality (LMI) problem.  

The performance of the decentralized controller design is validated using numerical 
simulation with a six-story structure. It is shown that when the time delay is acceptable, the more 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Simulation results for decentralized and centralized control: (a) peak inter-story 
drifts; (b) RMS inter-story drifts; (c) peak actuator forces;  (d) RMS actuator forces. 
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measurement data is communicated to the decentralized controllers, the better the performance is.  
This is illustrated by comparing decentralized cases DC�  and DC�  versus decentralized case 
DC� .  On the other hand, more data communication and computation can cause larger time 
delay.  The centralized controller DC�  used in the simulation has the most data available, but its 
control performance is inferior due to the significantly longer time delay.  
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