> Riemann hypothesis is negated [This paper refuses any premium from Clay] Zhang xi-wen (CHINA) Abstract

Key words: Riemann hypothesis, prime, non-trivial zero point.
MSC (2010) 11M26.
In 1903, Gram had obtained 15 non-trivial zero points of ζ (s).
But he did not give out the ordinal number of these zero points.
Therefore, we must find out their ordinal number $\mathrm{N}(\mathrm{T})$.
Lemma. $2 e|\mathrm{~s}| \cdot \ln 2|\mathrm{~s}|=\mathrm{N}(\mathrm{T}), \quad(14.14 \leqslant|\mathrm{~s}| \leqslant 49.78, \quad 257 \leqslant \mathrm{~N}(\mathrm{~T}) \leqslant 1245)$.
We can calculate the ordinal number $\mathrm{N}(\mathrm{T})$ when $|\mathrm{s}|$ is given.
Proof. Gram' s 15 non-trivial zero points $\sigma+$ ti : [1]
$0.5+14.134725 i, 0.5+21.022040 i, 0.5+25.010856 i, 0.5+30.424878 i$,
$0.5+32.935057 i, 0.5+37.586176 i, \quad 0.5+40.918720 i, 0.5+43.327073 i$,
$0.5+48.005150$ i $, \quad 0.5+49.773832 i, \quad 0.5+52.8 i, \quad 0.5+56.4 i$,
$0.5+59.4 \mathrm{i}, \quad 0.5+61.0 \mathrm{i}, \quad 0.5+65.0 \mathrm{i}$,
$|\mathrm{s}|=14.1435657,21.0279853,25.01585333,30.4289862,32.93885213$, 37. 58950154, 40. 92177472, 43. 32995794, 48. 00775382, 49.7763433,

Since the 15 non-trivial zero points lie on the critical line $\sigma=0.5$, there must be a critical point $(0.5,0)$ below the 15 non-trivial zero points. $|\mathrm{s}|=\sigma=0.5, \quad \mathrm{t}=0, \quad \mathrm{~N}(\mathrm{~T})=0$,
From Riemann hypothesis (2):
$(\mathrm{T} / 2 \pi)(\log (\mathrm{T} / 2 \pi)-1)=\mathrm{N}(\mathrm{T}), \quad(2 \pi e \leqslant \mathrm{~T}<\infty, \quad 0 \leqslant \mathrm{~N}(\mathrm{~T})<\infty)$.
When $\mathrm{N}(\mathrm{T})=0, \mathrm{~T}=2 \mathrm{~T} e, 1=2|\mathrm{~s}|, \quad \therefore \mathrm{T}=4 \mathrm{~T} e|\mathrm{~s}|, 2 e|\mathrm{~s}| \cdot \ln 2|\mathrm{~s}|=\mathrm{N}(\mathrm{T})$, $N(T)=257,427,532,680,750,883,980,1051,1191,1245$.

Lemma is proved.
Theorem. $\mathrm{N}(\mathrm{T})=2 e|\mathrm{~s}| \cdot \ln 2|\mathrm{~s}|, \quad(0 \leqslant \mathrm{~N}(\mathrm{~T})<\infty, \quad 0.5 \leqslant|\mathrm{~s}|<\infty)$.
We can calculate the non-trivial zero points of ζ (s) for $N(T)>0$.
Proof. N(T) $|\mathrm{s}| \quad \sigma+\mathrm{ti}$
$0 \quad 0.5 \quad 0.5+0 \mathrm{i} \quad \leftarrow$ trivial zero point
$1 \quad 0.66054988104 \quad 0.5+0.4316551232 \mathrm{i}$ non-trivial zero point
$2 \quad 0.79446077318 \quad 0.5+0.6173879818 \mathrm{i} \quad \downarrow$
$3 \quad 0.91429551335 \quad 0.5+0.7654647515 \mathrm{i}$
$257 \quad 14.1433251572 \quad 0.5+14.134484300 \mathrm{i}$
$427 \quad 21.0108061411 \quad 0.5+21.004855980 \mathrm{i}$
$532 \quad 25.0112690182 \quad 0.5+25.006270770 i$
$680 \quad 30.4407732593 \quad 0.5+30.436666650 i$
Theorem is proved.
$\sigma+t i$ is relevant to the natural number only,
$\sigma+\mathrm{ti}$ is irrelevant to the distributive law of primes.
Riemann hypothesis is negated
Reference literature
[1]. Gram, 15 non-trivial zero points of $\zeta(s), 1903$.

