No Exist of Odd Perfect Number Zengyong Liang

Abstract

: whether there has exist of odd perfect numbers is a well- known problem in number theory. This paper proved that no prefect number exist in any cases.

Key words: odd perfect number; function $\sigma(n)$;function k

1 Introduction

A perfect number is a number n such that $\sigma(n)=2 n$. In other words a number is perfect number if it is the sum of its divisors other than itself. We now only known a few of perfect numbers which are even numbers[1][2][3]. It seems probable that there are no odd perfect numbers, bat this has not been proved. It is unknown whether there are any odd perfect numbers, though various results have been obtained. Carl Pomerance has presented a heuristic argument which suggests that no odd perfect numbers exist[5].

Any odd perfect number N must satisfy the following conditions:

- $N>10^{200}$, which it must have at least 8 different prime factors and that its largest prime factor must be greater than 100110 [1].
- $N>101500$, result published in 2012[4].
- N is of the form

$$
N=q^{\alpha} p_{1}^{2 e_{1}} \ldots p_{k}^{2 e_{k}}
$$

where:
q, p_{1}, \ldots, p_{k} are distinct primes (Euler). $q \equiv \alpha \equiv 1(\bmod 4)$ (Euler).
The smallest prime factor of N is less than $(2 \mathrm{k}+8) / 3$ [4].

- The largest prime factor of N is greater than 10^{8} [4].
- The second largest prime factor is greater than 10^{4}, and the third largest prime factor is greater than 100 [4].
- N has at least three prime factors. There is another argument [5].
- $N>10^{200}$ and with at least 15 different prime factors [5].
- If N is odd perfect and $\omega(N)<k$, then $N<2^{4^{k}}[6]$.

1.1 Function $\sigma(N)$

Definition: Function $\sigma(n)$ is the sum of combination of its divisors [1] .
Let $N=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{i}^{\beta_{n}}$. Using mathematical induction is very easy to prove $\sigma(N)$, which expression of the product below:

$$
\begin{equation*}
\sigma(N)=\left(1+q_{1}+\ldots+q_{1}^{\beta_{1}}\right)\left(1+q_{2}+\ldots+q_{2}^{\beta_{2}}\right) \ldots\left(1+q_{i}+\ldots+q_{n}^{\beta_{n}}\right) \tag{1}
\end{equation*}
$$

where q_{n} is a prime factor, which $q_{1}<q_{2}<\ldots<q_{n}$.
If N is a prefect number that must be

$$
\begin{equation*}
\sigma(N)=2 N \tag{2}
\end{equation*}
$$

2 Coefficient Function k_{x}

2.1 Function k_{x}

We obtain
$\sigma(N)=\left(1+q_{1}+\ldots+q_{1}^{\beta_{1}}\right)\left(1+q_{2}+\ldots+q_{2}^{\beta_{2}}\right) \ldots\left(1+q_{i}+\ldots+q_{n}^{\beta_{n}}\right)=2 q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{n}^{\beta_{n}}$ by (1)and (2). then

$$
\begin{equation*}
\frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n}+\ldots+q_{n}^{\beta_{n}}}{q_{n}^{\beta_{n}}}=2 \tag{3}
\end{equation*}
$$

Let $k_{x}=\frac{1+q_{x}+\ldots+q_{x}^{\beta_{x}}}{q_{x}^{\beta_{x}}}$, so

$$
\begin{equation*}
k_{1} k_{2} \ldots k_{n}=2 \tag{4}
\end{equation*}
$$

The k_{x} is called as the coefficient function of $\sigma(N)$. Clearly, for any N,if the equation(4)is true, so $\sigma(N)=2 N$, the N must be a prefect number.

2.2 The Values of k_{x}

Theorem 1. . $q_{x}^{\beta_{x}}+q_{x}^{\beta_{x-1}}+\ldots+q_{x}+1<\left(1+\frac{1}{q_{x}-1}\right) q_{x}^{\beta_{x}}$
Proof. By algebraic formula we obtain

$$
\begin{gathered}
q_{x}^{\beta_{x}}-1=\left(q_{x}-1\right)\left(q_{x}^{\beta_{x}-1}+q_{x}^{\beta_{x}-2}+\ldots+q_{x}+1\right) \\
q_{x}^{\beta_{x}-1}+q_{x}^{\beta_{x}-2}+\ldots+q_{x}+1=\frac{q_{x}^{\beta_{x}-1}}{q_{x}-1}<\frac{q_{x}^{\beta_{x}}}{q_{x}-1} \\
q_{x}^{\beta_{x}}+\left(q_{x}^{\beta_{x}-1}+\ldots+q_{x}+1\right)<\left(1+\frac{1}{q_{x}-1}\right) q_{x}^{\beta_{x}}
\end{gathered}
$$

Theorem 2. . For any odd q_{x}, there have $1<k_{x}<1.5^{q_{x}-1}$.As q_{x} is larger, the values of k_{x} is less.
Proof. Let q_{x} is odd, we obtain

$$
q_{x}^{\beta_{x}}+q_{x}^{\beta_{x-1}}+\ldots+q_{x}+1<\left(1+\frac{1}{q_{x}-1}\right) q_{x}^{\beta_{x}}
$$

by Theorem 1.
i.e.

$$
k_{x}=\frac{q_{x}^{\beta x}+q_{x}^{\beta_{x-1}}+\ldots+q_{x}+1}{q_{x}^{\beta x}}<1+\frac{1}{q_{x}-1}
$$

It is clear that $k_{x}>1$.
As q_{x} is larger, the $\frac{1}{q_{x}-1}$ is less. If q_{x} is odd, when $q_{x}=3$ is least odd prime, then $\frac{1}{q_{x}-1}$ is maximal, and value of k_{x} is also maximal. The maximal value of k_{x} is written $\max \left(k_{x}\right)$, then

$$
\max \left(k_{x}\right)=k_{3}<\left(1+\frac{1}{q_{x}-1}\right)=1+\frac{1}{3-1}=1.5
$$

but $q_{x} \rightarrow \infty, \frac{1}{q_{x}-1}$ is \rightarrow minimal, and value of k_{x} is \rightarrow minimal. The minimal value of k_{x} is written $\min \left(k_{x}\right)$, then

$$
\min \left(k_{x}\right)>\lim _{q \rightarrow \infty}\left(1+\frac{1}{q_{x}-1}\right)=1
$$

Hence, if q_{x} is odd, $1<k_{x}<1.5$.

2.3 The Table of Values of k_{n}

Table 1. . A fell values of k_{n}

n	p_{n}	$k\left(1+p_{n}\right)$	$k\left(1+p_{n}+p_{n}^{2}\right)$	$k\left(1+p_{n}+p_{n}^{2}+p_{n}^{3}\right)$	$\max k_{n}<$
1	2	1.5	1.75	1.875	2
2	3	1.3333	1.4444	1.4814	1.5
3	5	1.2	1.24	1.248	1.25
4	7	1.1428	1.1632	1.1661	1.167
5	11	1.0909	1.0991	1.0999	1.1
6	13	1.0769	1.0828	1.0832	1.084

This shows that k_{n} is a monotone decreasing functions with p_{n}. The larger p_{n}, the smaller value of k_{n}.

3 Proof of proposition

Theorem 3. . Let k_{y} be a decimal, c be a integer .If to make $c k_{y}$ is integer, there have must be the following conditions:
1)if the bottom digit of decimal of k_{y} is 5 , then c must be even number;for example, $k_{y}=1.25, c=4,1.25 \times 4=5$.
2)if the bottom digit of decimal of k_{y} is a even number, then bottom digit of the c must be 5 , for example, $k_{y}=1.2, c=15,1.2 \times 15=18$.
Proof. Because there has only a product of 5 and even number can carry to make the decimal k_{y} change to integer,so this theorem is true.
Theorem 4. . If N is odd,$N=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{n}^{\beta_{n}}$, then $k_{1} k_{2} \ldots k_{n} \neq 2$.
Proof. Suppose the N is a prefect number, then

$$
k_{1} k_{2} \ldots k_{n}=\frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n}+\ldots+q_{n}^{\beta_{n}}}{q_{n}^{\beta_{n}}}=2
$$

by equations of (3) and (4).
Set $1+q_{n}+\ldots+q_{n}^{\beta_{n}}=2 b_{n}$,

$$
\begin{align*}
& \frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n-1}+\ldots+q_{n-1}^{\beta_{n-1}}}{q_{n-1}^{\beta_{n-1}}} \times \frac{2 b_{n}}{q_{n}^{\beta_{n}}}=2 \tag{5}\\
& \frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n-1}+\ldots+q_{n-1}^{\beta_{n-1}}}{q_{n-1}^{\beta_{n-1}}} \times \frac{b_{n}}{q_{n}^{\beta_{n}}}=1 \tag{6}
\end{align*}
$$

so it needs $\frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n-1}+\ldots+q_{n-1}^{\beta_{n-1}}}{q_{n-1}^{\beta_{n-1}}} \times b_{n}=c$
where c is an integer, and $c=q_{n}^{\beta_{n}}$.
I.e., $k_{1} k_{2} \ldots k_{n-1} b_{n}=a$.

Because :1) the right hand side of equation (5) is 2 , then the left hand side must be only containing one factor 2 , and all denominators are odd, then all numerators must be odd.
2) we known all k_{x} are decimals, then right hand side of equation (6) can not is a integer by 1) and the Theorem (3).

So

$$
\frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n-1}+\ldots+q_{n-1}^{\beta_{n-1}}}{q_{n-1}^{\beta_{n-1}}} \times \frac{b_{n}}{q_{n}^{\beta_{n}}} \neq 1
$$

$$
\begin{aligned}
& \text { and } \\
& \frac{1+q_{1}+\ldots+q_{1}^{\beta_{1}}}{q_{1}^{\beta_{1}}} \bullet \frac{1+q_{2}+\ldots+q_{2}^{\beta_{2}}}{q_{2}^{\beta_{2}}} \bullet \ldots \bullet \frac{1+q_{n-1}+\ldots+q_{n-1}^{\beta_{n-1}}}{q_{n-1}^{\beta_{n-1}}} \times \frac{2 b_{n}}{q_{n}} \neq 2 \\
& q_{n}^{\beta_{n} n}
\end{aligned}=2
$$

Hence the $\quad k_{1} k_{2} \ldots k_{n} \neq 2$.
Proposition . If N is odd, and $N=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{n}^{\beta_{n}}$, then it is impossible that N is an odd perfect number .
Proof. Let N be odd, and $N=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \ldots q_{n}^{\beta_{n}}$, then:
1)when $n=2, n=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}}$,since the least q_{x} are 3 and 5 , their values are largest which less 1.5 and 1.25 ,then $k_{1}^{\prime} k_{2}^{\prime}<1.5 \times 1.25=1.875$. So, i.e., when $n \leq 2$ the $k_{1} k_{2}<2$, by the Theorem 2 .
2)when $n \geq 3$, we can prove also that $k_{1} k_{2} \ldots k_{n} \neq 2, \quad$ by the Theorem 4.

Wherefore, if N is odd, the $k_{1} k_{2} \ldots k_{n} \neq 2$. So $\sigma(N) \neq 2 N$, and the N is not a prefect number by definition.

4 Conclusion

Now, we can say that may no odd perfect number. From above various aspects have been proved that can not has exist of odd perfect number. The perfect number is only a characteristic of even number .

References

[1] G.H.Harly E.M.Wright, An Introduction to the Theorem of Numbers, Posts and telecom press, Beijing, 2007,19-256.
[2] Zhou Xiaorao, Yu Mo, Interesting Famous Quistions of Number Theorem, Hunan university press, Changsha, 2012,115-116.
[3] (U.A.S)Du De Li, (Zhou Zhongliang translated)Basic Number Theory, Harbin institute of technology press , Harbin, 2011,47-50.
[4] From Wikipedia, the free encyclopedia , Perfect Number ; available at http://en.wikipedia.org/wiki/Perfect number .
[5] San Zun ,The Knowledge and Question of Elementary Number Theory, Harbin institute of technology press, Harbin, 2011,54-55.
[6] Paul Pollack, Finiteness Theorems for Perfect Numbers and Their Kin, Amer. Math. Monthly 119 (2012),670-681 ; available at http://www.maa.org/.

