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Abstract.  This paper concerns a graph of (3<<x<c2500, N) orthogonal coordinate system.
1. Distributive law of primes,
(x/log X) log << 1 (X) <(x/log X)log 19”°, (3<x< =0);
2. (. Folding expression of odd numbers, (x=2n—1),

Number of odd number in pairs= (x+1)/2;
2. Folding expression of odd numbers, (x=2n),

Number of odd number in pairs= x/2;
3. Arithmetic average of N,
MN=(7(2x - 1) - & (x—1))( 7 (x) - = (0))/ ((x+1)/2), (x=2n—1);
MN=(m (2x - 1) - = (X))( 7 (x—1) - n(0))/ (x2), (x=2n);
4, Infimum of N,
N=[k(x)]+1, (b=x=2n—1<);
N=[f(x)] +1, (B=x=2n<o);
5. Uniformly continuous,
Union formula, N=[k(X)]+1, (5=<x<e),
Critical point;
6. Monotone increasing,
N>1, N=[k(x)]+1=1, (G=x<>);
N=1, (Isx<e);
7. Supremum of N,
N'<nm(2x-1)- n(x—1)=hx), (B3=x=2n—1<=);
N'<n(2x-1) - n(x)=gx), (4d<x=2n<);
Critical points.
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Theorem 1. The distributive law of primes in the natural numbers,
(x/log X) a < 7 (X)<(x/log X)log 19%1°, (3<x < =0). )
Proof. If y=x"®"%  then w(x)= (x/log x) logy,
lim m(x)/x=lim 1/log X, (X—><°). [1]
Wehave  lim x*®"*= lim x'"™*  (x—o0).
* X e. Imx®*=e =yu, (x=). log Ypn=loge= a.
When x=3, wehave Yrnin<Y<VYnax
n(1)= 1, 10g Yimx= log 19°/*° .
(1) is obtained. Theorem 1 is proved.
Theorem 2. N=the infimum of N,
N=[(2x - 1) a /log(2x - 1) — (x—1) log 19%"/log(x — 1)) (x « flog x)/((x+1)/2)] +1
=[k(x)]+1=1, (5=x<x). 2
Proof. Let N be the number of prime in pairs p;+p,which suit 2x=p;+p,(2<p:<p,)
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when the natural number x=3 is given.
All points (x, N), (3<x=<2500) form the graph showing the number of ways an
even number can be written as the sum of two primes.

2<p1<p>, 4<2p<p.t+pi=2x, .. 2<pi<X.

N= Z(m(p2) - (P2~ 1)), (2<pr=<pz= 2X - pu),

= Z(m(2x-py) - W(2x-p1- 1)), (2<pr=X). @)
(. When x=2n—1, given a folding expression of odd number of the interval [1,2x
—1] as the following:

The sum of two meeting numbers =2x.
Upper row contains p,, lower row contains p;,
The number of odd number in pairs= (x+1)/2.
The arithmetic average of N,
MN=(m(2x-1) - n(x—21))( 7 (x) - ®(0))/ ((x+1)/2). @)
By (1), transforming (4) into the infimum of N,

N=[((2x—1) a /log(2x— 1) — (x—1)log 197" */log(x — 1))(x @ /log X)/((x+1)/2)] +1
=[k(x)]+1, (5=x=2n—1<), (G)
@). When x=2n, given a folding expression of odd number of the interval [1,2x

—1] as the following:

The sum of two meeting numbers =2x.
upper row contains p,, lower row contains py,
The number of odd number in pairs= x/2.
The arithmetic average of N,
MN=(= (2x - 1) - n (X))( 7 (x—1) - 7 (0))/(x/2). 5)
By (1), transforming (5) into the infimum of N,
N=[((2x—1) a /log(2x—1)—x log 19¥"*/log X)((x—1) a /log(x—1))/(x/2)] +1
=[f(x)]+1, (8<x=2n<), (H)
From (G),(H), whenn=3, [k(xX)]+1=[f(x)]+1=1,
For choosing the greatest lower bound, we delete [f(X)],
N=[((2x—1) a /log(2x—1)—(x—1) log 19°/log(x—1))(x a /log X)/((x+1)/2)]+1
=[k(x)]+1, (5=x=2n—1<x),
The characteristcs of the infimum of N,
i . uniformly continuous.
k(x) is an elementary function, its interval of definition [5, X] is closed, thus,
k(x), [k(x)] =1 are uniformly continuous. [2]
S NZ=[k(x)]+1, (5<x=2n—1lor2n<).
When x=5, N=[k(x)]+1=1,
When x=5~18, [k(x)]+1=1,
When x=19~50, [k(X)]+1=2,
When x=51~89, [k(x)]+1=3,



This infimum of N is a ladder line.
When x=34, N=[k(x)]+1=2, critical point,
ii. monotone increasing
Differentiating the function k(x):
k' (x)= (A(BC + DE) - BD)F, (5<x<<<0).
A= x+1>0,
B= (2x - 1) a /log(2x - 1) - (x—1) log 19”*/log(x—1)>0,
C= (log x - 1) a /(log x)*>0,
D= xa /log x>0,
E= 2(log(2x - 1) - 1) a /(log(2x - 1)) - (log(X - 1) - 1) log 19"/(log(x - 1))*>0,
F= 2/(x+1)*>0,
When x=5, A(BC + DE) - BD>F, (x*(log x) *>x"?).
k' (x)>0, (5<x<<). k(x) is monotone increasing in [5, X].
N>1, N=[k(x)]+1=1, (5=x<).
(2) is obtained.  Theorem 2 is proved.
Theorem 3. All even numbers 2x=2 can be expressed as the sum of two primes.
Proof. From Theorem?2, N>1, (5sx<<eo),
From (3), N=1, (3<x<b).
Now, let N be the number of prime in pairs p, +p, which suit
2X=p1 P2, (1<p1=<p2). N"=N,
n(1)=1,1isaprime, whenx= 2,2x=1+3; whenx=1,2x=1+1,
: N'=N=1, (1sx<o).
Theorem 4 is proved. Goldbach hypothesis is proved.
Theorem 4.  N'<{the supremum of N,

N'<n(2x-1)- n(x—1)=h(x), (3<x=2n—1). (6)
N<n@2x-1)- n(x)=gkx), (4<x=2n). )
Proof. ~ From Theorem 2, | Xoeeyeee, e 2x - 1
| ORLTICTTIRTIN | | ,
N'<n(2x-1)- n(x—1)=h(x), (3<x=2n—1).

From Theorem 2, | XA41,0e 0,50 2x - 1|

| X—1, e 0o eee 1 | ,

N'<Szm(2x-1)- n(x)=g(x), (4<x=2n).
When x=3,4,5,6, N"=h(x)=g (x) =2, critical points.
When x=7,9, N"=h (x)=3, critical points.
When x=12,15,18, N'= h(x)=g (x)=4, critical points.
When x=21, N*=h(x) =5, critical point.
When x=24, N"=g (x) =6, critical point.
When x=30, N'=g (x)=7, critical point.
When x=45, N*=h(x) =10, critical point.
When x=105, N*=h(x)=19, critical point.
(6), (7), are obtained.  Theorem 4 is proved.
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