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1 Introduction

Consider the minimization of a function J(x) where x is an n dimensional vector. Suppose that J(x) is a smooth
function with first and second derivations defined by the gradient

gi(x) =
∂I

∂xi

and the Hessian matrix

Aij(x) =
∂2J

∂xi∂xj

Generally it pays to take advantage of the smooth dependence of J on x by using the available information on
g and A. Suppose that there is a minimum at x∗ with the value J∗ = J(x∗). Then

g(x∗) = 0 (1)

and in the neighborhood of x∗ J can be approximated by the leading terms of a Taylor expansion as a quadratic
form

J(x) = J∗ +
1

2
(x − x∗)T A(x − x∗) (2)

where A is evaluated at x∗. The minimum could be approached by a sequence of steps in the negative gradient
direction

xn+1 = xn − βngn (3)

where βn is chosen small enough to assure a decrease in J , or may be chosen by minimizing J with a line search
in the direction defined by −gn. For small β this approximates the trajectory of a dynamical system

ẋ = −αg (4)

These method are generally quite slow because the direction defined by −gn does not pass through the center
of quadratic form (2 unless x − x∗ lies on a principal axis. A faster method is to use Newton’s method to solve
equation (1) and drive the gradient to zero

xn+1 = xn − A−1gn (5)

In complex problems it may, however, be very expensive or infeasible to determine the Hessian matrix A.
This motivates quasi-Newton methods which recursively estimate A of A−1 from the measured changes in g

during the search. These methods are efficient, but if the number of variables is very large then the memory
required to store the estimate of A of A−1 may become excessive. To avoid this one may use the conjugate
gradient method which calculates an improved search direction by modifying the gradient to produce a vector
which is conjugate to the previous search directions. This method can find the minimum of a quadratic form
with n line searches, but it requires the exact minimum to be found in each search direction, and it does not
recover from previously introduced errors due, for example, to the fact that n general A is not constant.

This note discusses some search procedures which avoid the need to store an estimate of A or A−1, and do
not require exact line searches. Thus they might be suitable for problems with a very large number of variables,
including the infinite dimensional case where the optimization is over the variation of a function f(x).
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2 Methods based on direct estimation of the optimum

The methods are based on the idea of directly estimating the optimum J∗ and x∗ from changes on J and g

during the search. Suppose that J is sufficiently well approximated in the neighborhood of the optimum by the
quadratic form (2). Then in this neighborhood

g(x) = A(x − x∗) (6)

and

J(x) = J∗ +
1

2
gT (x − x∗) (7)

Suppose that during a sequence of steps Xn the cost and gradient are

Jn = J(xn), gn = g(xn)

Then we can calculate

yn = Jn −
1

2
gT

n xn (8)

and according to the equation (7)

yn = J∗
−

1

2
gT

n x∗ (9)

Let Ĵn and x̂n be estimates of J∗ and x∗ which are to be made at the nth step. Then we update Ĵn and x̂n

recursively so that

yn = Ĵn −
1

2
gT

n x̂n (10)

Define the error from substituting the previous values Ĵn−1and x̂n−1 as

en = yn − Jn−1 +
1

2
gT

n x̂n−1 (11)

Then the general form of an update satisfying equation (1) is

Ĵn = Ĵn−1 +
envn

vn −
1

2
gT

n wn

x̂n = x̂n−1 +
enwn

vn − 1

2
gT

n wn

(12)

where vn and the vector wn may be chosen in any way such that the denominator vn −
1

2
gT

n wn does not vanish.
Then

Ĵn −
1

2
gT

n x̂n = Ĵn−1 −
1

2
gT

n x̂n−1 + en = yn

Alternative schemes can be derived by different rules for choosing vn and wn. Also a natural choice for the steps
xn is to set the new step equal to the best available estimate of the optimum

xn+1 = x̂n

2.1 Method 1

Form the augmented gradient vector [1,− 1

2
gT ] and choose vn and wn so that the vector [vn, wT

n ] is orthogonal
to the previous gradient vectors [1,− 1

2
gT

k ], or

vn −
1

2
wT

n gk = 0, k < n

Suppose also that

Ĵk −
1

2
gT

k xT
k = yk, k < n
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Then

Ĵn −
1

2
gT

n−1x̂n = Ĵn−1 +
envn

vn −
1

2
gT

n wn

−
1

2
gT

n−1x̂n−1 −
envn

vn −
1

2
gT

n wn

= Ĵn−1 −
1

2
gT

n−1x̂n−1

= yn−1

and by induction

Ĵn −
1

2
gT

k x̂n = yn, k < n

Now after n + 1 evaluations

Ĵn −
1

2
gT

k x̂n = yn, k = 0, 1, . . . n

and










1 −
1

2
g11 · · · −

1

2
g1n

1 −
1

2
g21 · · · −

1

2
g2n

...
...

. . .
...

1 −
1

2
gn1 · · · −

1

2
gnn





















Ĵn

x̂n1

...
x̂nn











=











y0

y1

...
yn











The same set of equations are satisfied by J∗ and x∗ if J(x) is a quadratic form. Thus the minimum of a
quadratic form can be found with n + 1 evaluations of J and g. One way to form the vectors [vn, wT

n ] would be
to apply Gram Schmidt orthogonalization to the vector [1,− 1

2
gT

n ]. At the first step set

v0 = 1, w0 = −
1

2
g0

Then at the nth step set

[vn, wT
n ] = [1,−

1

2
gT

n ] +

n
∑

k=1

αnk[vk, wT
k ]

where

αnk =
vk −

1

2
gT

n wk

v2
k − wT

k wk

This would require the storage of the previous vectors. To prevent this becoming excessive one might only force
orthogonality with a limited number of previous vectors.

2.2 Method 2

An alternative rule is to align wn with −gn. This leads to a class of updates defined by the relations

Ĵn = Ĵn−1 +
2αen

β + 1

4
gT

n gn

x̂n = x̂n−1 −
αengn

β + 1

4
gT

n gn

where the parameters α and β can be chosen to assure convergence. Define the estimation errors as

J̃n = Ĵn − J∗, x̃n = x̂n − x∗

Then

en = yn − Ĵn−1 +
1

2
gT

n−1x̂n−1

=
1

2
gT

n x̃n−1 − J̃n−1 (13)

Also set
γ =

α

β + 1

4
gT

n gn
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Then
J̃n = Ĵn−1 + 2γen

x̃n = x̂n−1 − γengn

Therefore
J̃2

n + x̃T
n x̃n = J̃2

n−1 + 4γJ̃n−1en + 4γ2e2
n + x̃T

n−1x̃n−1 − 2γengT
n x̃n−1 + γ2e2

ngT
n gn

and using equation (13)

J̃2
n + x̃T

n x̃n − J̃2
n−1 − x̃T

n−1x̃n−1 = −
(

4γ − 4γ2
− γ2gT

n gn

)

e2
n

Thus the error must decrease if

γ > γ2

(

1 +
1

4
gT

n gn

)

or

α
1 + 1

4
gT

n gn

β + 1

4
gT

n gn

< 1

This is assured if
0 < γ < 1, β ≥ 1

3 The infinitely dimensional case

Similar ideas can be used to optimize systems where the cost J(f) depends on a function f(x). Define the inner
product as

(f, g) =

∫ b

a

f(x)g(x)dx

and define the element k = A
∫

produced by a linear operator A acting on f as

k(x) =

∫ b

a

A(x, x′)f(x′)dx′

Suppose the J depends smoothly on f . Then to first order the variation δJ in J which results from a variation
δf in f is

δJ = (g, δf)

where g is the gradient. Also if J reaches a minimum J∗ = J(f∗) at f∗, then the gradient is zero at the
minimum. In the neighborhood of the minimum the dominant terms in the cost can therefore be represented as

J = J∗ +
1

2
((f − f∗), A(f − f∗)) (14)

where the operator A represent the second derivative of J with respect to f . Correspondingly the gradient can
be represented near the minimum as

g = A(f − f∗) (15)

Thus in this neighborhood the dominant terms in the cost can be written as

J = J∗ +
1

2
(g, (f − f∗)) (16)

One can now apply the techniques of Section 2 to the infinitely dimensional case. Suppose that the cost and
gradient are evaluated from a sequence of trial values fn, with corresponding cost Jn and gradient gn. We can
calculate

yn = Jn −
1

2
(gn, fn) (17)

and according to equation (16)

yn = J∗
−

1

2
(gn, f∗) (18)
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Let Ĵn and f̂n be estimates of J∗ and f∗ at the nth step. These should be updated so that

yn = Ĵn −
1

2
(gn, f̂n) (19)

Define the error from the previous estimates as

en = Ĵn−1 −
1

2
(gn, f̂n−1)

Then equation (19) is satisfied by the update

Ĵn = Ĵn−1 +
envn

vn −
1

2
(gn, wn)

f̂n = f̂n−1 +
enwn

vn −
1

2
(gn, wn)

where vn and wn may be chosen in anyway such that the denominator vn − 1

2
(gn, wn) does not vanish. Then

Ĵn −
1

2
(gn, f̂n) = Ĵn−1 −

1

2
(gn, f̂n−1) + en = yn

Following Method 2 one can align wn with −gn and set

Ĵn = Ĵn−1 +
2αen

β + 1

4
(gn, gn)

f̂n = f̂n−1 −
αengn

β + 1

4
(gn, gn)

Define the estimation errors as
J̃n = Ĵn−1 − J∗, f̃n = f̂n−1 − f∗

Then

en = yn − Ĵn−1 +
1

2
(gn−1, f̂n−1)

=
1

2
(gT

n , f̃n−1) − J̃n−1 (20)

Also set
γ =

α

β + 1

4
(gn, gn)

Then
J̃n = Ĵn−1 + 2γen

f̃n = f̂n−1 − γengn

Therefore

J̃2
n + (f̃n, f̃n) = J̃2

n−1 + 4γJ̃n−1en + 4γ2e2
n + (f̃n−1, f̃n−1) − 2γen(gn, f̃n−1) + γ2e2

n(gn, gn)

and using equation (20)

J̃2
n + (f̃n, f̃n) − J̃2

n−1 − (f̃n−1, f̃n−1) = −
(

4γ − 4γ2
− γ2(gn, gn)

)

e2
n

Thus the error must decrease if

γ > γ2

(

1 +
1

4
(gn, gn)

)

or

α
1 + 1

4
(gn, gn)

β + 1

4
(gn, gn)

< 1

As in the finite dimensional case, this is assured if

0 < γ < 1, β ≥ 1
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