
Proceedings of the American Control Conference, pp. 634–638, 1998.

Guaranteed error bounds for model reduction of linear
time-varying systems
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Abstract
New techniques are presented for the model reduction of
linear time-varying and linear periodically-varying systems,
including the formulation and proof of guaranteed upper
bounds for the error. The commonly used method of bal-
anced truncation for linear time-invariant systems is general-
ized to the time-varying case with explicit error bounds that
are derived based on generalizations of the ‘twice-the-sum-of-
the-tail’ formula. The development of these reduction results
for time-varying systems relies on a new operator framework
for analysis of linear time-varying systems, presented in [4],
in combination with the model reduction methods for uncer-
tain systems developed in [3].

1. Introduction
In this paper, new techniques are developed for the model
reduction of linear time-varying (LTV) systems. Explicit
bounds are derived for the error achieved when balanced
truncation methods are applied to such systems.

The method of balanced truncation has previously been
proposed for model reduction of linear time-varying and lin-
ear periodically-varying systems by several authors [15, 14,
10, 13]. The work in these papers generalizes the stan-
dard time-invariant results by utilizing time-varying versions
of the standard controllability and observability gramians,
computed via solution of Riccati recursions. However, such
recursions are in general difficult to solve computationally.
More notably, the previous work does not address the prob-
lem of finding an error bound for the reduced model.

In this paper we propose a new approach to this prob-
lem. A recently proposed operator framework for analysis
of time-varying and periodically-varying systems, developed
in [4], is used extensively. This framework allows for a gen-
eralization of the notion of balancing, formulated in terms
of structured solutions to linear matrix inequalities (LMIs),
which was presented in [3] for the model reduction of uncer-
tain systems represented in the linear fractional transforma-
tion (LFT) framework. This LMI approach provides a means
for simple computation of the required generalized gramians
and hence also the required balanced and truncated systems.

The main contribution of this paper is the development
of guaranteed bounds on the error, given in the induced 2-
norm, between the truncated and the original system. For
general time-varying systems, a new proof is presented for
the error bound. For periodic systems, we show that the
system may be viewed as an equivalent time-invariant sys-
tem with structured linear fractional uncertainty; hence the
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methods for model reduction of uncertain systems in [3] can
be directly applied.

2. Preliminaries
The notation used throughout this paper will be the same
as that developed in [4]. We will be analyzing linear time-
varying systems in discrete time, described in state space
notation as

xk+1 = Akxk +Bkwk
zk = Ckxk +Dkwk

(1)

for w ∈ `2. As in that reference, the system can be described
by block diagonal operators A = diag(A0, A1, A2, . . . ), and
similarly for B, C, D. The operator mapping w to z is then
given by G = C(I − ZA)−1ZB + D, where Z is the shift
operator on `2. Thus G is a bounded operator if and only if
1 6∈ spec(ZA), and this is equivalent to the standard notion of
stability of LTV systems, that is exponential stability. See [4]
for the details.

If F , G, R and S are block-diagonal operators, and A
is a partitioned operator, each of whose elements is a block-
diagonal operator, such as

A =
�
F G
R S

�
then we define the following notation:��

F G
R S

��
:= diag(

�
F0 G0

R0 S0

�
,

�
F1 G1

R1 S1

�
, . . . ),

which we call the diagonal realization of A. Useful properties
of these permutations are

(i)
��
A+B

��
=
��
A
��

+
��
B
��

(ii)
��
AC

��
=
��
A
����
C
��

.

(iii) If Q =
��
F G
R S

��
then Z∗QZ =

��
Z∗FZ Z∗GZ
Z∗RZ Z∗SZ

��

(iv)

2
4
2
4
��
P Q
R S

�� ��
T
U

��
��
V W

��
X

3
5
3
5 =

2
4
2
4P Q T
R S U
V W X

3
5
3
5

(v) A < βI holds if and only if
��
A
��
< βI.

Note that in the above, partitioned operators are always cho-
sen to have compatible dimensions, and the shift operator Z
always has the same spatial dimensions as the block diagonal
operator it is multiplying.

3. LTV systems and the system function
It was shown in [4] that the induced norm of an LTV sys-
tem is given by the maximum norm of an operator-valued
function over a complex ball. In this context, we are us-
ing a bounded sequence λk ∈ C of complex numbers as a
notion of frequency. Given such a sequence, define Λ :=
diag(λ0I, λ1I, . . . ), a block-diagonal operator with the same
spatial dimensions as A.



Theorem 1. Suppose A, B, C and D are block-diagonal op-
erators on `2, and 1 6∈ spec(ZA). Then

‖C(I − ZA)−1ZB +D‖ = sup
λk∈D̄

‖C(I − ΛZA)−1ΛZB +D‖,

where Λ depends on λk.

We refer to the function E(Λ) := C(I−ΛZA)−1ΛZB+D
appearing in Theorem 1 as the system function. The system
function plays an instrumental role in our viewpoint, allow-
ing a particularly simple analysis of the induced `2 norm of
LTV systems.

3.1. Evaluating the `2 induced norm
Define the set T which consists of block diagonal operators
with the same structure as the operator A. Also define the
set X to be X = {X > 0;X ∈ T }, the set of strictly positive
self-adjoint block-diagonal operators in T .

With this definition we can state the following important
result.

Theorem 2. The following conditions are equivalent

(i) ‖C(I − ZA)−1ZB +D‖ < 1 and 1 6∈ spec(ZA);

(ii) There exists X ∈ X such that�
ZA ZB
C D

�∗ �
X 0
0 I

��
ZA ZB
C D

�
−
�
X 0
0 I

�
< 0. (2)

(iii) There exists T ∈ T such that
�
T 0
0 I

� �
ZA ZB
C D

��
T−1 0

0 I

� < 1 (3)

(iv) There exists X ∈ X such that�
A B
C D

�∗ �
Z∗XZ 0

0 I

� �
A B
C D

�
−
�
X 0
0 I

�
< 0. (4)

(v) There exists T ∈ T such that
�
Z∗TZ 0

0 I

� �
A B
C D

��
T−1 0

0 I

� < 1 (5)

Formally, parts (i)–(iii) of this result are the same as those
for the linear time-invariant case, except that the operators
ZA and ZB replace the usual A-matrix and B-matrix, and
X is block-diagonal. This is a general property of the for-
malism we use, and provides a simple way to construct and
to understand the relationship between time-invariant and
time-varying systems.

Using Theorem 2 and the resulting formalism, a straight-
forward derivation of the model reduction error bound may
be developed that closely follows the proof of the time-
invariant case. The model reduction proof utilizes the no-
tions of equivalent and contractive realizations for LTV sys-
tems. In order to extend the results of [3] to the LTV frame-
work presented herein, we require the following.

Proposition 3. Let�
Â B̂

Ĉ D̂

�
:=

�
Z∗TZ 0

0 I

� �
A B
C D

��
T−1 0

0 I

�
. (6)

Then

C(I − ZA)−1ZB +D = Ĉ(I − ZÂ)−1ZB̂ + D̂

That is, these are equivalent realizations for the same system.

Thus we have the useful result that a system G is con-
tractive if and only if there exists some realization M

M =
�
A B
C D

�

which is contractive; that is, such that ‖M‖ < 1.

4. Model reduction for time-varying systems
We now define and discuss balanced model reduction meth-
ods for LTV systems. Guaranteed error bounds are stated
and proven for these reduction methods. The following
lemma allows us to define the notion of balanced realizations
for time-varying systems.

Lemma 4. The following are equivalent

(i) 1 6∈ spec(ZA)

(ii) There exists Y ∈ X such that

AYA∗ − Z∗Y Z +BB∗ < 0 (7)

(iii) There exists X ∈ X such that

A∗Z∗XZA−X + C∗C < 0 (8)

Proof . First, note that there exists X ∈ X such that
ZAXA∗Z∗ − X < 0 if and only if 1 6∈ spec(ZA). This
is simply the standard result that there exists a quadratic
Lyapunov function for A if and only if the system is expo-
nentially stable. The above inequalities follow immediately
from homogeneity and scaling. �

The notion of generalized gramians was introduced in
Beck et al [3]. The above operators X and Y are an infi-
nite dimensional generalization of this. They are non-unique
versions of the usual notion of the controllability and observ-
ability gramians for a linear system that result from solving
Lyapunov inequalities rather than Lyapunov equations. The
following gives a definition of a balanced realization. This is
exactly the generalized definition used for uncertain systems
in [3], applied to the time-varying system.

Definition 5. The linear periodic system realization is de-
scribed as balanced if there exist X,Y ∈ X , satisfying in-
equalities (8) and (7), such that

X = Y = Σ =
��

Σ1 0
0 Σ2

��
where Σ > 0, is diagonal.

Clearly, if two realizations M and M̂ for the same system
are related by equation (6), then their generalized gramians
transform as Ŷ = TY T ∗ and X̂ = T−1∗XT−1.

For LTV systems, the existence of balanced realizations
is guaranteed by Lemma 4, and by equation (6). Neither the
balanced realization nor the balanced Σ is unique.

In order to define the truncation of the system, partition
A, B and C according to the partitioning of Σ as

A =
��
A11 A12

A21 A22

��
B =

��
B1

B2

��
C =

��
C1 C2

��
. (9)

Note that the above partitioning is consistent with the block-
diagonal structure of A; each block Ai is partitioned into
submatrices, and all blocks are partitioned to have the same



spatial dimensions. We can now define the truncated system
Gr by

Gr := C1(I − ZA11)−1ZB1 +D.

The following technical lemmas will be used in the deriva-
tion of the error bound.

Lemma 6. Let

U11 = Z∗Σ
− 1

2
1 ZA12 U12 =

�
Z∗Σ

− 1
2

1 ZA11Σ
1
2
1 Z∗Σ

− 1
2

1 ZB1
�

U22 =
�
A21Σ

1
2
1 B2

�
W = A22

and

Y =
��

Σ1 0
0 I

��
for Σ1 > 0 block diagonal. Then Y satisfies equation (7) if
and only if

U =
�
U11 U12

W U22

�
is contractive.

Proof . Equation (7) can be written as

�
A B

� �Y 0
0 I

��
A∗

B∗

�
− Z∗Y Z < 0.

This is equivalent tohh
(Z∗Y Z)−

1
2AY

1
2 (Z∗Y Z)−

1
2B

ii
being contractive, since Q is contractive if and only if

��
Q
��

is contractive. Since Z∗Z = I, this equals""
Z∗Σ

− 1
2

1 ZA11Σ
1
2
1 A21Σ

1
2
1 Z∗Σ

− 1
2

1 ZB1

A21Σ
1
2
1 A22 B2

##
.

which is a permutation of U . �

The following result is similar.

Lemma 7. Let

V11 = A21Σ
− 1

2
1 W = A22

V21 =

"
Z∗Σ

1
2
1 ZA11Σ

− 1
2

1

C1Σ
− 1

2
1

#
V22 =

�
Z∗Σ

1
2
1 ZA12

C2

�

and

X =
��

Σ1 0
0 I

��
.

Then X satisfies equation (8) if and only if

V =
�
V11 W
V21 V22

�
is contractive.

Finally, the following lemma is an operator generalization
of Lemma 23 from [3]. The proof follows exactly the steps
used in [3] and so is omitted.

Lemma 8. Suppose U and V as defined above are contrac-
tive. Then

L :=

2
64

0 1√
2
U11 U12

1√
2
V11 W 1√

2
U22

V21
1√
2
V22 0

3
75

is contractive.

The following is the main result of this section; it provides
an explicit error bound for the induced 2-norm of the error
between G and Gr.

Theorem 9. Suppose X and Y satisfy equations (7)
and (8), with

X =
��

Σ1 0
0 Σ2

��
Y =

��
Σ1 0
0 Σ2

��
.

Suppose Σ2 = diag(Σ20 ,Σ21 , . . . ), with

Σ2k = diag(σk1Ik1 , σk2Ik2 , . . . , σkpkIipk )

Let

A =
��
A11 A12

A21 A22

��
B =

��
B1

B2

��
C =

��
C1 C2

��
partitioned in the same way as X, and let Gr be the truncated
system with realization (A11, B1, C1,D). Then

‖G−Gr‖ < 2
piX
i=1

max
k

σki.

Proof . By scaling we can without loss of generality consider
the case when Σ2 = I, in which case realization for 1

2 (G−Gr)
is given by

M =

2
66664

2
4
2
4A11 0 0

0 A11 A12

0 A21 A22

3
5
3
5

2
64
2
64

1√
2
B1

1√
2
B1

1√
2
B2

3
75
3
75

hh
− 1√

2
C1

1√
2
C1

1√
2
C2

ii
0

3
77775 .

Define

T =

2
64
2
64
− 1√

2
Σ

1
2
1

1√
2
Σ

1
2
1 0

1√
2
Σ
− 1

2
1

1√
2
Σ
− 1

2
1 0

0 0 I

3
75
3
75

Note T is block diagonal. We will show contractiveness of

M̂ :=
�
Z∗TZ 0

0 I

��
A B
C D

��
T−1 0

0 I

�

and apply Theorem 2. Multiplying gives
��
M̂
��

=
2
666664

2
666664

Z∗Σ
1
2
1 ZA11Σ

− 1
2

1 0 1√
2
Z∗Σ

1
2
1 ZA12 0

0 Z∗Σ
− 1

2
1 ZA11Σ

1
2
1

1√
2
Z∗Σ

− 1
2

1 ZA12 Z∗Σ
− 1

2
1 ZB1

1√
2
A21Σ

− 1
2

1
1√
2
A21Σ

1
2
1 A22

1√
2
B2

C1Σ
− 1

2
1 0 1√

2
C2 0

3
777775

3
777775

which is a permutation of L. Now applying Lemmas 6, 7
and 8 the desired result follows. �

This theorem considers only a special case of the general
linear time-varying model reduction problem; that in which
the singular values being truncated are constant over time.

It is possible to enforce this constraint when searching
for balanced realizations, and in [11] we show how to exploit
this in the general case. It will be shown in the next section
that an additive error bound can be derived.

5. Periodic Systems
In this section we show that periodic systems have a special
structure which allows the model reduction problem to be
reduced to a finite dimensional problem. An operator G
is said to be periodic with period q if ZqG = GZq , that
is it commutes with the q-shift for q some positive integer.



Such system descriptions arise naturally, in particular when
analyzing the effects of perturbations on the behavior of a
nonlinear system evolving on a closed periodic orbit.

For periodic systems, the result of Theorem 2 can be
strengthened to the following.

Theorem 10. Suppose A, B, C and D are q-periodic oper-
ators, and that X ∈ X and satisfies (2). Then there exists a
q-periodic operator Xper ∈ X such that�

ZA ZB
C D

�∗ �
Xper 0

0 I

��
ZA ZB
C D

�
−
�
Xper 0

0 I

�
< 0.

(10)

This theorem says that a solution exists to the performance
inequality if and only if a periodic solution to the LMI exists.
This result is proved in [4]; the proof amounts to taking
an average of a sequence of solutions to (2) where each is
constructed from X by q-shifting, so that

Xper =
∞X
i=0

Zqi∗XZqi.

Since the performance inequality is convex in X, this average
solution also satisfies the inequality.

We will make use of the following additional notation.
Let P be a q-periodic block-diagonal operator, and define P̃
to be the truncation of P , namely P̃ := diag(P0, . . . , Pq−1).
Also define the cyclic shift matrix Z̃, for q ≥ 2, by

Z̃ =

2
6664

0 · · · 0 I

I
. . . 0
. . .

...
I 0

3
7775 so that Z̃∗P̃ Z̃ =

2
6664
P1 0

. . .
Pq−1

0 P0

3
7775 .

For q = 1 set Z̃ = I. Note that Z is not diagonal, and Z̃ is
not the truncation of Z. Define the truncation of the set X
by

X̃ := {X̃ : X ∈ X}.
Using these new definitions we have the following corollary
of Theorem 10 and Theorem 2.

Corollary 11. Suppose A, B, C and D are q-periodic oper-
ators. The following conditions are equivalent

(i) ‖C(I − ZA)−1ZB +D‖ < 1 and 1 6∈ spec(ZA);

(ii) There exists a matrix X̃ ∈ X̃ such that�
Z̃Ã Z̃B̃

C̃ D̃

�∗ �
X̃ 0
0 I

��
Z̃Ã Z̃B̃

C̃ D̃

�
−
�
X̃ 0
0 I

�
< 0.

(11)

This corollary gives a finite dimensional convex condition
for determining the `2 induced norm of a periodic system of
the form (1). This condition can be checked using various
convex programming techniques.

Theorem 12. Suppose that G is a periodic system. Then

‖C(I − ZA)−1ZB +D‖ = sup
λ∈D̄
‖C̃(I − λZ̃Ã)−1λZ̃B̃ + D̃‖

Further, 1 6∈ spec(ZA) if and only if I − λZ̃Ã is invertible
for all λ ∈ D̄.

Λ̃

"
Z̃Ã Z̃B̃
C̃ D̃

#

Figure 1: The system to be truncated

The next result is the key result of this section, and is the
periodic analogue of Theorem 1. First, let {λ0, λ1, . . . , λq−1}
be a set of q complex scalars λk ∈ C. Define Λ̃ :=
diag(λ0I, . . . , λq−1I).

Theorem 13. Suppose that G is a periodic system. Then

‖C(I − ZA)−1ZB +D‖ = sup
λk∈D̄

‖C̃(I − Λ̃Z̃Ã)−1Λ̃Z̃B̃ + D̃‖

where Λ̃ depends on λk, k = 0, . . . , q − 1. Further, 1 6∈
spec(ZA) if and only if I− Λ̃Z̃Ã is invertible for all λk ∈ D̄.

6. Model reduction of periodic systems
Based on the result of Theorem 13, we can view linear
periodic systems in the form shown in the block diagram
of Figure 1. This corresponds to the usual LFT prob-
lem formulation for uncertain systems; the diagonal matrix
Λ = diag(λ0, . . . , λq−1) can be viewed as a matrix of uncer-
tain complex scalar parameters. For such uncertain systems,
model reduction techniques have been developed in [3]. We
can therefore directly apply those techniques of uncertain
model reduction to the periodic linear system under consid-
eration.

Lemma 14. The following are equivalent

(i) (I − Λ̃Z̃Ã) is invertible for all λk ∈ D̄

(ii) There exists X̃ ∈ X̃ satisfying

Ã∗Z̃∗X̃Z̃Ã− X̃ + C̃∗C̃ < 0 (12)

(iii) There exists Ỹ ∈ X̃ satisfying

Z̃ÃỸ Ã∗Z̃∗ − Ỹ + B̃B̃∗ < 0 (13)

This result follows immediately from Lemma 9 of Beck
et al [3], in which a framework is developed for the model
reduction of linear time-invariant systems with an associ-
ated uncertainty description. In this section, we show that
for periodic time-varying systems, analysis of induced-norm
properties has the same form as used for LTI systems with
uncertainty. Hence we can apply the results of [3] to periodic
LTV systems by simply identifying the appropriate uncer-
tainty structure; in this case the q-periodic LTV system can
be viewed as an LTI system with q scalar uncertainty blocks.

Note also that, with the inequalities replaced by equalities
in Lemma 14, X̃ and Ỹ are exactly the usual observability
and controllability gramians for time-varying systems [1].

The following gives an explicit definition of a balanced
realization for periodic LTV systems. This is exactly the
generalized definition used for uncertain systems in [3], ap-
plied to the periodic system. As shown in [3], such balanced
realizations always exist, and they are non-unique.



Definition 15. The linear periodic system realization is de-
scribed as balanced if there exist X̃, Ỹ ∈ X̃ , satisfying in-
equalities (12) and (13), such that

X̃ = Ỹ = Σ = diag(Σ0,Σ1, . . . ,Σq−1)
where Σi > 0, diagonal, with dim(Σi) = dim(Ai).

In order to state the model reduction error bounds for
balanced periodic time-varying systems, we partition the Σi
so that Σi = diag(Σ1i,Σ2i). Denote

Σ1i = diag(σi1Isi1 , . . . , σiki , Isiki )

and
Σ2i = diag(σi(ki+1)Isi(ki+1) , . . . , σitiIsiti )

We then truncate both the Σ2i and the corresponding pa-
rameter matrices. For example, we have

Ã =

2
66666666664

Â0 A012

A021 A022

Â1 A112

A121 A122

. . .
Âq−1 Aq−112

Aq−121 Aq−122

3
77777777775

which we truncate to

˜̂
A =

2
66664
Â0 0

Â1

. . .
0 Âq−1

3
77775

Similarly Bi =
�
B̂′i B′i2

�′
and Ci =

�
Ĉi Ci2

�
are trun-

cated to B̂i and Ĉi respectively, to construct ˜̂
B and ˜̂

C. De-
fine

Gr := Ĉ(I − ZÂ)−1ZB̂ + D̂

where Â is the periodic block-diagonal operator formed by
repeating the blocks of ˜̂

A. The following is the main result
of this section.

Theorem 16. Suppose G is stable and balanced, and let Gr
be the reduced order model formed by truncating G. Then

‖G−Gr‖ ≤ 2
q−1X
i=0

tiX
j=ki+1

σij

Outline of Proof. The result follows directly from appli-
cation of Theorem 15 in [3] to the periodically time-varying
system, since truncation of Z̃Ã is equivalent to truncating Ã
and multiplying by a shift operator Z̃ of appropriate spatial
dimension. See [3] for details. �

This result gives an explicit error bound for balanced
truncation of LTV systems, analagous to the ‘twice-the-sum-
of-the-tail’ formula for LTI systems. It is applicable to any
periodic LTV system.

Note that if the system is in fact linear time invariant,
so that the q-periodic system simply consists of q identical
copies of A, B, C and D, then this result reduces to the
standard linear time-invariant result; this is because trun-
cation of multiple identical singular values causes no greater
error bound than truncation of one singular value. Note that
the above theorem statement does not explicitly include this
case, although it follows immediately from [3].

7. Conclusions
In this paper we have derived error bounds for balanced trun-
cation of linear time-varying and linear periodically-varying
systems. To our knowledge these are the first error bounds
proposed for truncation of time-varying systems. We have
developed a generalized notion of balanced realization for
time-varying systems, expressed in terms of linear matrix
inequalities, allowing standard convex programming tech-
niques to be used in their construction. The bounds de-
veloped reduce to those known for the time-invariant case
when applied to time-invariant systems.
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