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The local area augmentation system (LAAS) is a differential

GPS navigation system being developed to support aircraft

precision approach and landing navigation with guaranteed

integrity and availability. While the system promises to support

Category I operations, significant technical challenges are

encountered in supporting Category II and III operations. The

primary concern has been the need to guarantee compliance with

stringent requirements for navigation availability. This paper

describes how a position domain method (PDM) may be used to

improve system availability by reducing the inflation factor for

standard deviations of pseudo-range correction errors. Used in

combination with the current range domain method (RDM), a

30% reduction in the inflation factor is achieved with the same

safety standard. LAAS prototype testing verifies the utility of the

PDM to enhance Category II/III user availability.
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I. INTRODUCTION

An aircraft navigation system must guarantee
flight safety by assuring the position solution at a
reliable level with protection bounds. The local area
augmentation system (LAAS) is being developed as
a ground-based augmentation of GPS by the Federal
Aviation Administration (FAA). As such, navigation
integrity is quantitatively appraised using the position
bounds that assure an acceptable level of integrity
risk. In this regard, aircraft compute the vertical
protection level (VPL) and the horizontal protection
level (HPL) as position error bounds using integrity
data. These are then compared with the vertical alert
limit (VAL) and the horizontal alert limit (HAL),
respectively, to determine whether the system provides
safety for each user.
One key integrity parameter used in the

computation of these protection levels (PLs) is
the standard deviation of pseudo-range correction
errors (¾pr gnd) that is broadcast for each satellite
approved by the LAAS ground facility (LGF) along
with the correction message [1—3]. User integrity
thus relies on these “sigmas.” The prescribed
methods for the generation of the PLs assume a
zero-mean and normally distributed, fault-free error
model for the broadcast pseudo-range corrections.
However, the true errors are neither necessarily
zero-mean nor Gaussian. The standard deviation of
the correction error is further assumed to be equal to
the broadcast value of ¾pr gnd. If the broadcast error
model does not overbound the true (unknown) error
distribution, a serious threat to the aircraft may result.
Thus, special care must be taken to validate these
assumptions.
A great deal of prior work has been done to

ensure that the zero-mean Gaussian distribution
based on the broadcast ¾pr gnd overbounds the
true distribution, which may be non-Gaussian and
non-zero-mean. There are two principal approaches.
The first approach taken in LAAS is to transmit
inflated values of the standard deviations which
compensate for the uncertainty of the true error
distribution. The main sources of statistical uncertainty
are site installation errors due to the limited size of
data and nonstationary error distributions caused by
multipath variation. Pervan and Sayim [4] investigated
the estimation error due to the finite sample sizes used
to generate the model and error correlation across
multiple reference receivers and derived the minimum
acceptable inflation parameters for the value of the
broadcast sigma. Their work implicitly assumed a
zero-mean Gaussian error model associated with
thermal noise and diffuse multipath. However, other
error sources, such as ground reflection multipath
and systematic reference receiver/antenna errors,
may not be zero-mean Gaussian distributed. Shively
and Braff [5] derived inflation factors to deal with
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this non-Gaussian effect using a synthetic model
of a Gaussian core and Laplacian tails. Rife [6]
introduced a modified overbounding technique,
called core overbounding. His Gaussian core with
Gaussian sidelobe (GCGS) approach mitigates
overconservatism associated with bounding heavy
tails by providing an allowable envelope of tail
distributions.
The second approach used in LAAS detects

violations of the resulting overbound using the
sigma monitor in failure events, where the true
sigma exceeds the broadcast sigma or the true
mean becomes substantially non-zero. Sources of
unexpected anomalies in corrected pseudo-ranges
can be multipath error increases due to varying
environmental conditions, receiver noise error
amplifications due to any natural system failure, or
all other possible malfunctions. Lee [7] developed
the two sigma monitor algorithms, direct estimation
and cumulative sum (CUSUM) methods, and showed
that real-time protection against sigma failures was
achievable.
While the sigma overbounding techniques

described above promise to support Category I
operations, significant technical challenges are
encountered in supporting Category II/III operations.
This is due to the tightened VAL (a bound on
maximum tolerable VPL) of 5.3 m and high
availability requirements (0.999 or higher, depending
on the airport). In addition, the maximum permissible
integrity risk is on the order of 10¡9 (i.e., the PLs
must overbound the true position error, which is
unknown in real time, with a probability of 1¡ 10¡9.)
Thus, high levels of sigma inflation (with which the
system may meet Category I requirements) cannot
be tolerated for Category II/III approaches. This
concern led to the application of a position domain
method (PDM). Markin and Shively [8] originally
introduced the concept of position domain monitoring
in the mid-1990s as an alternative to range domain
monitoring. The computed protection levels in the
range domain may be conservative, since the range
domain method requires a transformation from
pseudo-range correction errors to position error
estimates. In contrast, this alternative technique avoids
the conservatism by performing a safety check directly
in the position domain. An extended benefit from
the PDM has been shown by Braff [9]. In this work,
the method was found to be effective to reduce a
conservatism that was applied to protect against
the event that the pseudo-range correction error
distribution was not modeled properly.
The PDM performs the integrity check by

monitoring position solutions from combined sets
of satellites [10]. In this concept, the PDM collects
measurements with a remote receiver and derives
position solutions by applying LGF corrections
to all visible satellites approved by the LGF and

all possible subsets of satellites. The position
solutions are then compared to the known (surveyed)
location of the PDM antenna, and errors exceeding
detection thresholds are alerted. This method was
considered an alternative to the range domain
method (RDM), which monitors each pseudo-range
measurement individually and approves each
satellite for aircraft use. However, relying on only
PDM turned out to be impractical due to limited
data-link capacity and flexibility because it was
thought that the PDM required generating every
possible combination of satellites that may be used
to compute the position solution and approving
usable sets on a combination-by-combination
basis. Thus, the current LGF is based on the RDM.
However, given that an enhanced LGF architecture is
required to meet Category II/III requirements, sigma
overbounding using the PDM may be considered.
This paper investigates how the PDM may be
used to improve system availability by reducing
the inflation factor for the standard deviation
of pseudo-range correction errors and presents
a method of sigma overbounding for Category
II/III approaches. Section II introduces the PDM
algorithm to compute position error estimates (the
algorithm of monitoring is not described in this
paper because it is irrelevant to the calibration of
the inflation factor). Section III then discusses the
characteristics of error distributions in the position
domain. Section IV describes the unique, detailed
approach to estimate ¾pr gnd inflation factors and
demonstrates that the PDM supports a smaller
¾pr gnd inflation factor needed for Category II/III
operations. Section V presents field-testing results
showing improved system performance. Section VI
summarizes the paper and suggests a direction for
future research.

II. POSITION DOMAIN METHOD

PDM position solutions are computed using the
approach required of LAAS airborne receivers–as
specified in the LAAS Minimum Operational
Performance Standards (MOPS) [3]–to emulate
LAAS aircraft conditions as much as possible (the
same method is used to obtain pseudouser position
estimates and evaluate performance in Section V).
In order to reduce errors in raw pseudo-range
measurements for satellite n, ½n, we first apply
the following carrier-smoothing filter [1, 3]. The
smoothed pseudo-range ½s for satellite n at epoch k
is

½s,n(k) =
1
Ns
½n(k) +

Ns¡ 1
Ns

(½s,n(k¡ 1)+Án(k)¡Án(k¡ 1)),

n= 1,2, : : : ,N (1)

where Á is the carrier phase measurement, and Ns is
equal to 200 since this filter uses a time constant ¿s of
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100 s and a sampling interval, Ts, of 0.5 s

Ns = ¿s=Ts = 100=0:5 = 200: (2)

Next we apply the set of LGF differential corrections
to these carrier-smoothed code measurements [3]. The
corrected pseudo-range measurements are

½c,n(k) = ½s,n(k)¡ ½corr,n(k¡ 1)¡R½corr,n(k¡ 1) ¢Ts
+TC(k)+ c ¢¢tn(k) (3)

where ½corr and R½corr are the pseudo-range correction
and the range rate correction from the LGF-approved
message [3]. The variable TC is the tropospheric
correction and is small enough to be neglected in
this application. The parameter c represents the
vacuum speed of light, and ¢tn is the satellite clock
correction computed using clock parameters in
subframe 1 of the GPS navigation message. Based
on this set of differentially corrected measurements,
we compute three-dimensional positions using a
linearized, weighted least-squares estimation method.
The linearized measurement model is

½c,n(k)¡ ½0,n(k)| {z }
¢y

=G

264 ±x(k)

±y(k)

±z(k)±b(k)

375
| {z }

¢x

+"̃ (4)

where ¢x is the four dimensional position
(±x,±y,±z)=clock bias (±b) deviation vector, ¢y
is an N-dimensional observation deviation vector
containing the corrected pseudo-range measurements
(½c) minus the expected ranging values (½0) based on
the location of the PDM antenna and satellites, "̃ is
an N-dimensional vector containing the remaining
errors in the corrected measurements, and G is
the observation matrix consisting of N rows of
line-of-sight vectors from each satellite to the PDM
antenna, augmented by a “1” for the clock. Thus, the
nth row of G corresponds to the nth satellite in view
and can be written in terms of the azimuth angle (Azn)
and the elevation angle (Eln). This matrix is unitless
and is defined as

G =

266664
¡cosEl1(k)cosAz1(k) ¡cosEl1(k)sinAz1(k) ¡sinEl1(k) 1

¡cosEl2(k)cosAz2(k) ¡cosEl2(k)sinAz2(k) ¡sinEl2(k) 1

...
...

...
...

¡cosElN(k)cosAzN(k) ¡cosElN(k)sinAzN(k) ¡sinElN(k) 1

377775 : (5)

We find the weighted least-squares solutions for the
estimate of the states by

¢x̂= S ¢¢y, S ´ (GTWG)¡1GTW (6)

where S is the weighted least square projection matrix,
and the inverse of the least-squares weighting matrix

is

W¡1 =

2666664
¾2PR,1 0 ¢ ¢ ¢ 0

0 ¾2PR,2 ¢ ¢ ¢ 0

...
...

. . . 0

0 0 0 ¾2PR,N

3777775 : (7)

Here, ¾PR,n is the fault-free error model associated
with satellite n:

¾2PR,n = ¾
2
air,n+¾

2
tropo,n+¾

2
iono,n:+¾

2
pr gnd,n: (8)

The airborne error ¾air is determined from the receiver
noise estimate and the specified multipath model.
The second and the third terms are introduced by
the residual tropospheric and ionospheric errors,
respectively. The ground error, ¾pr gnd, includes the
ground station receiver noise and multipath error (see
Appendix for details). Although the purpose of the
PDM is to imitate aircraft operations, the PDM is
still a ground-based system with ground-reflection
multipath. Thus, we need to replace the airborne
error sigma, ¾air, with the ground facility error sigma,
¾pr gnd. The choice of ¾air being equal to ¾pr gnd is
also made for a pseudouser as well as for the PDM
receiver in Section V as a representative example.
Comparing the position solutions (x̂) with the known
location of the PDM antenna (xsurveyed), we have
the position error, Â, which is equivalent to ¢x̂ in
(6):

Â= x̂¡ xsurveyed| {z }
¢x̂

: (9)

Here, the vertical component of Â in an East, North,
up (ENU) coordinate system is the vertical position
error, which is used to calibrate an inflation factor for
the broadcast ¾pr gnd.

III. ERROR DISTRIBUTION IN POSITION DOMAIN

This section investigates how range domain
error statistics are converted into position domain

error statistics. The purpose here is to show that
the error distribution has thinner tails than before
the conversion, which is a key factor supporting
a smaller sigma inflation factor and consequently
improving navigation availability. From (6) and (9),
the relationship between pseudo-range correction
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errors and position errors is

Â= S1("̂1¡ b1| {z }
¢y1

) + S2("̂2¡b2| {z }
¢y2

) ¢ ¢ ¢+ SN("̂N ¡bN| {z }
¢yN

)

(10)

where the pseudo-range correction errors for each
satellite n (which is equivalent to ¢yn) can be
expressed with the pseudo-range correction error with
zero-mean "̂n, and the mean bias of the correction
errors bn, for each satellite n. The position error, Â,
is the sum of mean-biased correction errors, which
are also weighted by the coefficients of the projection
matrix (Sn). We now develop the connection between
error distributions in the range and position domains.
The probability density function (pdf) f of the sum of
the weighted and mean-biased independent variables
is the convolution of their respective scaled and
mean-shifted pdfs fr [11].
Based on this theorem and (10), the pdf of position

errors f(Â) is

f(Â) =
1
jS1j

fr

μ
"̂1¡ b1
jS1j

¶
¤ 1
jS2j

fr

μ
"̂2¡ b2
jS2j

¶
¢ ¢ ¢

¤ 1
jSN j

fr

μ
"̂N ¡ bN
jSN j

¶
: (11)

Since "̂n is weighted by Sn and biased by bn, the
pdf of "̂n is scaled by Sn and shifted by bn. We take
convolutions of these pdfs to obtain f(Â).
An empirical model of pseudo-range correction

errors ("̂n) is developed as described in Section IVB.
Using this model, shown in Fig. 1 as a dashed curve,
we transform the error distribution in the range
domain into the position domain. This is done by
convolving the correction error pdfs, which are scaled
and mean-shifted. The given weighting parameters
Sn, and mean-bias parameter bn, make the established
position error model into a good representation of the
experimental data (which is shown in Fig. 3). It is
clear that the tails of the position error distribution
(the solid curve in Fig. 1) are thinner than those
of the individual correction error distributions (the
dashed curve in Fig. 1). The thinner tails of the error
distribution in the position domain are caused by
the averaging effect of correction errors through
the convolutions and common mode cancellation of
correction errors. Note that the sum of weighting
parameters is zero,

PN
n=1 Sn = 0, and thus the common

correction errors across ranging sources cancel out in
(10).

IV. SIGMA INFLATION FACTOR ESTIMATION

As addressed in Section I, the true sigma may
exceed the broadcast ¾pr gnd due to the uncertainty
of the true error distribution. The main sources of
this uncertainty are mean and sigma estimation

Fig. 1. Error distributions in position domain and in range
domain.

error during site installation and nonstationary error
distributions caused by environmental changes that
affect multipath. Thus, the LGF needs to broadcast
an inflated ¾pr gnd such that the broadcast distribution
overbounds all reasonable error distributions out to
the probabilities assumed in the computation of the
protection levels (PLs). The inflation factor, finflation,
is defined as the ratio of the broadcast sigma to
the theoretical sigma of a zero-mean and normally
distributed correction-error model

finflation =
¾Broadcast
¾Theoretical

: (12)

Although a great amount of work has been done
regarding sigma inflation that accounts for each
individual cause of the uncertainty [4, 5], an inflation
factor that copes with all of the uncertainty sources at
once has not yet been investigated.
This section introduces a comprehensive method of

determining the inflation factor covering the following
three sources of uncertainty: finite sample size,
process mixing, and the limitation of sigma monitors.
Section IVA considers the effect of sigma estimation
error due to the limited number of samples. A basic
assumption of the PL is that pseudo-range correction
errors are zero-mean Gaussian distributed. However,
in practice, the tails of the true error distribution
may not be exactly Gaussian due to time-varying
environmental conditions. In addition, even though
we assume a stationary condition, mixing of Gaussian
errors with different sigmas may cause the fattened
tails. Section IVB deals with mixing of time-varying
errors–such as ground reflection multipath–and
mixing of different Gaussian distributions. An
inflation factor is derived for the non-Gaussian tails
in both the range and position domains. Section IVC
then reviews the performance of the existing sigma
monitors and provides a factor to overcome its
limitations. Lastly, Section IVD presents a method to
combine all factors and determine the inflation factors
for the broadcast ¾pr gnd in the range and position
domains, respectively. These induced inflation factors
are evaluated by computing PLs of a pseudouser in
Section V.
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Fig. 2. Probability density function of normalized B-values (error
distribution in range domain).

A. Finite Sample Size

In determining the broadcast sigma of the
ground facility error, we must account for specific
environmental conditions (antenna siting, gain
patterns, and system configuration) of each LGF
site. Even though these conditions are factored very
accurately into sigma estimation and the environment
is assumed to be stationary, the estimated sigma may
have a statistical noise due to finite sample size.
Previous research on this subject has been done
by Pervan and Sayim [4]. They investigated the
sensitivity of integrity risk to statistical uncertainties
to which the correction error standard deviation and
error correlation between multiple reference receivers
are susceptible. Based on their work, the minimum
acceptable inflation factor for the broadcast ¾pr gnd is
approximately 1.2 (see [4] for details).

B. Process Mixing

As noted above, the true LGF error distribution
may change with time, as environment conditions
vary. In addition, mixing of the time-varying
errors–ground reflection multipath and systematic
receiver/antenna errors–makes the characteristics
of the error distribution complex. Even if stationary
Gaussian error distributions are assumed, some degree
of the mixture problem is expected. The standard
deviation of the true error distribution varies as a
function of the elevation angle of each satellite. If
pseudo-range correction errors are normalized by
the theoretical sigma which depends on the ranging
source elevation angle but which is not perfect, this
normalization mixes Gaussian distributions with
different sigmas. The process mixing may result in
non-Gaussian tails.
Fig. 2 shows the distribution of the LGF B-values

collected by the Stanford Integrity Monitor Testbed
(IMT)–an LGF prototype designed by Stanford
University–for a period of 5 hr. The B-values
are ground broadcast differences between the

pseudo-range corrections derived from subsets of the
multiple LGF reference receivers (typically 3 or 4).
The precise mathematical formation of these B-values
is defined in the LGF system specification [1]. Since
the B-values represent pseudo-range correction
differences across reference receivers–ideally, the
pseudo-range corrections from all reference receivers
should be the same for a given satellite–the B-values
are best thought of as the estimates of pseudo-range
correction errors under the hypothesis that a given
reference receiver has failed. The B-values are
normalized by their theoretical sigma which depends
on the elevation angles, and those normalized
B-values which are mixed over all elevations are
used to configure the range error distribution. As
addressed earlier, this mixing which results from
the normalization may cause the fattened tails of
the error distribution as mixing of time-varying
errors does. In Fig. 2, we can clearly see that the
correction error distribution (the dotted curve) has
non-Gaussian tails (note that the scale of its vertical
axis is logarithmic). Thus we should inflate the
nominal 1¾ Gaussian distribution (shown as the
dashed curve) to overbound the error distribution with
non-Gaussian tails. However, this error distribution
modeled with experimental data is not sufficient
to represent the true error distribution. In other
words, a reliable estimation of the tail probabilities
is impossible because their small magnitude (on the
order of 10¡10) requires a huge sample size (greater
than 1010) that cannot be collected in a realistic time
frame. Hence, the limited number of samples makes
an empirical model necessary for estimating the error
distribution. We use the following Gaussian-mixture
distribution as the empirical model to represent the
data better than the simplest and most common model
of a single Gaussian pdf:

fGM = (1¡ ") ¤N(¹0,¾0)+ " ¤N(¹1,¾1)
"= 0:15, ¹0 = ¹1 = 0

¾0 = 0:75, ¾1 = 1:82

(13)

where N(¹,¾) is a normal distribution with mean ¹
and sigma ¾. Thus this function is the weighted sum
of two normal distributions with one nominal sigma
and one relatively large sigma. This model (the inner
solid curve) shown in Fig. 2 well characterizes the
actual distribution of Gaussian-core and non-Gaussian
tails. Again, the nominal sigma should be inflated in
order to cover the non-Gaussian tails of the actual
distribution with a normal distribution. For Category
I approaches, the tails need to be overbounded so that
the probability of the error exceeding protection levels
is less than or equal to 6£ 10¡9 under the hypothesis
of fault-free conditions (H0); for Category II/III
approaches the required probability is 1:2£ 10¡10. To
meet the integrity requirement, we need to inflate the
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Fig. 3. Probability density function of normalized vertical
position errors (error distribution in position domain).

sigma by a factor of 2.32 or greater. We can see that
the 2:32¾ Gaussian distribution (the outer solid curve)
well overbounds the empirical model (the inner solid
curve). As a result the minimum tolerable inflation
factor is 2.32 if the LGF is based on range domain
monitoring. Note that test statistics highly depend on
system configurations; thus, this analysis should be
conducted at each LGF site.
The result from Section III implies that the PDM

allows us to reduce the inflation factor for broadcast
¾pr gnd because its error density has thinner tails. Fig. 3
shows the distribution of vertical position errors,
computed using the PDM algorithm for a period
of 5 hr. The actual position error distribution (the
dotted curve) is well characterized by the empirical
model (the solid curve) also shown in Fig. 1. Note
that this distribution has a shifted mean due to the
mean biases of pseudo-range correction errors. Again
since we assume a zero-mean normally distributed
error model in the computation of PLs, we need to
inflate the nominal sigma of a zero-mean Gaussian
distribution to cover the non-Gaussian tails of the
non-zero actual distribution. Thus, we inflate sigma
to meet the H0 integrity risk allocation (1:2£ 10¡10
for Category II/III [1]). Fig. 3 shows that the 1:56¾
Gaussian distribution (the outer-solid curve) well
overbounds the empirical model (the inner-solid
curve). Consequently the minimum tolerable inflation
factor to mitigate integrity risks due to process mixing
is 1.56 if the LGF is based on the PDM. Again this
analysis should be performed at each LGF site to
account for different system configurations. Sigma
overbounding has been shown in this paper using the
pdfs in order to illustrate that empirical models well
represent the actual distributions while demonstrating
the overbounding. However, sigma overbounding
must also be shown using cumulative distribution
functions (cdfs) to ensure integrity as stated in [6].
Thus, we performed cdf overbounding for the cases
shown in Figs. 2 and 3 and confirmed that the cdf
overbounding was in a good agreement with the pdf
overbounding.

Fig. 4. Failure-state average run lengths for CUSUM and sigma
estimation monitors.

C. Limitation of Sigma Monitors

The possibility of sigma violations exists because
of not only the nominal sigma uncertainty but also
unexpected anomalies. Thus, the sigma monitor
is needed to provide necessary integrity in the
event that the true sigma significantly exceeds the
broadcast sigma. Lee [7] developed two different
sigma-monitoring algorithms: the sigma estimation
method and CUSUM method. The former detects
relatively smaller violations faster, while the
latter detects larger violations faster. These two
sigma-monitoring algorithms together are able to
detect any size of sigma violation that is hazardous
to users. However, the current sigma monitor has
a limitation on mean time-to-detect which must be
overcome with an additional inflation factor. First, we
derive the additional parameter assuming that the error
distribution is Gaussian. Second, we assume a specific
non-Gaussian error distribution and then derive the
inflation factor.
1) Gaussian Assumption on Error Model: Let

us review the performance of the sigma monitor
implemented in the Stanford IMT (see [7] for
details.) Fig. 4 shows the mean detection time for
different sigma monitoring methods to detect certain
failure-states–out-of-control sigmas (¾1)–given the
condition that the error distribution is Gaussian. The
failure state is denoted as ¾1 (out-of-control sigma)
which is the ratio of an actual sigma to a theoretical
sigma

¾1 =
¾Actual
¾Theoretical

: (14)

We now turn our attention to the LGF
requirements specified in [1] and reexamine the
capability of this monitor. Based on the time-to-alert
requirements, if the actual integrity risk is greater
than the total allocation but the resulting risk increase
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Fig. 5. Probability density function of sample standard deviation.

is minimal (i.e., is no greater than one order of
magnitude), it is defined as “minimal-risk-increase.”
Since degraded performance due to such sigma
failure is minimal according to the specification,
we need not detect it immediately but instead
within a day. Note that if sigma failure causes
“nonminimal-risk-increase” (i.e., the integrity risk
is increased by more than one order of magnitude
from the total allocation), it should be detected within
an hour. The limitation of the sigma monitor is now
defined: Assuming that we can continuously collect
data in one satellite pass for 5 hr on average, the
minimum out-of-control sigma detectable within
a day is 1.41. Out-of-control sigmas (¾1) greater
than the inflation factor (finflation) are categorized as
“minimal-risk-increase” (i.e., the actual sigma exceeds
the broadcast sigma), by definition of (12) and (14). If
the inflation factor is less than 1.41, sigma violations
with minimal risk–between the inflation factor and
1.41–cannot be alarmed within a day. Accordingly,
in order to meet the LGF requirements, the inflation
factor should be at least 1.41.
2) Non-Gaussian Assumption on Error Model: As

pointed out in Section IVB, the error distribution
may not be precisely Gaussian. Thus, we also need
to consider the restriction of the sigma monitor given
the assumption that the errors are non-Gaussian
distributed. Results corresponding to Fig. 4 are
generated using the non-Gaussain model described in
(13). This model is an example used to represent the
actual distribution. From this distribution we collect
90 independent samples to compute a sample standard
deviation. Note that 90 is the number of independent
samples that we can collect continuously in 5 hr,
since 18 independent samples correspond to 1 hr
(the interval between independent B-values is taken
to be equal to 200 s, which is twice as long as the
time constant of the carrier-smoothing filter [1, 7].)
Repeating this process randomly, we then generate
10,000,000 sample sigmas. As a result, the pdf of
a sample sigma is shown in Fig. 5. Based on the
specified fault-free alarm rate, 10¡7 (a sub-allocation
of Category I continuity risk allowed per 15 s interval

Fig. 6. Inflation factors for broadcast ¾pr gnd with RDM only and
RDM+PDM.

[1, 12]), the minimum out-of-control sigma detectable
within 5 hr is now 1.77. Consequently, to protect this
particular non-Gaussian error model, the inflation
factor should be at least 1.77.

D. Total Inflation Factor

So far we have investigated three major sources of
sigma uncertainty and derived an inflation factor for
each source. The final step is to determine the total
inflation factor for the broadcast ¾pr gnd considering all
conditions discussed in Sections IVA, IVB and IVC:

1) The theoretical (or preestimated) sigma is to be
inflated by a factor of 1.2 to account for finite sample
size (Section IVA).
2) The inflation factors to overbound the tails of

the non-Gaussian distribution derived from IMT data
are 2.32 in the range domain and 1.56 in the position
domain (Section IVB).
3) The inflation factor should be at least 1.77 to

overcome limitations of the existing sigma monitor
(Section IVC).

In Fig. 6, we present the inflation factor
determination method for the broadcast ¾pr gnd. Since
the conditions described in Sections IVA and IVB are
independent, we multiply the two parameters (1.2
and 2.32) for the range domain case. The resulting
factor (2.78) already exceeds what is required by the
sigma monitor (which is 1.77) satisfying the third
condition. Thus, the total inflation factor is 2.78 when
the LGF is based on the RDM only. Using the same
method, we obtain the total inflation factor for the
position domain case. We multiply the two parameters
(1.2 and 1.56) derived in Sections IVA and IVB, and
then take the maximum of the resulting factor (1.87)
and 1.77 derived in Section IVC. Note that among
induced parameters to cope with each error source,
only the second one–the inflation factor to cover
process mixing–changes; the others remain the same
in the position domain. The total inflation factor is
1.87 when a PDM is added to the current RDM (as
addressed earlier, the LGF cannot rely solely on the
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Fig. 7. Stanford LAAS performance test-bed IMT-PDM-user
hardware configuration.

PDM due to limited data-link capacity and complexity
and thus the LGF may augment the existing system
by adding the PDM). These total inflation factors
are used to compute vertical protection levels in the
following section.

V. PERFORMANCE ANALYSIS

To demonstrate that the position domain method
provides users with sharper confidence bounds due
to the reduced inflation factor and consequently
improves system availability, this section evaluates
the system performance by computing a pseudouser’s
protection levels. The two postprocessing runs are
conducted to compare performance: the first run
using the augmented system with the position domain
method and the second run with the current Stanford
IMT (range domain monitoring only).

A. Performance Testbed Architecture

To evaluate whether the LGF can meet its integrity
requirements, Stanford University researchers have
developed an LGF prototype known as the Integrity
Monitor Testbed (IMT) [13]. The LGF requires
that redundant differential GPS reference receivers
be able to detect and exclude failures of individual
receivers. Fig. 7 shows the configuration of the
three IMT antennas on the Stanford HEPL (Hansen
Experimental Physics Laboratory) rooftop. The
existing IMT antennas are connected to three NovAtel
OEM-4 reference receivers which are connected to
the IMT computer by a multiport serial board. The
separations between these three NovAtel Pinwheel
(survey grade) antennas are limited to 20—65 m by
the size of the HEPL rooftop but are sufficiently
separated to minimize the correlations between
individual reference receiver multipath errors (this
has been demonstrated by previous work) [13, 14].
Each receiver can track as many as 12 satellites
simultaneously. Each receiver samples GPS signals
every 0.5 s and provides receiver measurement
packets, which contain pseudo-range measurements,
carrier-phase measurements, and navigation messages.
These GPS measurements are fed into the IMT
processor for further calculations.

A prototype of PDM has been applied to the
existing Stanford IMT as shown in Fig. 7. We use
the Stanford WAAS Reference Station antenna
(located on the Stanford Durand Building) for the
PDM antenna, which is separated by approximately
145 m from the IMT antennas. In order to test the
capability of meeting the high availability requirement
for Category II/III precision approaches, we have
tested LAAS augmented with the PDM by installing
a static “pseudouser” antenna/receiver on top of the
nearby parking structure. The NovAtel Pinwheel
antenna (“pseudouser” antenna) and the center of
the IMT are approximately 230 m apart, and the
distance between the pseudouser antenna and the
PDM antenna is approximately 360 m. The NovAtel
OEM-4 receivers connected to the PDM antenna
and the “pseudouser” antenna collect pseudo-range
measurements, carrier-phase measurements, and
navigation messages of GPS satellites (“pseudouser,”
PDM, and IMT receivers are set up to collect
measurements simultaneously). The measurements are
postprocessed in a single computer where the PDM
algorithm is developed and tested.

B. Experimental Result

In order to evaluate system performance, we
first compute position errors, which are obtained by
comparing the surveyed location of the pseudouser’s
antenna to position solutions. Pseudouser position
solutions are computed in the manner required
of the LAAS airborne receivers to mirror LAAS
aircraft operations to the degree possible (the
detailed algorithm is specified in the RTCA LAAS
MOPS [3] and also in Section II). In this analysis,
accuracy designator C (AD-C) is applied to the
pseudo-range error model [15], as it corresponds
to the hardware installation for Category II/III (see
Appendix). Second, we compute protection levels
through which the final quantitative appraisal of
the navigation performance is realized. The VPL
under the hypothesis of fault-free conditions (H0)
is

VPLH0 = Kffmd¾VerticalPositionError

= Kffmd

vuut NX
n=1

S2vertical,n¾
2
PR,n (15)

where ¾VerticalPositionError is the standard deviation of
vertical position errors, Kffmd is a specified multiplier
that determines the probability of fault-free missed
detections (i.e., this multiplier is the quantile of a
unit Gaussian distribution corresponding to 10¡9

for Category II/III operations and is equal to 6.441
when the number of ground reference receivers
is three) [3], Svertical,n is the projection of the local
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Fig. 8. System performance in vertical direction with RDM and PDM.

vertical component for the nth ranging source, and
¾PR,n is the fault-free error model associated with
satellite n. Since the vertical direction is the most
stringent one and errors in this direction are generally
worse than those in the lateral direction, we only
pay attention to the vertical direction. From (8)
and by applying the inflation factor, finflation, to the
broadcast ¾pr gnd to meet the integrity requirement
(explained in Section IV), (15) can be expressed
as

VPLH0 =Kffmd

vuuuuut
NX
n=1

S2vertical,n ¢ [¾2air,n+¾2tropo,n+¾2iono,n

+(finflation ¢¾pr gnd,n)2]
:

(16)

We now proceed to verify that the inflation factor
derived from the PDM can be substituted into (16).
From (8) and (15), the standard deviation of the
vertical position errors is

¾VerticalPositionError =vuut NX
n=1

S2vertical,n[¾
2
air,n+¾

2
tropo,n+¾2iono,n+¾

2
pr gnd,n]:

(17)

Because the PDM receiver is located on the ground,
we replace the airborne error sigma ¾air with the
ground facility error sigma ¾pr gnd. Here ¾air,n =p
3¾pr gnd,n since ¾pr gnd,n is set based on three

reference receivers (see Appendix subsection A). Then

(17) becomes

¾VerticalPositionError =vuut NX
n=1

S2vertical,n ¢ [3¾2pr gnd,n+¾2tropo,n+¾2iono,n+¾2pr gnd,n]:

(18)
We also use the fact that ¾tropo,n and ¾iono,n
are negligible because of the short distance
(approximately 145 m) between the IMT and PDM.
When (18) is multiplied by the inflation factor,

finflation ¢¾VerticalPositionError =vuut NX
n=1

S2vertical,n ¢ 4(finflation ¢¾pr gnd,n)2: (19)

This indicates that we can directly apply the inflation
factor derived using the position domain error
statistics to the broadcast ¾pr gnd in (16).
Fig. 8 shows the performance of the

PDM-augmented system. For the purpose of
comparison, we also produce the performance
results with the RDM only and plot them in Fig. 9.
Horizontal axes indicate the absolute value of vertical
position errors (jVPEj), while VPLs are plotted in
the vertical axes. Each bin represents the number of
occurrences of a specific pair (error, protection level).
The jVPEjs are always less than 2 m, which means
that both types of LGF systems meet the accuracy
requirement for Category II/III approaches. Integrity
risk is defined as the probability that the position
error exceeds the alert limit and no navigation system
alert occurs within the time-to-alarm. The event
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Fig. 9. System performance in vertical direction with RDM only.

with VPL less than the VAL but error greater than
the VAL–which leads to hazardously misleading
information (HMI), indicates a violation of integrity.
In both plots, the errors are always less than the VPL
and also VAL; thus, no points constitute integrity
failures.
Now we turn our attention to LAAS availability,

which is defined as the fraction of time for which
the system is providing position fixes to the specified
level of accuracy, integrity and continuity. If computed
PLs exceed the alert limit, then the system no longer
meets the integrity requirement and thus loses
availability. The VAL for Category II/III precision
approaches (indicated with horizontal and vertical
lines in Figs. 8 and 9) 5.3 m based on the RTCA
LAAS MASPS [16]. Without the PDM (and given
the condition that available satellites in view are
more than five), the system availability achieved in
this analysis is only 89.258%, as shown in Fig. 9.
Thus the RDM alone cannot meet the availability
requirement of Category II/III approaches, which
is 99.999%. In contrast, we can see in Fig. 8 that
the system augmented with the PDM maintains
the availability of 99.999% or greater in vertical
positioning (when the same GPS constellation is
provided as in the RDM only case). If we consider
a relaxed VAL of 10 m based on the most recent
LAAS MASPS update, it appears from Fig. 9 that
the RDM would have been good enough for the data
presented. However, in this assessment we computed
the availability over only a period of 5 hr instead of
a full day of geometries, and the GPS constellations
with satellite outages were not considered. Also note
that significantly less ideal sites may exist where

the benefits of the PDM in addition to the RDM
might make the difference between acceptable and
unacceptable availability. Although further work is
needed to better estimate the availability with the
PDM, it is clear that the PDM augmentation helps
meet the high Category II/III availability requirements
(or provide that tool for future LAAS systems, should
it ever be needed) by supporting a smaller inflation
factor (finflation = 1:87 versus 2.78)–inserted in (16)
to compute VPLs–and consequently providing sharp
protection bounds.

VI. CONCLUSIONS

This paper demonstrated that the PDM improves
the performance of the existing Category I LGF,
which is based on the RDM. We found that the
performance achieved by adding the PDM aids
significantly in meeting the stringent availability
requirements of Category II/III operations. This
improvement is possible because the PDM supports
a lower inflation factor for the broadcast ¾pr gnd
(i.e., there is no availability penalty due to the
conservative inflation factor as there is with the
RDM). The paper also provides a comprehensive
method for determining the sigma inflation factor.
The derived inflation factor includes partial parameters
for all sources of the sigma uncertainty and for the
limitation of the current sigma monitor. The empirical
performance tests showed that the system augmented
with the PDM provides a 25% reduction in VPL
with the same safety standard and enhances user
availability.
Test statistics for determining a sigma inflation

factor depend heavily on antenna sites, gain patterns,
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and the nearby environment. Thus, the inflation
factor derived in this paper is not applicable to all
situations. For example, a challenging airport site or
a ground-based system with upgraded hardware would
require different inflation factors. Future research
should focus on constructing more PDM test statistics
with datasets collected from different environmental
conditions for longer periods of time. Analyzing these
statistics may help better evaluate PDM performance.
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APPENDIX. LAAS ERROR MODELS

This Appendix describes the LAAS Accuracy
Models used in this paper. These models are required
to compute protection levels. Working Group-4 of
RTCA Special Committee 159 developed standard
error models for LAAS differential processing
[1]. The standard GPS interference environmental
conditions–the RF interference environment at
and around L-band frequencies for LAAS airborne
receivers–assumed in the models are defined in
Appendix D of the LAAS MOPS (RTCA/DO-253A
[3]). This group defined ground accuracy designators
(GADs) that reflect different performance levels of
GPS receiver technologies [15]. GAD-A represents
a level of performance achievable with early and
low-cost LAAS installations using a standard
correlator receiver and a single-aperture antenna.
GAD-C was defined to characterize the performance
realizable with a narrow correlator receiver and
a multipath limiting antenna (MLA). GAD-C
performance is expected to be able to support LAAS
CAT II/III precision approaches. GAD-B represents
an intermediate level of performance between GAD-A
and GAD-C. The performance of GAD-B is attainable
with advanced receiver technologies similar to GAD-C
but with a single-aperture antenna instead of an MLA.

A. Model of Ground Facility Error

The ground facility error sigma ¾pr gnd, which
is broadcast to users by the LGF is a critical factor
for airborne users to compute their position and
integrity PLs. This error standard deviation for each
ranging source should account for all equipment
and environmental effects, including receiver noise,
local interference, and ground station multipath. The
standard deviation of the ground facility error is [1]

¾pr gnd,n(k) =

s
(a0 + a1e¡μn(k)=μ0 )2

Mn(k)
+ (a2)2 (20)

TABLE I
Ground Facility Error Allocation Model

Ground Accuracy
Designator a0 meters a1 meters a2 meters μ0 deg

GAD-A 0.50 1.65 0.08 14.3
GAD-B 0.16 1.07 0.08 15.5
GAD-C μn ¸ 35± 0.15 0.84 0.04 15.5

μn < 35
± 0.24 0 0.04 –

where M is the number of reference receivers that are
averaged to obtain a differential correction, μn is the
nth ranging source elevation angle, and a0, a1, a2 and
μ0 for the applicable GADs are defined in Table I.

B. Model of Airborne Pseudo-range Performance

To define airborne pseudo-range error allocations
for carrier-smoothed code processing, we consider two
components. First, ¾noise is the error due to wideband
noise and interference including receiver noise,
thermal noise, inter-channel biases, extrapolation, and
processing errors, and is modeled as

¾noise,n = a0 + a1e
¡μn=μc , 5± · μn · 90± (21)

where μn is the nth ranging source elevation angle,
and a0, a1 and μc for the applicable airborne accuracy
designator (AAD) are defined in [15]. The AADs
were defined to reflect different performance levels
of GPS receiver technologies. Second, ¾multipath is the
error due to airframe multipath and is described by the
distribution, N(0,¾2multipath) where

¾multipath,n = 0:13+0:53e
¡μn=10± : (22)

The overall airborne accuracy model is computed as
follows:

¾air,n =
q
¾2noise,n+¾

2
multipath,n: (23)

C. Model of Tropospheric Residual Uncertainty

The standard deviation of the post tropospheric
correction error is defined as [3]

¾tropo,n = ¾Nh0
10¡6q

0:002+ sin2(μn)
(1¡ e¡¢h=h0 )

(24)

where ¾N is the refractivity uncertainty, h0 is the
tropospheric scale height from the LAAS type 2
message, ¢h is the height of the aircraft above the
LAAS reference point, and μn is the elevation angle of
satellite n.

D. Model of Ionospheric Residual Uncertainty

Ionospheric temporal and spatial decorrelation
can lead to differential LAAS user range errors.
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The uncertainty of this residual ionospheric error is
defined as [3]

¾iono = Fpp£¾vert iono gradient£ (Xair + 2£ ¿ £ ºair)
(25)

where Fpp is the vertical-to-slant obliquity factor for a
given satellite, ¾vert iono gradient is the standard deviation
of a normal distribution associated with the residual
ionospheric uncertainty due to spatial decorrelation
(a parameter provided by the ground subsystem in
the LAAS type 2 message), Xair is the distance (slant
range) between the aircraft and the LAAS reference
point, ¿ is the time constant of the smoothing filter
(100 s), and ºair is the horizontal speed of the aircraft.
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