The distributive law of primes and the proof of Goldbach hypothesis

Abstract. This paper concerns a graph of $(3 \le x \le 2500, N)$ orthogonal coordinate system.

1. Distributive law of primes,

$$(x/\log x) \log e < \pi(x) \le (x/\log x) \log 19^{9/19}, (3 \le x < \infty);$$

2. ①. Folding expression of odd numbers, (x=2n-1),

$$| x, \dots, \dots, 2x - 1 |$$

 $| x, \dots, \dots, 1 |$

Number of odd number in pairs = (x+1)/2;

②. Folding expression of odd numbers, (x=2n),

$$|x+1,\dots,\dots,2x-1|$$

 $|x-1,\dots,\dots,1|$

Number of odd number in pairs = x/2;

3. Arithmetic average of N,

MN=
$$(\pi (2x - 1) - \pi (x-1))(\pi (x) - \pi (0))/((x+1)/2), (x=2n-1);$$

MN= $(\pi (2x - 1) - \pi (x))(\pi (x-1) - \pi (0))/(x/2), (x=2n);$

4. Infimum of N,

$$N \ge [k(x)] + 1$$
, $(5 \le x = 2n - 1 < \infty)$; $N \ge [f(x)] + 1$, $(8 \le x = 2n < \infty)$;

5. Uniformly continuous,

Union formula,
$$N \ge [k(x)] + 1$$
, $(5 \le x \le \infty)$,

Critical point;

6. Monotone increasing,

N>1, N
$$\geqslant$$
[k(x)]+1 \geqslant 1, (5 \leqslant x $<\infty$);
N \geqslant 1, (1 \leqslant x $<\infty$);

7. Supremum of N,

$$N^* \le \pi (2x - 1) - \pi (x - 1) = h(x), (3 \le x = 2n - 1 < \infty);$$

 $N^* \le \pi (2x - 1) - \pi (x) = g(x), (4 \le x = 2n < \infty);$

Critical points.

Key words. Goldbach hypothesis, supremum, infimum, prime in pairs p_1+p_2 . MSC(2010)11P32.

Theorem 1. The distributive law of primes in the natural numbers,

$$(x/\log x) \alpha < \pi(x) \le (x/\log x)\log 19^{9/19}, (3 \le x < \infty).$$
 (1)

Proof. If $y = x^{\pi(x)/x}$, then $\pi(x) = (x/\log x) \log y$,

:
$$\lim_{x \to \infty} \pi(x)/x = \lim_{x \to \infty} 1/\log x$$
, $(x \to \infty)$. [1]

We have $\lim_{x \to \infty} x^{\pi(x)/x} = \lim_{x \to \infty} x^{1/\log x}, (x \to \infty).$

$$x^{1/\log x} = e$$
. $\lim x^{\pi(x)/x} = e = y_{\min}$, $(x \rightarrow \infty)$. $\log y_{\min} = \log e = \alpha$.

When $x \ge 3$, we have $y_{min} < y \le y_{max}$,

$$\pi(1) = 1$$
, $\log y_{\text{max}} = \log 19^{9/19}$.

(1) is obtained. Theorem 1 is proved.

Theorem 2. $N \ge$ the infimum of N,

$$N \ge [(2x - 1) \alpha / \log(2x - 1) - (x - 1) \log 19^{9/19} / \log(x - 1))(x \alpha / \log x) / ((x + 1)/2)] + 1$$

$$= [k(x)] + 1 \ge 1, \quad (5 \le x < \infty). \tag{2}$$

Proof. Let N be the number of prime in pairs p_1+p_2 which suit $2x=p_1+p_2$, $(2 < p_1 \le p_2)$

when the natural number $x \ge 3$ is given.

All points (x, N), $(3 \le x \le 2500)$ form the graph showing the number of ways an even number can be written as the sum of two primes.

$$\begin{array}{lll}
\vdots & 2 < p_1 \le p_2, & 4 < 2p_1 \le p_2 + p_1 = 2x, & \vdots & 2 < p_1 \le x. \\
N = & \Sigma \left(\pi \left(p_2 \right) - \pi \left(p_2 - 1 \right) \right), & (2 < p_1 \le p_2 = 2x - p_1), \\
&= & \Sigma \left(\pi \left(2x - p_1 \right) - \pi \left(2x - p_1 - 1 \right) \right), & (2 < p_1 \le x).
\end{array} \tag{3}$$

①. When x=2n-1, given a folding expression of odd number of the interval [1,2x -1] as the following:

$$| x, \dots, \dots, 2x - 1 |$$

 $| x, \dots, \dots, \dots, 1 |$

The sum of two meeting numbers = 2x.

Upper row contains p_2 , lower row contains p_1 ,

The number of odd number in pairs = (x+1)/2.

The arithmetic average of N,

$$MN = (\pi (2x - 1) - \pi (x - 1))(\pi (x) - \pi (0))/((x + 1)/2). \tag{4}$$

By (1), transforming (4) into the infimum of N,

$$N \ge [((2x-1) \circ /\log(2x-1) - (x-1)\log 19^{9/19}/\log(x-1))(x \circ /\log x)/((x+1)/2)] + 1$$

$$= [k(x)] + 1, \quad (5 \le x = 2n - 1 < \infty). \tag{G}$$

When x=2n, given a folding expression of odd number of the interval [1,2x -1] as the following:

$$|x+1,\dots,\dots,2x-1|$$

 $|x-1,\dots,\dots,1|$

The sum of two meeting numbers = 2x.

upper row contains p2, lower row contains p1,

The number of odd number in pairs = x/2.

The arithmetic average of N,

$$MN = (\pi (2x - 1) - \pi (x))(\pi (x - 1) - \pi (0))/(x/2).$$
 (5)

By (1), transforming (5) into the infimum of N,

$$N \ge [((2x-1) \alpha / \log(2x-1) - x \log 19^{9/19} / \log x)((x-1) \alpha / \log(x-1))/(x/2)] + 1$$

$$= [f(x)] + 1, \quad (8 \le x = 2n \le \infty). \tag{H}$$

From (G),(H), when
$$n \ge 3$$
, $[k(x)] + 1 \ge [f(x)] + 1 \ge 1$,

For choosing the greatest lower bound, we delete [f(x)],

$$N \ge [((2x-1) \circ /\log(2x-1) - (x-1) \log 19^{9/19}/\log(x-1))(x \circ /\log x)/((x+1)/2)] + 1$$

= $[k(x)] + 1$, $(5 \le x = 2n - 1 < \infty)$.

The characteristcs of the infimum of N,

i . uniformly continuous.

k(x) is an elementary function, its interval of definition [5, x] is closed, thus, k(x), [k(x)] + 1 are uniformly continuous. [2]

∴ N
$$\ge$$
[k(x)]+1, (5 \le x=2n-1 or 2n $<$ ∞).
When x \ge 5, N \ge [k(x)]+1 \ge 1,

When
$$x=5\sim18$$
, $[k(x)]+1=1$,

When
$$x=19\sim50$$
, $[k(x)]+1=2$,

When
$$x=51\sim89$$
, $[k(x)]+1=3$,

••••

This infimum of N is a ladder line.

When
$$x=34$$
, $N=[k(x)]+1=2$, critical point,

ii. monotone increasing

Differentiating the function k(x):

$$k'(x) = (A(BC + DE) - BD)F, (5 \le x < \infty).$$

A = x + 1 > 0,

B=
$$(2x - 1) \alpha / \log(2x - 1) - (x - 1) \log 19^{9/19} / \log(x - 1) > 0$$
,

C = $(\log x - 1) \alpha / (\log x)^2 > 0$,

D= $x \alpha / \log x > 0$,

E=
$$2(\log(2x-1)-1) \alpha/(\log(2x-1))^2 - (\log(x-1)-1) \log 19^{9/19}/(\log(x-1))^2 > 0$$
,

 $F = 2/(x+1)^2 > 0$,

When
$$x \ge 5$$
, A(BC + DE) - BD>F, $(x^2(\log x)^{-2} > x^{-2})$.

$$k'(x) > 0$$
, $(5 \le x \le \infty)$. $k(x)$ is monotone increasing in $[5, x]$.

$$N > 1$$
, $N \ge [k(x)] + 1 \ge 1$, $(5 \le x < \infty)$.

(2) is obtained. Theorem 2 is proved.

Theorem 3. All even numbers $2x \ge 2$ can be expressed as the sum of two primes.

Proof. From Theorem 2, N>1, $(5 \le x < \infty)$.

From (3),
$$N \ge 1$$
, $(3 \le x \le 5)$.

Now, let N^* be the number of prime in pairs $p_1 + p_2$ which suit

$$2x = p_1 + p_2$$
, $(1 \le p_1 \le p_2)$. $N^* \ge N$,

$$\pi$$
 (1) = 1, 1 is a prime, when x = 2, 2x = 1+3; when x = 1, 2x = 1+1,

$$\therefore \qquad N^* \geqslant N \geqslant 1, \quad (1 \leqslant_X < \infty).$$

Theorem 4 is proved. Goldbach hypothesis is proved.

Theorem 4. $N^* \leq \text{the supremum of } N^*$,

$$N^* \le \pi (2x - 1) - \pi (x - 1) = h(x), (3 \le x = 2n - 1).$$
 (6)

$$N^* \le \pi (2x - 1) - \pi (x) = g(x), \quad (4 \le x = 2n).$$
 (7)

Proof. From Theorem 2, $|x, \dots, \dots, 2x - 1|$

$$| x, \dots, \dots, \dots, 1 |$$

$$N^* \le \pi (2x - 1) - \pi (x - 1) = h(x), (3 \le x = 2n - 1).$$

From Theorem 2, $|x+1,\dots,\dots,x-1|$

$$|x-1,\cdots,\cdots,\cdots,1|$$

$$N^* \le \pi (2x - 1) - \pi (x) = g(x), \quad (4 \le x = 2n).$$

When
$$x=3,4,5,6$$
, $N^*=h(x)=g(x)=2$, critical points.

When
$$x=7.9$$
, $N^*=h(x)=3$, critical points.

When
$$x=12,15,18$$
, $N^* = h(x) = g(x) = 4$, critical points.

When
$$x=21$$
, $N^*=h(x)=5$, critical point.

When
$$x=24$$
, $N^*=g(x)=6$, critical point.

When
$$x=30$$
, $N^*=g(x)=7$, critical point.

When
$$x=45$$
, $N^*=h(x)=10$, critical point.

When
$$x = 105$$
, $N^* = h(x) = 19$, critical point.

(6), (7), are obtained. Theorem 4 is proved.

References

- [1]. Hadamard & De La Vall ee Poussin, Prime number Theorem. 1896.
- [2]. Cantor, Cantor Theorem about uniformly continuous. 1872.