The distributive law of primes in the natural numbers Even numbers $2 x \geqslant 6$ can be expressed as the sum of two primes

Zhang xi-wen (CHINA)

Abstract. Find out the distributive law of primes in the natural numbers.
By means of the distributive law of primes we show that even numbers $2 x \geqslant 6$ can be expressed as the sum of two primes.
Key words. Goldbach hypothesis; prime; infimum.
MSC(2010)11P32.
Theorem 1. The distributive law of primes in the natural numbers,

$$
\begin{equation*}
\left(\frac{x}{\log x}\right) \cdot 1<\pi(\mathrm{x}) \leqslant\left(\frac{x}{\log x}\right) \log 113^{\frac{30}{113}},(11 \leqslant \mathrm{x}<\infty) . \tag{1}
\end{equation*}
$$

Proof. To found an exponential function of density of primes, $y=x^{\frac{\pi(x)}{x}}$,

$$
\begin{aligned}
& \text { then } \pi(x)=\left(\frac{x}{\log x}\right) \log y \text {. } \\
& \because \quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=\lim _{x \rightarrow \infty} \frac{1}{\log x}, \\
& \therefore \quad \lim _{x \rightarrow \infty} x^{\frac{\pi(x)}{x}}=\lim _{x \rightarrow \infty} x^{\frac{1}{\log x}} \text {, } \\
& \because \quad x^{\frac{1}{\log x}}=e . \\
& \therefore \quad \lim _{x \rightarrow \infty} x^{\frac{\pi(x)}{x}}=e=\mathrm{y}_{\min }, \\
& \log y_{\text {min }}=1 \text {, } \\
& \text { when } \quad x \geqslant 11, \quad y_{\text {min }}<y \leqslant y_{\text {max }} \text {, } \\
& \log y_{\text {max }}=\log 113^{\frac{30}{113}} \text {. } \\
& \text { (1) is obtained. } \\
& \text { Theorem } 1 \text { is proved. }
\end{aligned}
$$

Theorem 2. The number of Goldbach partition for even numbers and its infimum.

$$
\begin{align*}
D \geqslant & {\left[\frac{\left(\frac{2 x-3}{\log (2 x-3)}-\frac{2}{\log 2} \log 113^{\frac{30}{113}}\right)^{2}}{2(2 x-5)}\right]+1 } \\
& =[k(x)]+1 \geqslant 1, \quad(11 \leqslant \mathrm{x}<\infty) . \tag{2}
\end{align*}
$$

Proof. 1. Let D be the discrete number of prime in pairs $\mathrm{p}_{1}, \mathrm{p}_{2}$ which suit $2 \mathrm{x}=\mathrm{p}_{1}+\mathrm{p}_{2}$, $\left(3 \leqslant \mathrm{p}_{1} \leqslant \mathrm{p}_{2} \leqslant 2 \mathrm{x}-3\right)$ from the interval $[3,2 \mathrm{x}-3]$ when the natural number $\mathrm{x} \geqslant 3$ is given.

$$
\because \quad \mathrm{p}_{1} \leqslant \mathrm{p}_{2} \leqslant 2 \mathrm{x}-3, \quad \mathrm{p}_{1}+\mathrm{p}_{2} \leqslant 2 \mathrm{p}_{2} \leqslant 2(2 \mathrm{x}-3), \quad \therefore \quad \mathrm{x} \leqslant \mathrm{p}_{2} \leqslant 2 \mathrm{x}-3
$$

$$
\begin{align*}
& D=\sum_{p_{2} \geq x}^{2 x-3}\left(\pi\left(2 x-p_{2}\right)-\pi\left(2 x-p_{2}-1\right)\right), \\
& \because 3 \leqslant \mathrm{p}_{1} \leqslant \mathrm{p}_{2}, \quad 6 \leqslant 2 \mathrm{p}_{1} \leqslant \mathrm{p}_{2}+\mathrm{p}_{1}, \quad \therefore 3 \leqslant \mathrm{p}_{1} \leqslant \mathrm{x}, \\
& D=\sum_{p_{1} \geq 3}^{x}\left(\pi\left(2 x-p_{1}\right)-\pi\left(2 x-p_{1}-1\right)\right), \tag{3}
\end{align*}
$$

D is the number of Goldbach partition for even numbers.
In the rectangular coordinate system, we have innumerable discrete points (x, D).
2. Given an expression of two opposed directional sequences $3 \sim 2 x-3$ as the following:

```
\(\mid 3, \cdots, \cdots, \cdots, 2 x-3\) |
\(\mid 2 x-3, \cdots, \cdots, \cdots, 3\) |
```

The sum of two meeting numbers upper and lower $=2 \mathrm{x}$.
The number of natural number in pairs $=2 x-5$.
From two opposed directional sequences, we may obtain double D.
Let C be the continuous number of prime in pairs p_{1}, p_{2} which suit $2 x=p_{1}+p_{2}$, $\left(3 \leqslant \mathrm{p}_{1} \leqslant \mathrm{p}_{2} \leqslant 2 \mathrm{x}-3\right)$ from above expression when the natural number $\mathrm{x} \geqslant 3$ is given.

$$
\begin{equation*}
\mathrm{C}=\left[\frac{(\pi(2 x-3)-\pi(2))^{2}}{2(2 x-5)}\right]+1, \quad(3 \leqslant \mathrm{x}<\infty) . \tag{4}
\end{equation*}
$$

In the same rectangular coordinate system, we have a rising oblique line C consisting of all points (x, C) across the innumerable discrete points (x, D).
The innumerable discrete points (x, D) are partitioned by the line C into three parts.
i. Above the line C , there are innumerable discrete points $(x, D), D>C$,

$$
\begin{array}{llll}
\text { Ex. } & x=5, & D=2, & C=1 \\
& x=105, & D=19, & C=5 \\
& x=2500, & D=76, & C=45,
\end{array}
$$

ii. On the line C, there are some discrete points $(x, D), D=C$,

$$
\begin{array}{llll}
\text { Ex. } & x=3, & D=1, & C=1 \\
& x=124, & D=6, & C=6 \\
& x=1468, & D=31, & C=31
\end{array}
$$

iii. Under the line C , there are some discrete points (x, D), $\mathrm{D}<\mathrm{C}$,

Ex. $\quad x=34, \quad D=2, \quad C=3$,
$x=64, \quad \mathrm{D}=3, \quad \mathrm{C}=4$,
$x=166, \quad D=6, \quad C=7$,
$x=199, \quad D=7, \quad C=8$,
$x=316, \quad D=10, \quad C=11$,
$x=346, \quad D=11, \quad C=12$,
3. By (1), transforming (4) into the infimum of C, (decreasing minuend, increasing subtrahend)

$$
\begin{align*}
\mathrm{C}_{\mathrm{inf}} & =\left[\frac{\left(\frac{2 x-3}{\log (2 x-3)}-\frac{2}{\log 2} \log 113^{\frac{30}{113}}\right)^{2}}{2(2 x-5)}\right]+1 \\
& =[\mathrm{k}(\mathrm{x})]+1, \quad(11 \leqslant \mathrm{x}<\infty) . \tag{5}
\end{align*}
$$

4. By means of some discrete points under the oblique line C, we will prove the infimum of $C=$ the infimum of D,

when $x \geqslant 11$,	$[k(x)]+1 \geqslant 1$,		
when $\quad x=34$,	$D=2, \quad[k(x)]+1=2$,	$(34,2)$ is a critic al point.	
when $x=64$,	$D=3, \quad[k(x)]+1=3$,	$(64,3)$ is a critical point.	
when $x=166$,	$D=6, \quad[k(x)]+1=5$,	difference $=1$.	
when $x=199$,	$D=7$,	$[k(x)]+1=5$,	difference $=2$.
when $x=316$,	$D=10, \quad[k(x)]+1=8$,	difference $=2$.	
when $x=346$,	$D=11, \quad[k(x)]+1=8$,	difference $=3$.	

$\therefore[k(x)]+1$ also is the infimum of D . $\mathrm{C}_{\mathrm{inf}}=\mathrm{D}_{\mathrm{in} \mathrm{f}}$,

$$
\begin{aligned}
& \mathrm{D}_{\text {inf }}=\left[\frac{\left(\frac{2 x-3}{\log (2 x-3)}-\frac{2}{\log 2} \log 113^{\frac{30}{113}}\right)^{2}}{2(2 x-5)}\right]+1 \\
& =[\mathrm{k}(\mathrm{x})]+1 \geqslant 1, \quad(11 \leqslant \mathrm{x}<\infty) . \\
& x=11 \sim 30, \quad D_{\text {inf }}=1 \text {; } \\
& \mathrm{x}=31 \sim 63, \quad \mathrm{D}_{\mathrm{inf}}=2 \text {; } \\
& x=64 \sim 104, \quad D_{\text {inf }}=3 \text {; } \\
& \mathrm{x}=105 \sim 150, \quad \mathrm{D}_{\mathrm{inf}}=4 \text {; } \\
& \mathrm{x}=151 \sim 201, \quad \mathrm{D}_{\mathrm{inf}}=5 \text {; } \\
& x=202 \sim 255, \quad D_{\text {inf }}=6 \text {; }
\end{aligned}
$$

In the same rectangular coordinate system, we have a rising ladder-like line $D_{\text {inf }}$ under all discrete points (x, D).

The characteristics of $[\mathrm{k}(\mathrm{x})]+1$,
(1). Uniformly continuous,
$k(x)$ is an elementary function, its interval of definition [11, x] is closed, thus, $\mathrm{k}(\mathrm{x}),[\mathrm{k}(\mathrm{x})]+1$ are uniformly continuous. [2]
(2). Monotone increasing,

Differentiating the function $\mathrm{k}(\mathrm{x})$:

$$
\begin{aligned}
& \mathrm{k}^{\prime}(\mathrm{x})=(\mathrm{EFG}-\mathrm{FF}) \mathrm{H}, \quad(11 \leqslant \mathrm{x}<\infty) . \\
& \mathrm{E}=2 \mathrm{x}-5>0, \\
& \mathrm{~F}=\frac{2 x-3}{\log (2 x-3)}-\frac{2}{\log 2} \log 113^{\frac{30}{113}}>0, \\
& \mathrm{G}=\frac{2(\log (2 x-3)-1)}{(\log (2 x-3))^{2}}>0,
\end{aligned}
$$

$$
\mathrm{H}=\frac{1}{(2 x-5)^{2}}>0,
$$

When $\quad x \geqslant 11, \quad E F G-F F>H>0$, $k^{\prime} \quad(x)>0, \quad(11 \leqslant x<\infty)$.
$k(x)$ is monotone increasing in $[11, x]$.

$$
\mathrm{D} \geqslant \mathrm{D}_{\mathrm{inf}}=[\mathrm{k}(\mathrm{x})]+1 \geqslant 1, \quad(11 \leqslant \mathrm{x}<\infty) .
$$

(2) is obtained.

Theorem 2 is proved.
Theorem 3. Even numbers $2 x \geqslant 6$ can be expressed as the sum of two primes.
Proof. From Theorem 2, $\quad \mathrm{D} \geqslant 1, \quad(11 \leqslant \mathrm{x}<\infty)$.

$$
\begin{array}{rrr}
\text { From (3), } & \mathrm{D} \geqslant 1, & (3 \leqslant x \leqslant 11) \\
\therefore & \mathrm{D} \geqslant 1, & (3 \leqslant x<\infty)
\end{array}
$$

Theorem 3 is proved.
Theorem 4. The number of Goldbach partition for even numbers and its supremum.

$$
\begin{align*}
& D \leqslant \pi(2 x-3)-\pi(x-1),(3 \leqslant x=2 n-1<\infty) . \tag{6}\\
& D \leqslant \pi(2 x-3)-\pi(x), \quad(4 \leqslant x=2 n<\infty) . \tag{7}
\end{align*}
$$

Proof. Given a folding expression of $[3,2 x-3]$ as the following:
When $x=2 n-1$,

$$
\begin{aligned}
& |x, \cdots, \cdots, \cdots, 2 x-3| \\
& \mid x, \cdots, \cdots, \cdots, \quad 3
\end{aligned}
$$

Upper row contains p_{2}, lower row contains p_{1},
$\mathrm{D} \leqslant$ the number of p_{2}.
$D \leqslant D_{\text {sup }}=\pi(2 x-3)-\pi(x-1)=h(x), \quad(3 \leqslant x=2 n-1<\infty)$.
When $x=2 n$,
$|x+1, \cdots, \cdots, \cdots, 2 x-3|$
$|x-1, \cdots, \cdots, \cdots, \quad 3|$
Upper row contains p_{2}, lower row contains p_{1},
$\mathrm{D} \leqslant$ the number of p_{2}.
$D \leqslant D_{\text {sup }}=\pi(2 x-3)-\pi(x)=g(x), \quad(4 \leqslant x=2 n<\infty)$.
$x=3,4,(6), \quad D_{\text {sup }}=h(x)=g(x)=1, \quad$ critical point.
$\mathrm{x}=5,7,8,9, \quad \mathrm{D}_{\text {sup }}=\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})=2, \quad$ critical point.
$x=12,15, \quad D_{\text {sup }}=h(x)=g(x)=3, \quad$ critical point.
$x=18,21, \quad D_{\text {sup }}=h(x)=g(x)=4, \quad$ critical point.
$x=24, \quad D_{\text {sup }}=g(x)=5, \quad$ critical point.
$x=30, \quad D_{\text {sup }}=g(x)=6, \quad$ critical point.
$x=45, \quad D_{\text {sup }}=h(x)=9, \quad$ critical point.
$\mathrm{x}=105, \quad \mathrm{D}_{\text {sup }}=\mathrm{h}(\mathrm{x})=19, \quad$ critical point.
In the same rectangular coordinate system, we have a rising ladder-like line $D_{\text {sup }}$ above all discrete points (x, D).
(6), (7) are obtained. Theorem 4 is proved.

References
[1]. Hadamard \& De La Vall' ee Poussin, Prime number Theorem. 1896.
[2]. Cantor, Cantor Theorem about uniformly continuous. 1872.

