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ABSTRACT 
 
Any electromagnetic interference (EMI) to GPS 
must invoke a fast location and removal 
response, because of the high military and 
civilian reliance on GPS. In this report, we 
present an approach, which is based on 
deploying a network of sensors to estimate the 
location of EMI source. We believe that this 
approach provides some unique advantages. 
First, it includes the possibility of using a 
terrestrial and/or airborne network for finding 
interference to airborne receivers. Since a 
terrestrial network could surround an airport with 
a continuous interference finding capability, such 
a network would be much less expensive than 
monitoring with a continuously airborne fleet of 
even unmanned air vehicles. It would also 
provide a quicker response than a strategy based 
on dispatching aircraft after the onset of 
interference. Such a terrestrial network need not 
be expensive since it could be based on an 
abundance of cheap sensors rather than a few 
sensors at hardened sites. Second, the 
combination of different sensors may improve 
the positioning performance. In particular, our 
approach is likely to outperform the proposal to 
estimate interference location by measuring 
power received by a top-mounted antenna on a 
banking aircraft. 
 
 
I. INTRODUCTION 
 
This paper studies the use of a terrestrial and/or 
airborne sensor network to estimate the location 
of electromagnetic interference (EMI) sources. 
Radio systems play an increasing role in our 
military and civilian infrastructure, and many of 
these systems are vulnerable to accidental and 
malevolent EMI attack. Malevolent EMI attack 
on civil aircraft would not be new, and will 
probably increase in our society where computer 
hacking has become a pastime for malcontents. 
A rapid interference finding capability is needed 
to protect these systems and mitigate the threat. 

  
This research assumes an EMI attack on GPS 
aircraft operations. However, our results have 
broader applicability. GPS is a space-to-earth 
signal and the received signal power is -160 
dBW. This low power level makes GPS highly 
susceptible to interference. It presently serves 
around 8 million users in sea, air, terrestrial, and 
space applications. Many of these applications 
are safety of life operations. For example, GPS is 
used to guide ships while approaching harbor 
and navigating within narrow waterways. GPS 
also provides guidance in terrestrial emergency 
applications, such as ambulances and police cars, 
while they conduct their critical missions. In 
addition, GPS serves many aviation applications 
including the most demanding phase of flight – 
aircraft approach and landing. Most aircraft 
approach operations allow no more than one 
missed approach per 100,000 landings. Today, 
radio frequency interference is the single greatest 
threat to this continuity of service. The 
conclusion of the GPS Risk Assessment Study by 
the Applied Physics Laboratory at the Johns 
Hopkins University: ‘the only GPS risks that 
proved significant are interference and 
ionosphere propagation effects’. 
 
This work is organized as follows. Section II 
discusses the prior work in this area. The basics 
of EMI source position estimation are 
summarized in Section III. In Section IV, we 
explain the configurations and assumptions of 
our work, which uses a network of sensors, and 
two kinds of sensors are considered. In addition, 
examples and results are given in Section IV. 
Section V presents a summary and concluding 
remarks. 
 
II. PRIOR ART 
 
In this section, we discuss a GPS Interference 
Source Location and Avoidance Systems which 
was developed by the U.S. DOT Volpe National 
Transportation Systems Center [2]. This system 
is called Aircraft RFI Localization and 
Avoidance System (ARLAS), and uses a GPS 



  

antenna mounted on the top of an aircraft to 
detect the location of interference. As shown in 
Fig. 1, their work for determining the direction 
of a GPS interference source from an aircraft 
(ARLAS) exploits the vertical gain pattern of the 
aircraft’s top-mounted GPS antenna. The signal-
to-noise ratio (SNR) received at the top-mounted 
GPS antenna can be calculated by the GPS 
receiver and the different values of roll, pitch, 
and heading which are measured by the aircraft 
gyros. When the aircraft is banked, the antenna 
illuminates some area on the ground and 
obscures others. When aircraft flies a tight circle, 
it can scan the ground and obtain data to estimate 
the direction to an interference source. 

Figure 1. The work of the Volpe National 
Transportation Systems Center, when the aircraft 
is banked, the antenna illuminates some area on 
the ground and obscures others. 
 
 The DOT Volpe center flight tested the ARLAS 
concept in March 1999. This system could not 
determine the interference’s bearing with 
sufficient reliability to validate the approach. 
Performance was limited because the ARLAS 
could not collect sufficient bearing 
measurements samples simultaneously. 
Moreover, pilots’ dislike the observation 
maneuvers required for this bearings-only 
tracking system, because the ARLAS requires 
multiple turns for normal operation.  
 
Based on the results of the DOT Volpe center 
flight test, we propose the use of sensor networks 
to estimate the location of electromagnetic 
interference (EMI) sources. The network of 
distributed sensors has several advantages. First, 
we can place the sensors to give good 
performance for any interferers near the airport. 
Secondly, an optimal observer maneuver is not 
required because the requisite geometric 
diversity of measurements can be achieved by 
proper location of the network of distributed 
sensors. In this research, we prefer a terrestrial 

network, but the analysis is also applicable to 
airborne sensors which could be used to augment 
the ground network. 
 
III. BASICS OF POSITION ESTIMATION 
 
The concept of locating a stationary EMI source 
from passive measurements can be found in a 
wide variety of radar and sonar publications [1, 
2, 3, 4]. The location of an EMI source can be 
estimated either by a network of distributed 
sensors or by a single sensor. There are at least 
two methods to estimate the emitter location. 
The conventional method is based on different 
bearing measurements at different points along 
the sensor trajectory. The other method is to 
measure the Doppler shift of the EMI source 
frequency caused by the relative motion between 
the sensor and the EMI source. 

Figure 2. An example two-dimensional geometry 
of the sensor and the EMI source 
 
As shown in Fig. 2, ( ,e ex y ) is the unknown two-

dimensional position of the stationary EMI 
source, ( ,i ix y ) is the known sensor position at 

the ith epoch. The velocity of sensor is 
iv  = 

( ,i ix y& & ), and 
iγ is the noise free bearing 

measurement to the EMI source relative to the 
velocity vector of the sensor. We assume that 

if  

is the Doppler shifted but noise free signal 
frequency at the ith measurement point along the 
sensor trajectory, c is the speed of light, and 

0f  

is the transmitted signal frequency. The relations 
between these parameters are 
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With additive noise, either observation equation 
can be written as 
 

( )m a nϕ ϕ= +     (3) 

 
where, mϕ  is the measured bearing or 

frequency, 
( )aϕ  is the true (noise free) bearing or 

frequency, 
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 n  are measurement errors. 
 
If the EMI transmitted frequency is unknown, we 
will need to estimate 

0f  as well. This is why 
Fa  

includes 
0f . The measurement noise n  is 

assumed to be zero mean ( [ ][ ] 0B FE n E n= = ) 

with a normal probability distribution, and the 
measurements are independent of each other. 
Therefore, the variances are independent of the 
measurement points, that is, the covariance 
matrices for this two dimensional example are 
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where, the subscript B is for bearing 
measurements, and the subscript F is for 
frequency measurements. We assume that the 
measurement noise follows a Ga ussian 
distribution. As a result, we can write the 
conditional probability distribution of the 
measurements as follows 
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The Cramer-Rao inequality provides a lower 
bound on the estimation accuracy. We define the 
estimation error as 
 

( )ma a aϕ
∧ ∧

∆ = −     (5) 

where,  a
∧

∆  is estimation error, 

 ( )ma ϕ
∧

 is the unbiased estimate of a. 

The covariance matrix of the estimation error, 
C , is bounded by the inverse of the Fisher 
information matrix, J . Specifically, 1C J −≥ , 
where 
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The covariance matrix can be represented 
geometrically in the space as an ellipse that 
bounds the es timation errors. That is,  

1
T

a C a κ
∧ ∧

−∆ ∆ =     (6) 
where,  κ  is a constant which determines the 
size of the ellipse. 
 
From 1C J −≥ , we can rewrite (6) as 
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where,  
iλ  are the eigenvalues of J , 

 
iξ  are the corresponding eigenvectors. 

 
The size and orientation of the error ellipse can 
be described in terms of the eigenvalues (

iλ ) and 

the eigenvectors (
iξ ) of the Fisher Information 

matrix. If 
iλ  is zero, then the length of the 

semiaxes of the ellipse is infinite, that means, it 
is an unobserved state. If 

iλ  is not zero, then the 

length of the semiaxes of the ellipse is 
i

κ
λ

. 

 
To derive the elements of the Fisher Information 
matrix, we take the logarithm and differentiate 
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or rewrite it in matrix form 

 

( )
1

1M
T

a i a i
i ii

J
N

ϕ ϕ
=

= ∇ ∇∑    (9) 

 
where, 

a∇  is the gradient with respect to a. 
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For bearing measurements, we find 
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For frequency measurements, we find 
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We give two examples to illustrate the single 
measurement case. Fig. 3 shows the initial sensor 
position and the EMI source position. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. An example two-dimensional geometry 
of the sensor and the EMI source 
 
A. Single Bearing Measurement Example 
 
From equation (9), we can drive the Fisher 
Information matrix as 
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From Fig. 3, we can compute (10) to get 
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Substituting (12) into (13), we get 
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The eigenvalues and the corresponding 
eigenvectors of J  are 
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Then we calculate the length of the semiaxes 
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The result of this example is shown in Fig. 4, and 
it is a strip in the line of sight direction with 2d2 
width. The multiple measurements case can be 
interpreted as the result of the intersection of 
several such individual strips. 



  

Figure 4. The result of the single bearing 
measurement example 
 
B. Single Frequency Measurement Example 
 
If the sensor in Fig. 2 uses frequency 
measurements instead of bearing measurements, 
then we derive the Fisher Information matrix 
from equation (9) as follows 
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Based on Fig. 2, we can calculate (10) and get 
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Then substitute (17) into (18), we get the Fisher 
Information matrix 
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The eigenvalues and the corresponding 
eigenvectors of J  are 
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Then we compute the length of the semiaxes 
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The result is shown in Fig. 5. It is a disk in the 
position and frequency space, and we plot the 
projection on the f̂ y−  plane. The angle θ  

between the eigenvector 
1ξ  and the line of sight 

can be computed from equation (21).  

Figure 5. The result of the single frequency 
measurement example 
 
The results of the previous two examples, can be 
used to predict positioning accuracy for a system 
that uses multiple sensors or one moving sensor, 
as shown in Fig. 6.The smaller area of 



  

intersection of the strips gives the better bearing 
tracking performance. Fig. 7 shows that the 
optimal observer maneuver is required for the 
better tracking performance. 

Figure 6. The sufficient measurements are 
required to locate the EMI source 

Figure 7. The optimal observer maneuver is 
required for the better tracking performance 
 
IV. NETWORK OF SENSORS 
 
In this section, we characterize the performance 
of a network of distributed sensors with respect 
to the following parameters: number of sensors, 
distance between sensors and interference 
source, separation of the sensors, and geometry 
of the sensors. An example network of sensors is 
shown in Fig. 8. 

Figure 8. An example of network of sensors 

 
 
A. Multiplicity of Sensors and Sensor Span 
 
The first example investigates the relation 
between bearing tracking performance and the 
number of sensors. We consider two networks, 
one with three sensors, and the other with seven 
sensors. The separations of the sensors are same 
in both systems, and the seven sensors system 
spans triple the distance. These networks are 
shown in Fig. 9. The bearing tracking 
performance (accuracy) of the network system 
with seven sensors is better than that of the 
network system with three sensors because the 
span of the network system with seven sensors is 
triple that of the network system with three 
sensors. Consequently, the network system with 
seven sensors is better than that of the network 
system with three sensors. 

Figure 9. The comparison in the different 
numbers of sensors, the bearing tracking 
performance of the network system with seven 
sensors (on the right) is better than that of the 
network system with three sensors (on the left). 
 
B. Distance from Sensors to EMI Source 
 
The second example investigates how the 
distances between the EMI source and the 
sensors can affect the bearing tracking 
performance. We have two systems, and both 
systems are five sensors networks. The distance 
from the EMI source to the first network of 
sensors is 1

4
 of the distance from the same EMI 

source to the second network of sensors. Again, 
the separations of the sensors are equal. The 
bearing tracking performance of the nearby 
network system is better than the performance of 
the distant network system. The larger geometry 
diversity of the nearby network gives the better 
bearing tracking performance. The result is 
shown in Fig. 10. 



  

Figure 10. The comparison in the different 
distances from EMI source to the sensors, the 
system, which is near the EMI source, gives the 
better bearing tracking performance because of 
the larger geometry diversity. 
 
C. Sensor Separation 
 
The third example tests the separations of the 
sensors. The results are shown in Fig. 11. As 
expected the network with the larger span gives 
the better bearing tracking performance. This is 
also the reason why the conventional bearing-
only tracking systems require maneuvers. They 
need to get bearing measurements over a long 
span of distance. In our approach, we only need 
to make sure that the separations of sensors are 
large enough to fulfill certain performance 
requirements. This is an advantage of our 
approach because no optimal maneuver is 
needed. 

Figure 11. The comparison in the different 
separations of the sensors, the larger geometry 
diversity of the network of sensors gives the 
better bearing tracking performance. 
 
 

 
Figure 12. The comparison in the different 
geometries of the sensors, the smaller area of the 
intersection of the ellipses gives the better 
bearing tracking performance. 
 
D. Sensor Failure 
 
The fourth example illustrates how the geometry 
of the distributed sensors can improve the 
bearing tracking performance, and the design of 
networks that are robust to sensor failures. As 
shown in Fig. 12, the left-hand network of 
sensors is distributed in a straight line, and the 
right-hand network of sensors is distributed in a 
triangular shape. The right-hand network system 
has greater geometric diversity than the left-hand 
network system. Therefore, the right-hand 
network of sensors gives the better bearing 
tracking performance. The result of this example 
suggested that we might be able to maintain the 
bearing tracking performance when some of the 
sensors were failed by moving existing sensors 
to form the better geometry. For instance, we can 
remove one sensor on the top of EMI source 
from the right-hand network system in Fig. 12, 
and we get the same bearing tracking 
performance as before. That is, when one of the 
sensors in the left-hand network has failed, we 
can move the two existing sensors to be in the 
geometry of the right-hand network system to 
maintain bearing tracking performance. Actually, 
this performance is better than the original 
system, as shown in Fig. 13. As shown, the 
network is robust to sensor failures. 
 
 
 



  

Figure 13. An example of the network system in 
the presence of sensor failures, we can maintain 
the bearing tracking performance when some of 
the sensors were failed by moving existing 
sensors to form the better geometry. 
 
 
V. CONCLUDING COMPARISON 

Figure 14. Comparison example between the 
prior art and our approach 
 
As shown in Fig. 14, the red error ellipse is the 
result of the five sequential bearing 
measurements by using single sensor, and the 
blue strips are the results of the five individual 
bearing measurement from five different sensors. 
The area of the intersection of the blue strips is 
almost same as that of the red error ellipse. 
However, It is very difficult to achieve this 
bearing tracking performance (the red error 
ellipse) by using a single sensor, because EMI 
source may turn off before maneuver is 
completed. 
 
Our approach to locate the EMI source by using 
a network of sensors has two major advantages: 
(1) No sensor motion is needed, and EMI source 
location is estimated instantaneously. We can 
simply change the separations of the sensors or 
the geometry of the sensors to fulfill the bearing 
tracking performance requirements, (2) It is 

robust to sensor failures. That is, even when 
some of the sensors are failed, we can maintain 
the bearing tracking performance by moving 
existing sensors to form better sensors’ 
geometry. 
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